振动知识介绍
- 格式:ppt
- 大小:277.50 KB
- 文档页数:35
振动基础必学知识点
以下是振动基础必学的知识点:
1. 振动的定义:振动是物体围绕某个平衡位置来回周期性地运动。
2. 振动的周期和频率:振动的周期是振动一个完整循环所需要的时间,单位是秒;频率是单位时间内振动的次数,单位是赫兹。
它们之间有
以下关系:频率 = 1/周期。
3. 振动的幅度:振动的幅度是指物体离开平衡位置的最大距离。
4. 简谐振动:简谐振动是指物体在没有阻力的情况下,围绕平衡位置
做匀速往复运动的振动。
简谐振动的特点是周期恒定、频率固定且幅
度不断变化。
5. 谐振:谐振是指当外力作用频率与物体固有频率相同时,物体容易
发生共振现象,振幅会明显增大的现象。
6. 弹簧振子:弹簧振子是指一个质点通过与弹簧连接,形成一个可以
进行振动的系统。
弹簧振子的运动方程可以用简谐振动的方程表示。
7. 摆钟:摆钟是指一个由质点与一个固定的绳或杆连接,形成可以进
行振动的系统。
摆钟的运动方程可以用简谐振动的方程表示。
8. 声音的传播和振动:声音是由物体的振动引起的机械波。
声音的传
播需要介质的存在,并且介质中的分子通过相互振动来传递能量。
9. 波动的特征:波动的特征包括传播速度、波长、频率和振幅。
10. 波的类型:根据波动传播介质的性质,波可以分为机械波和电磁波两种类型。
以上是振动基础必学的知识点,掌握这些知识可以帮助理解振动和波动以及它们在不同物理现象中的应用。
大物知识点总结振动振动是物体周围环境引起的周期性的运动。
它是自然界中普遍存在的物理现象,了解振动现象对于理解物质的性质和物理规律具有重要意义。
振动现象广泛存在于自然界和人类生活中,如大地的地震、声波的传播、机械振动、弹性体的振动等等。
本文将介绍大物知识点中与振动相关的内容,并做相应总结。
一、简谐振动简谐振动是指体系对于某个平衡位置附近作微幅振动,其回复力正比于位移的现象。
它是最基本的振动形式,也是在自然界中广泛存在的振动。
简谐振动的重要特征包括振幅、周期、频率、角频率、相位等。
简谐振动的数学描述是通过简谐振动的运动方程来完成的,对于弹簧振子来说,它的运动方程是x = Acos(ωt + φ),其中x为位移,A为振幅,ω为角频率,t为时间,φ为相位。
利用这个方程,我们可以得到简谐振动的各种运动参数,如速度、加速度、动能、势能以及总机械能。
对于简谐振动系统,我们可以利用牛顿第二定律与胡克定律来进行分析。
牛顿第二定律可以得出振动体的加速度与回复力的关系,而胡克定律则是描述了挠性介质的回复力与位移的关系。
利用这两个定律,我们可以得到简谐振动的运动参数和系统的动力学性质。
二、受迫振动和共振在实际中,许多振动都是在外力的驱动下进行的,这种振动被称为受迫振动。
受迫振动是振动中的另一个重要现象,它包括了临界阻尼和过阻尼等多种振动状态。
受迫振动系统的特点是具有固有振动频率以及外力频率,当外力频率与系统的固有振动频率相近时,就会出现共振现象。
共振是指系统受到外力作用后,振幅或能量急剧增大的现象。
共振现象在实际工程中有着重要应用,如建筑结构的抗震设计、桥梁的结构设计等。
三、波的传播波是另一种重要的振动形式,它在自然界和人类生活中都有着广泛的应用。
波的传播包括机械波、电磁波、物质波等多种形式,它的传播速度和传播方式与特定介质的性质密切相关。
波的传播是通过介质中的微小振动来实现的,振动的传递使得能量和信息得以传播。
在波的传播中,我们可以通过波动方程来描述波的传播规律,如弦上的横波传播可以通过波动方程来描述,光波的传播也可以通过麦克斯韦方程来描述。
振动知识点总结一、振动的基本概念振动是指物体或系统在围绕某一平衡位置或状态发生往复移动的现象。
振动是一种常见的物理现象,几乎存在于自然界的各个领域,比如机械系统、电气系统、声学系统、光学系统等。
振动的基本特征包括振幅、周期、频率、相位等。
1. 振幅(Amplitude)是指在振动过程中物体偏离平衡位置的最大距离,通常用A表示。
振幅越大,振动的幅度越大。
2. 周期(Period)是指振动完成一个完整的往复运动所需的时间,通常用T表示。
周期与频率有倒数关系,即T=1/f。
3. 频率(Frequency)是指单位时间内振动完成的往复运动次数,通常用f表示。
频率与周期有倒数关系,即f=1/T。
4. 相位(Phase)是指在振动过程中某一时刻相对于参考位置的偏移角度。
相位可以用角度或弧度表示。
振动的种类有很多,基本可以分为自由振动、受迫振动和阻尼振动。
二、自由振动自由振动是指物体在不受外力作用的情况下,由于初位移或初速度引起的振动。
自由振动的特点是振幅大小不受外界影响,周期和频率由系统固有的物理参数决定。
自由振动的系统通常可以用简谐振动模型描述。
1. 简谐振动简谐振动是指物体沿着直线或围绕平衡位置作简谐往复运动的现象。
简谐振动的特点包括振动物体的加速度与位移成正比,加速度与位移的方向相反,振动物体的速度与位移成正弦关系。
简谐振动的运动方程可以用以下公式表示:x(t) = A*cos(ωt+φ)其中,x(t)表示位移与时间的函数关系,A表示振幅,ω表示角频率,φ表示初始相位。
2. 振幅与能量在简谐振动中,振幅和能量之间存在一定的关系。
振动系统的总能量等于势能和动能之和,在振动过程中,势能和动能不断转化,但总能量保持不变。
振动系统的总能量与振幅的平方成正比,即E=1/2*k*A^2,其中E表示总能量,k表示振动系统的刚度,A表示振幅。
3. 振动的衰减在现实中,自由振动的系统往往受到阻尼和摩擦的影响,导致振动幅度逐渐减小。
物体振动有关知识点总结一、振动的基本概念振动是指物体在受外力作用下,围绕平衡位置或平衡形态做不规则往复运动的现象。
它包括简谐振动和非简谐振动两种。
简谐振动是指当物体受到一个恢复力与它的位移成正比时,它将做简谐振动。
而非简谐振动是指当物体的振幅很大或受到摩擦等非弹性力时,它将做非简谐振动。
二、物体振动的特征1. 幅度:振动物体在平衡位置附近往复运动的最大位移称为振幅。
2. 频率:振动物体单位时间内完成振动往复运动的次数称为振动频率。
3. 周期:振动物体完成一次往复运动所需的时间称为振动周期。
4. 相位:描述振动物体在振动往复运动过程中所处的位置状态的物理量。
三、振动的分类振动可以根据其运动形式、受力形式或系统形式进行分类。
1. 按运动形式分类:振动可以分为直线振动和旋转振动两种。
2. 按受力形式分类:振动可以分为简谐振动和非简谐振动两种。
3. 按系统形式分类:振动可以分为单自由度系统和多自由度系统两种。
四、振动的频率和周期振动频率是指单位时间内完成振动往复运动的次数,通常用赫兹(Hz)作为单位,频率的倒数即为振动周期。
振动频率与振动周期有密切的关系,它们分别可以用以下公式表示:\[f = \frac{1}{T}\]\[T = \frac{1}{f}\]其中,f表示振动频率,T表示振动周期。
振动频率与振动周期是振动的基本特征,可以描述物体振动的快慢和规律性。
五、振幅和相位1. 振幅是振动物体在平衡位置附近往复运动的最大位移,它是振动物体振动能量的大小。
2. 相位是用来描述振动物体在振动往复运动过程中所处的位置状态的物理量,通常用角度或弧度表示。
六、阻尼振动阻尼振动是指振动系统受到外界阻力作用而发生的振动现象。
阻尼振动可以分为过阻尼、临界阻尼和欠阻尼三种情况。
过阻尼是指振动系统具有很大的阻尼,振动会迅速减弱并趋于平衡。
临界阻尼是指振动系统的阻尼刚好能使振动系统在最短的时间内达到平衡状态。
欠阻尼是指振动系统的阻尼不足,振动系统会发生频繁的振荡。
振动学知识点总结振动学知识点总结如下:一、振动的基本概念1. 振动的定义:指物体在某一平衡位置附近作来回运动的现象。
2. 振幅:振动物体在做往复运动时,离开平衡位置的最远距离。
3. 周期:振动物体完成一个完整的往复运动所需要的时间。
4. 频率:振动物体每秒钟完成的往复运动次数。
5. 相位:描述振动物体在振动周期中的位置关系。
二、单自由度振动系统1. 单自由度振动系统的概念:由一个自由度由一个自由度运动的质点和它的运动机构构成。
2. 自由振动:指单自由度振动系统在没有外力作用下的振动。
3. 阻尼振动:指单自由度振动系统的振动受到阻尼力的影响。
4. 强迫振动:指单自由度振动系统受到外力作用的振动。
三、非线性振动1. 非线性振动的概念:指振动系统的振动特性不满足线性振动方程的振动现象。
2. 非线性系统的分类:按系统的非线性特征分为几何非线性、材料非线性和边界非线性等。
3. 非线性振动的分析方法:包括解析法和数值法等。
四、多自由度振动系统1. 多自由度振动系统的概念:由多个自由度组成的振动系统。
2. 自由振动:指多自由度振动系统在没有外力作用下的振动。
3. 阻尼振动:指多自由度振动系统的振动受到阻尼力的影响。
4. 特征值问题:多自由度振动系统的固有振动特征。
5. 模态分析:多自由度振动系统振动特征的分析方法。
五、控制振动1. 振动控制的目的:减小系统振动、防止系统振动引起的损伤。
2. 主动振动控制:通过主动装置对系统进行振动控制。
3. 被动振动控制:通过被动装置对系统进行振动控制。
4. 半主动振动控制:融合了主动和被动振动控制的特点。
六、振动信号与分析1. 振动信号的特点:包括时间域特征、频域特征和相位特征等。
2. 振动信号采集与处理:使用传感器采集振动信号,并通过信号处理方法对其进行分析。
3. 振动分析方法:包括频谱分析、波形分析、振动模态分析和振动信号诊断分析等。
七、振动与工程应用1. 振动在机械领域的应用:包括减振、振动吸收、振动监测及振动诊断等。
振动学知识点归纳总结1. 振动的基本概念振动是指物体在一定时间内来回或往复运动的现象。
振动可以是机械系统、电磁场系统、声场系统以及量子力学中的原子和分子系统等特有的运动形式。
振动的基本要素包括振幅、周期、频率和相位,它们分别代表着振动的振幅大小、周期的长度、振动的频率以及相位的大小。
振动还可表现为往复振动、旋转振动和波动等形式。
2. 自由振动自由振动是指物体在受到外力作用之后,不再受到外力的干扰而自行振动的过程。
对于线性弹簧振子系统而言,自由振动的周期与该系统的质量、弹簧的刚度和振幅有关,产生自由振动的物体称为振动体。
3. 受迫振动受迫振动是指振动体受到外力作用时的振动过程。
当振动体受到强迫振动时,它会与外力同频振动,当频率接近振动体的固有频率时,振动体可能产生共振现象。
4. 谐振动谐振动是指振动体在受到外力作用时,如果外力的频率与振动体的固有频率相等或接近,振动体便会产生谐振现象,即振幅较大,这一现象在机械工程、电子电路、音响等领域有着广泛的应用。
5. 阻尼振动阻尼振动是指振动体在振动过程中受到阻尼力的作用,通过与外界环境的摩擦力相互作用,使振动体逐渐减弱、停止振动并回到平衡位置的过程。
阻尼振动可分为欠阻尼振动、临界阻尼振动和过阻尼振动三种情况。
6. 共振现象共振是指振动体在受到频率相同或接近的外力作用时,振幅急剧增大的现象。
共振现象广泛存在于物理、工程、地震学和生物学等领域,如桥梁共振振动、建筑结构共振破坏、音乐乐器共鸣等。
7. 振动的能量振动体在振动过程中的能量变化主要包括动能和势能的转换。
在自由振动中,当振动体距离均衡位置最远时,动能最大,势能最小;当振动体通过均衡位置时,动能最小,势能最大。
振动的能量守恒定律形成了机械振动中的一个重要原理。
8. 振动的控制与应用振动的控制手段包括消除外力、减小振幅、增大阻尼和改变系统的固有频率等方法。
振动学在工程、航空航天、地震学、声学和生物学等领域都具有重要的应用价值,如利用振动传感器检测机械故障、利用振动分析技术改善建筑结构的抗震性能、利用谐振技术改善声音品质等。
1、正定对称的阻尼矩阵:意味着系统因初始扰动储存起来的能量在振动过程中将因阻尼作用而不断地消耗掉。
一般情况下,结构的质量矩阵M 是正定对称矩阵,刚度矩阵K 是半正定对称矩阵,而粘性阻尼矩阵C 应该为正定对称矩阵。
原因如上。
2、实模态理论:对于某一阶主振动,各个质点运动的相位不是相同就是相反,也就是说,质点总是同时通过平衡位置,同时达到运动量的最大值。
因此,节点的位置固定不变,主振动呈现驻波性质。
对无阻尼系统,位移矢量和速度矢量的相位差始终为90°。
3、复模态理论:对于具有非比例粘性阻尼的系统,即使在同一阶主振动中,节点的位置也是变化的,振动将呈现行波性质而有别于实模态振动的驻波性质,位移矢量和速度矢量之间的相位差是不确定的。
在这种情况下,引入状态变量进行分析将更加方便。
有关的模态理论成为复模态理论。
(准定常气动力下的二元翼段颤振问题就属于这种情况)。
4、气动力为位移和速度的函数,这相当于气动力改变了结构的刚度特性和阻尼特性。
5、对于单自由度系统,固有频率和自由振动频率相同,而对于多自由度系统,固有频率和自由振动频率通常是不同的。
系统刚度愈大,固有频率愈高。
频率是由质量和刚度确定的。
6、阻尼:阻尼的性质通常是比较复杂的,它可能是位移、速度以及其他因素的函数。
工程中常用的是粘性阻尼,这类阻尼与速度的大小成正比。
d F cx =- 。
阻尼的大小将直接决定系统的运动是否具有振动特性,临界阻尼状态就是系统是否振动的分界线,当阻尼系数1ξ<时系统是振动的,当1ξ≥时系统就不作振动了。
把1ξ=时对应的粘性阻尼系数定义为临界阻尼系数。
记为02c c m ω==特性和刚度特性来确定。
综上所述,有阻尼系统自由振动的特性取决于特征方程的根的特性;对于欠阻尼的情况,它的根是复数。
特征根具有频率量纲,故称之为复频率,它的实部是一个负数,表示了振幅衰减的状态;虚部总是共轭成对地出现,表示了系统振动的频率,因此特征根反映了全部振动特性。
高中振动知识点总结一、振动的基本概念1. 振动的基本概念振动是物体围绕平衡位置作周期性的来回运动。
在振动过程中,物体围绕其平衡位置作往复运动,即物体在正、负方向上偏离其平衡位置,然后再返回平衡位置,这样的周期性运动称为振动。
2. 振动的特征振动有其特有的基本特征,包括振幅、周期、频率、相位等。
振幅是振动最大位移的大小;周期是振动一次往复运动所用的时间;频率是单位时间内振动的往复次数;相位描述了振动在不同时刻的状态。
3. 受迫振动和自由振动受迫振动指物体在外力的作用下产生的振动;自由振动指物体在外力作用消失后产生的自发振动。
受迫振动又可分为谐振动和非谐振动,谐振动指振动物体受到的外力是线性与位移关系的,即弹簧振子所受回复力与位移成线性关系;非谐振动指振动物体受到的外力与位移不成线性关系。
自由振动可能会导致共振现象的发生,即受迫振动与自由振动的相互作用。
二、振动的特性1. 振动的能量振动系统的动能和势能随着时间的推移而发生变化。
动能在振动的最大位移时取得最大值,而势能在平衡位置时取得最大值。
动能与势能之和即为系统的总能量,总能量在振动过程中保持不变。
2. 振动的耗散振动系统在振动过程中会由于各种摩擦力的作用而逐渐减少振动能量,最终停止振动。
这种能量逐渐减少的现象称为振动的耗散。
振动的耗散会导致振幅、周期、频率等振动特性逐渐发生变化。
3. 振动的阻尼振动系统在振动过程中受到的摩擦力作用称为振动的阻尼。
阻尼可分为线性阻尼、非线性阻尼等。
线性阻尼指摩擦力与速度成正比,即阻尼力与速度的关系是线性的;非线性阻尼指摩擦力与速度不成线性关系。
4. 振动的频率和振动数振动系统的频率是指单位时间内振动往复的次数,它是振动的一种重要特性。
当振动具有特定频率时,即发生共振,这样的振动频率称为共振频率。
三、振动的传播1. 振动的传播方式振动可以通过介质传播,也可以通过真空传播。
介质传播指振动通过物质介质的传递,如声波是通过介质空气传播的;真空传播指振动通过真空介质的传递,如光波是通过真空传播的。