变频器抗干扰解决方案
- 格式:doc
- 大小:23.00 KB
- 文档页数:4
变频器抗干扰措施以采用4m20mA的电流信号和一些开关量作控制连接;如果距离更远,可以采用RS485串行通讯方式来连接;若还要加长距离,可以利通讯中继器达到lkm的距离;如果采用光纤连接器,可以达到延长中心控制室与变频器机柜之间距离有利于缩短变频器到电机之间的距离,以便用更加合理的布局改善系统性能。
总之,在安装变频器时,需要综合考虑中心控制室、变频器、电机三者之间的距离,尽量减少谐波的影响。
外部控制指令信号通过控制回路导入变频器,与此同时,干扰源也在控制回路中产生干扰电势导入变频器,这势必造成变频器误动作,影响变频器一异步电动机系统正常工作。
常见的扰动电势来源有:(1)控制电缆与周围电气回路的静电耦合,在电缆中产生的电势;(2)周围电气回路产生的磁通变化在电缆中感应出的电势;(3)由外来电波在电缆中产生电势;(4)变频器输出的各种频率的谐波向空间发射不同程度的干扰,可能导致设备误动作;(5)变频器控制电缆的接点及继电器触点接触不良,电阻发生变化在电缆中产生的干扰;(6)各种电气设备共同使用同一电源时,由其它设备在电源系统直接产生电势。
对于扰动电势可以采取以下措施进行削弱:(1)加大与干扰源电缆的距离,达到导体直径40倍以上时,干扰程度就不明显了;或在两电缆间设置屏蔽导体,再将屏蔽导体接地,这样可以有效地削弱静电耦合在电缆中产生的电势;(2)将控制电缆与主回路电缆或其它动力电缆分离铺设,分离距离通常在3cm以上(最低为10cm),分离困难时,将控制电缆穿过铁管铺设。
将控制导体绞合,可以有效降低干扰源电缆产生的磁通,绞合间距越小,铺设的路线越短,抗干扰效果越好。
(3)将变频器放人铁箱内进行屏蔽,屏蔽用的铁箱要接地;(4)对继电器触点接触不良,可采用并联触点或镀金触点继电器或选用密闭式继电器,并对电缆连接点应定期做抒紧加固处理;(5)变频器的控制电源由另外系统供电。
除此之外,在控制电源的输人侧装设线路滤波器,装设绝缘变压器,且屏蔽接地。
变频器如何抗干扰变频器干扰解决方法一、变频器干扰的原因变频器在工作过程中会产生一定的电磁干扰,主要有以下几个原因:1.高频脉冲干扰:变频器由电机驱动器和电子器件组成,电子器件工作时会产生高频脉冲干扰,对周围电子设备产生辐射干扰。
2.电磁辐射:变频器中的电路部件和电机线圈会产生电磁场辐射,导致周围电子设备受到电磁干扰。
3.电源线干扰:变频器需要接入电源,当供电电源线路不稳定或存在电磁干扰时,会影响变频器正常工作并产生干扰。
二、变频器抗干扰的解决方法1.优化变频器布局:合理安排变频器及其接线的位置,将尽量远离其他敏感设备,减少电磁辐射对其它设备的干扰。
2.使用屏蔽电缆:通过使用屏蔽电缆连接变频器与电机,减少电磁辐射和电磁感应,从而减小干扰。
3.安装滤波器:安装电力滤波器来滤除变频器输出端的高频脉冲干扰,减少对周围设备的辐射。
4.增加电磁隔离屏蔽:在变频器周围添加金属屏蔽罩或者设施屏蔽屏蔽间隔来减少电磁波的辐射,从而保护周围设备。
5.优化供电电源:通过增加稳压器、滤波电容、终端电阻等措施,保证供电线路稳定,减少电源线干扰。
6.地线连接优化:保证变频器、电机、控制系统等设备都接地良好,减少电磁波的辐射和对其他设备的干扰。
7.使用额外的电磁屏蔽材料:在关键部位使用电磁屏蔽材料,如电磁屏蔽垫、屏蔽套管等,减少电磁波干扰。
8.添加滤波和降压器:通过在变频器的输入端添加滤波器,滤除电网的高频干扰信号,降低输入电源的干扰。
9.使用低噪声电源:选择低噪声的电源供应系统,减少输入变频器的电源噪声。
三、变频器干扰预防1.确保变频器本身具备较低的辐射性和敏感性,选择正规生产厂家和合格产品。
2.在购买变频器时,要选择具有良好抗干扰能力的产品,并参考其抗干扰性能指标。
3.对变频器进行适当的屏蔽和隔离设计,加强变频器周围环境的电磁兼容性。
4.在使用变频器时,要仔细阅读和遵守变频器的使用说明书,正确安装和接线,避免出现安装错误和使用不当的情况。
变频器抗干扰方法变频器是一种用来控制电动机转速的装置,广泛应用于工业生产中。
然而,由于变频器的调节过程中涉及到高频开关过程,就会产生电磁干扰,对其它电子设备和通信系统造成干扰。
因此,为了减少变频器的电磁干扰对周围设备的影响,需要采取一系列抗干扰措施。
首先,为了降低变频器的辐射干扰,可以采取以下措施:1.优化布线:合理布设电源线、控制线和信号线,使其远离敏感的模拟控制线路和通信线路,减少干扰的传递。
2.使用屏蔽线缆:将电源线、以及输入输出信号线采用带有屏蔽层的线缆,以减少干扰的辐射和传递。
3.增加滤波器:在变频器输入端安装滤波器,能够滤除高频噪声,减少干扰的辐射。
4.安装金属屏蔽罩:在变频器周围安装金属屏蔽罩,能够有效屏蔽辐射干扰。
其次,为了降低变频器的传导干扰,需要采取以下措施:1.使用滤波器:在变频器输入端和输出端都安装滤波器,以减少输入输出电缆的传导干扰。
2.分开供电:变频器的电源线和控制信号线分开供电,减少共模干扰。
3.添加低噪声电源:为变频器提供低噪声的电源,减少变频器输出端的电磁噪声。
4.选择合适的电缆:使用屏蔽效果好的电缆线材以减少传导干扰。
此外,为了提高变频器的抗干扰能力,还可以采取以下措施:1.优化地线:建立良好的接地系统,确保变频器和其它设备的共同接地,减少干扰的传导。
2.合理设置工作频率:选择合适和规范的工作频率范围,减少对其它设备的干扰。
3.添加滤波电容:在变频器输入端和输出端添加滤波电容,以降低高频噪声和干扰。
4.合理布置设备:将变频器和其它设备互相隔离,减少干扰传递。
最后,为了保证变频器的抗干扰性能,需要进行电磁兼容性测试和评估。
这样能够及早发现问题,并对干扰源进行识别和消除。
总结来说,为了降低变频器的电磁干扰对周围设备的影响,我们可以从减少辐射干扰、传导干扰和提高抗干扰能力等方面进行考虑。
通过合理的设备布局,优化的电路设计以及合适的滤波措施,能够有效地降低变频器的干扰程度,确保其正常稳定的运行。
高压变频器抗干扰的措施1.物理层面措施:a.线缆隔离:采用屏蔽电缆或防干扰型电缆,能有效地阻挡外界干扰信号。
b.设备隔离:将高压变频器与其他可能产生干扰信号的设备进行隔离,避免互相影响。
c.地线处理:保证变频器的接地良好,以减少或消除地线回路的干扰信号。
d.电磁屏蔽:对高压变频器进行电磁屏蔽,减少电磁泄漏,降低相互干扰的可能性。
e.涂线处理:对高压变频器内部的线路进行涂敷处理,防止信号的外泄和互相干扰。
2.电子层面措施:a.滤波器:在高压变频器的输入端和输出端都安装滤波器,减少输入和输出信号中的高频噪声和尖峰电压。
b.绝缘处理:对高压变频器内部的电子器件进行绝缘处理,避免干扰信号的传播和扩散。
c.场效应管:选用具有较低开关损耗的场效应管替代普通的开关管,减少开关过程中的干扰噪声。
d.控制算法:改进高压变频器的控制算法,优化PWM调制技术,减少开关频率的干扰。
e.接口设计:合理设计高压变频器的输入输出接口,充分考虑干扰信号的抗干扰能力,采取合适的线路和防护措施。
3.地线处理:a.单点接地:采用单点接地,减少地线的回路干扰。
b.地线阻抗控制:控制地线的阻抗,确保地线回路的稳定性和良好接地。
c.地线设计:合理设计高压变频器的地线连接方式,减少共模干扰和电磁干扰。
4.综合性措施:a.屏蔽措施:对高压变频器进行屏蔽处理,减少电磁泄漏和外界电磁干扰。
b.系统布线:合理规划和优化系统的布线,避免信号线和电源线的交叉干扰。
c.温度控制:控制高压变频器的工作温度,降低温度对器件性能的影响,减少工作异常和干扰信号的产生。
d.绝缘性能:保证高压变频器的绝缘性能良好,减少绝缘故障对系统的干扰。
总之,高压变频器抗干扰的措施需要综合考虑物理层面和电子层面的因素,通过合理的设计和控制方案,来减少干扰信号的产生和传播,提高设备的稳定性和抗干扰能力。
变频器产生的干扰及解决方案1. 引言变频器是一种用于调节机电转速的设备,广泛应用于工业生产中。
然而,变频器在工作过程中会产生电磁干扰,对其他设备和系统造成不利影响。
本文将详细介绍变频器产生的干扰及解决方案。
2. 变频器产生的干扰变频器产生的干扰主要包括电磁辐射干扰和电源线干扰两个方面。
2.1 电磁辐射干扰变频器工作时,机电和变频器之间的电缆会产生电磁辐射,通过空气传播到周围设备和系统中。
这种干扰可能导致其他设备的电子元件受损、通信中断或者数据丢失。
2.2 电源线干扰变频器通过电源线接入电网,其高频脉冲信号会通过电源线传播到其他设备和系统中,引起电源线上的电压和电流波动,导致其他设备的正常工作受到干扰。
3. 解决方案为了解决变频器产生的干扰问题,可以采取以下几种方案:3.1 滤波器安装滤波器是减少电磁辐射干扰的有效方法。
滤波器可以在变频器的电缆和电源线上安装,通过滤波器的滤波作用,将高频噪声滤除,减少电磁辐射干扰的传播。
3.2 屏蔽措施为了减少电磁辐射干扰的传播,可以采取屏蔽措施。
在变频器和机电之间的电缆上使用屏蔽材料包裹,阻挡电磁辐射的传播。
此外,还可以在设备周围建立金属屏蔽罩,进一步减少电磁辐射的泄漏。
3.3 接地措施良好的接地系统可以有效减少电磁辐射干扰。
通过建立良好的接地网络,将变频器和其他设备的接地点连接在一起,减少电磁辐射的泄漏。
此外,还可以使用接地屏蔽器,将电磁辐射导向接地,减少对其他设备的干扰。
3.4 选择合适的电缆选择合适的电缆也可以减少电磁辐射干扰。
使用屏蔽效果好的电缆,能够有效地阻挡电磁辐射的传播。
此外,还可以选择带有抗干扰能力的电缆,减少电源线干扰对其他设备的影响。
3.5 距离隔离在设计设备布局时,可以将变频器与其他敏感设备保持一定的距离,减少电磁辐射干扰的传播。
通过合理的布局,将变频器放置在远离其他设备的位置,可以有效降低干扰的程度。
4. 结论变频器产生的干扰对其他设备和系统的正常工作造成为了一定的影响,但通过采取相应的解决方案,可以有效减少干扰的程度。
变频器抗电磁干扰措施有哪些变频器是一种用于调节电动机转速的设备,它通过改变电源频率来控制电机的转速。
然而,由于其工作原理和电磁特性,变频器在工作过程中容易受到电磁干扰的影响。
为了保证变频器的正常工作和延长设备的使用寿命,必须采取一定的措施来抗电磁干扰。
1. 电磁屏蔽。
电磁屏蔽是最常见的抗电磁干扰措施之一。
通过在变频器的外壳和内部电路上添加屏蔽层,可以有效地阻止外部电磁波对设备的干扰。
屏蔽层通常采用导电材料制成,如铜箔、铝箔等,能够有效地吸收和屏蔽外部电磁波,保护设备的正常工作。
2. 地线连接。
良好的接地是抗电磁干扰的重要措施之一。
通过将变频器的外壳和内部电路与地线连接,可以有效地排除设备内部的静电和电磁干扰,保证设备的正常运行。
此外,地线连接还可以减少设备与外部环境的电磁耦合,提高设备的抗干扰能力。
3. 滤波器。
在变频器的输入端和输出端添加滤波器是抗电磁干扰的有效措施之一。
输入端滤波器主要用于滤除电源输入端的高频干扰信号,输出端滤波器主要用于滤除电机输出端的高频干扰信号。
通过滤波器的作用,可以有效地减少电磁干扰对设备的影响,保证设备的正常运行。
4. 等效电路设计。
在变频器的电路设计中,采用合理的等效电路设计是抗电磁干扰的重要手段之一。
通过合理设计电路的布局和连接方式,可以减少电路间的电磁耦合,减小电磁干扰的影响。
此外,合理设计电路的等效电路参数,可以提高电路的抗干扰能力,保证设备的正常工作。
5. 屏蔽电缆。
在变频器和电机之间采用屏蔽电缆连接是抗电磁干扰的有效措施之一。
屏蔽电缆通常具有导电屏蔽层,可以有效地阻止外部电磁波对信号传输的干扰,保证信号的准确传输。
此外,屏蔽电缆还可以减少电磁波对设备的影响,提高设备的抗干扰能力。
6. 环境监测。
定期对变频器周围的电磁环境进行监测是抗电磁干扰的重要手段之一。
通过监测周围的电磁干扰情况,可以及时发现和排除电磁干扰的影响,保证设备的正常运行。
此外,监测环境的变化还可以为设备的抗干扰措施提供参考依据,保证设备的稳定运行。
变频器有效的抗干扰措施变频器是一种电力设备,主要用于控制电动机的转速和频率。
由于其工作原理的特殊性,变频器在使用过程中容易受到干扰,从而影响工作的稳定性和性能。
为了提高变频器的抗干扰能力,下面列举了一些有效的措施。
1.地线连接良好:变频器的金属外壳和内部的各个部件都需要通过地线进行连接,确保设备的安全接地。
地线是变频器有效抗干扰的基础,良好的接地可以有效地降低干扰电压和干扰电流。
2.电源滤波:变频器电源端通常会存在电源波动、杂散干扰等问题,可以通过选用电源滤波器来过滤这些干扰。
电源滤波器可以将电源端的高频噪声滤掉,使得输入电源稳定,从而提高变频器的抗干扰能力。
3.屏蔽措施:通过给变频器的各个输入输出端口进行屏蔽处理,可以有效地防止外界的电磁干扰。
具体的屏蔽方式可以采用金属屏蔽罩、屏蔽隔离光耦、屏蔽线缆等。
屏蔽措施可以减少变频器对外界的敏感度,提高其抗干扰能力。
4.选择合适的电缆:变频器的输入输出端口通常需要连接电缆,合适的电缆选择可以降低电磁干扰的影响。
选用屏蔽性能好的电缆,并且尽量缩短电缆的长度,可以有效减少电磁干扰。
5.避免共模干扰:变频器内部的电源和控制信号线路之间通常会存在共模干扰问题,其中一种常见的共模干扰是电源端的地线干扰。
为了避免共模干扰,可以采用双层绕线、降低绕线电阻、增加绕线间距等措施。
6.引入滤波器:在变频器的输入端和输出端引入滤波器可以有效地降低电磁干扰的影响。
输入端滤波器可以将外界电磁干扰滤掉,使得变频器在供电稳定的情况下运行;输出端滤波器则可以减少变频器对外界设备的电磁干扰。
7.防止回流干扰:变频器在工作过程中会产生回流,即原电源线上产生的噪声通过电源线传播回来影响其它设备。
为了防止回流干扰,可以使用阻抗匹配网络、电源滤波器等措施,将回流电流的传播途径阻断,从而降低干扰的影响。
总结起来,变频器有效的抗干扰措施包括地线连接良好、电源滤波、屏蔽措施、选择合适的电缆、避免共模干扰、引入滤波器、防止回流干扰等。
变频器产生的干扰及解决方案摘要:变频器具有很多的优越性,但它对电网的谐波干扰和电磁辐射干扰也越来越受到人们的关注,本文主要介绍谐波、电磁辐射的标准和危害及其减弱或消除的方法。
1引言采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而得到越来越多的应用。
但是,由于变频器特殊的工作方式带来的干扰越来越不容忽视。
变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作.2 谐波和电磁辐射对电网及其它系统的危害(1) 谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。
(2)谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转.(3) 谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。
ﻫ(4)谐波或电磁辐射干扰会导致继电保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作.(5)电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱.一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。
但对系统容量小的系统,谐波产生的干扰就不能忽视.3 有关谐波的国际及国家标准现行的有关标准主要有:国际标准IEC61000-2-2,IEC61000-2—4,欧洲标准EN61000—3—2,EN61000—3—12,国际电工学会的建议标准IEEE519-1992,中国国家标准GB/T14549—93《电能质量共用电网谐波》.下面分别做简要介绍。
变频器产生的干扰及解决方案变频器是一种将电源的频率和电压转换为所需的频率和电压的电力调节装置。
它在许多工业和家用设备中被广泛应用,如电机驱动、电梯、空调等。
然而,变频器在运行过程中会产生一些干扰问题,这些干扰可能对其他设备和系统造成负面影响。
本文将重点介绍变频器产生的干扰及其解决方案。
一、变频器产生的干扰类型:1.电磁辐射干扰:变频器运行时会产生较高频率的电磁辐射,对周围的电子设备和无线通信设备造成电磁干扰。
2.电功率干扰:变频器会对电源网络产生带有谐波成分的高电流脉冲,容易导致电网电压波动,同时也可能导致其他设备的故障。
3.传导干扰:变频器内部的电磁干扰会通过电力线或控制信号线传导到其他设备中,影响其正常工作。
二、变频器产生干扰的原因:1.变频器内部电路的高频振荡:变频器内部的开关电路会产生高频振荡,因为各种电容和电感元件之间的互联会产生谐振环路,导致电路的振荡频率高于基本频率。
2.高频开关的操作:变频器内部的半导体开关装置,如IGBT等,会频繁开关,导致高频电流脉冲。
三、解决变频器干扰问题的方法:1.滤波器的使用:通过在变频器和被干扰设备之间添加滤波器,可以有效减少电磁辐射干扰和传导干扰。
滤波器可以选择带通滤波器、陷波器等。
2.感应式隔离变压器:通过使用感应式隔离变压器,可以有效消除变频器产生的电功率干扰。
感应式隔离变压器可以将电网和变频器之间的电源隔离,降低干扰传导。
3.屏蔽和接地:在设计和安装变频器系统时,应注意使用屏蔽电缆和接地装置,以减少电磁辐射干扰和传导干扰。
正确的接地和屏蔽可以有效降低或消除干扰。
4.合理的电缆布线:将变频器和被干扰设备之间的电缆布线分离,避免电缆交叉和平行布线。
这样可以减少电磁辐射和传导干扰的发生。
5.系统优化:在设计和安装变频器系统时,应选择质量可靠、抗干扰能力较强的变频器产品。
优化系统结构,提高系统的抗干扰能力。
总结:变频器产生的干扰是一个普遍存在的问题,对于设备的正常运行和其他设备的工作状态产生了一定的影响。
变频器电磁干扰_如何消除变频器干扰?变频器干扰解决方法变频器包括整流电路和逆变电路,输入的交流电经过整流电路和平波回路,转换成直流电压,再通过逆变器把直流电压变换成不同宽度的脉冲电压(称为脉宽调制电压,PWM)。
用这个PWM电压驱动电机,就可以起到调整电机力矩和速度的目的。
这种工作原理导致以下三种电磁干扰:1、射频辐射干扰:射频辐射干扰来自变频器的输入电缆和输出电缆。
在上述的射频传导发射干扰的情形中,变频器的输入输出电缆上有射频干扰电流时,由于电缆相当于天线,必然会产生电磁波辐射,产生辐射干扰。
变频器输出电缆上传输的PWM电压,同样包含丰富的高频的成分,会产生电磁波辐射,形成辐射干扰。
辐射干扰的特征是,当其他电子设备靠近变频器时,干扰现象变得严重。
2、谐波干扰:整流电路会产生谐波电流,这种谐波电流在供电系统的阻抗上产生电压降,导致电压波型发生畸变,这种畸变的电压对于许多电子设备形成干扰(因为大部分电子设备仅能工作在正弦波电压条件下),常见的电压畸变是正弦波的顶部变平。
谐波电流一定时,电压畸变在弱电源的情况下更加严重,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关;3、射频传导发射干扰:由于负载电压为脉冲状,因此变频器从电网吸取电流也是脉冲状,这种脉冲电流中包含了大量的高频成分,形成射频干扰,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关。
根据电磁学的基本原理,形成电磁干扰必须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。
为防止干扰,可采用硬件抗干扰和软件抗干扰。
其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和放两方面入手来抑制干扰,其总体原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统干扰信号的敏感性。
具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。
以下几点是解决现场干扰的主要步骤:①采用软件抗干扰措施:具体来讲就是通过变频器的人机界面下调变频器的载波频率,把该值调低到一个适当的范围。
变频器产生的干扰及解决方案一、引言随着工业自动化的快速发展,变频器作为一种重要的电力调节设备,被广泛应用于工业生产中。
然而,变频器在工作过程中产生的电磁干扰问题也逐渐凸显出来。
本文将详细介绍变频器产生的干扰原因及解决方案。
二、变频器产生的干扰原因1. 高频脉冲干扰:变频器内部的开关元件工作时,会产生高频脉冲信号,这些高频脉冲信号会通过电源线和信号线传播,导致其他设备受到干扰。
2. 电磁辐射干扰:变频器内部的高频电流和电压变化会产生电磁场,这些电磁场会辐射到周围环境中,干扰其他设备的正常工作。
3. 地线干扰:变频器的地线接触不良或电阻过大,会导致地线电压的变化,进而引起其他设备的干扰。
三、变频器产生的干扰对设备的影响1. 信号干扰:变频器产生的高频脉冲信号会干扰其他设备的信号传输,导致数据传输错误或丢失。
2. 电磁辐射干扰:变频器产生的电磁辐射会影响其他设备的正常工作,甚至可能引起设备故障。
3. 电源干扰:变频器产生的高频脉冲信号会通过电源线传播,影响其他设备的电源稳定性,导致设备不能正常工作。
四、变频器干扰解决方案1. 滤波器的应用:在变频器的输入端和输出端分别安装滤波器,可以有效地抑制变频器产生的高频脉冲信号和电磁辐射。
2. 地线的优化:确保变频器的地线接触良好,并使用低阻抗的地线,以减小地线电压的变化,降低地线干扰的可能性。
3. 屏蔽措施:对变频器进行屏蔽处理,可以减少电磁辐射干扰。
同时,在变频器的输入端和输出端分别安装屏蔽罩,以阻挡电磁辐射的传播。
4. 接地措施:在变频器的输入端和输出端分别设置良好的接地装置,以减小电磁辐射的影响范围。
5. 信号隔离:对变频器的输入端和输出端进行信号隔离,可以有效地防止信号干扰的传播。
6. 电源滤波:在变频器的输入端安装电源滤波器,可以减小高频脉冲信号对电源的干扰,保证其他设备的电源稳定性。
五、结论变频器作为重要的电力调节设备,在工业生产中起到了关键的作用。
变频器对plc干扰解决方法
变频器对PLC的干扰可以通过以下方法解决:
1. 磁场隔离:为减少变频器对PLC的干扰,可以采取隔离措施,包括使用
隔离变压器、信号线和电源线的隔离等。
2. 线路滤波:对信号线进行滤波,以减少电磁干扰。
可以在信号线上安装滤波器或电容器等滤波元件,以吸收或抑制高频信号。
3. 接地良好:确保PLC和变频器的接地良好,可以减少静电和电磁干扰的
影响。
接地线应该采用足够粗的线径,以减小接地电阻。
4. 优化配置:在配置PLC和变频器时,应该将它们放在不同的卡板上,以
减少相互干扰。
同时,应该保持一定的距离,以减小电磁干扰的影响。
5. 软件滤波:在PLC程序中加入软件滤波算法,以减少电磁干扰对PLC控
制精度的影响。
可以使用数字滤波器、滑动平均滤波器等算法,对输入信号进行平滑处理。
6. 选用高质量的PLC和变频器:选用具有较强抗干扰能力的PLC和变频器,可以减少电磁干扰的影响。
7. 其他措施:还可以采取其他一些措施,如加强设备的维护和保养、定期检查线路连接等,以减少电磁干扰的影响。
综上所述,为减少变频器对PLC的干扰,可以从多个方面采取措施,包括磁场隔离、线路滤波、接地良好、优化配置、软件滤波、选用高质量的PLC 和变频器等。
通过这些措施的综合应用,可以有效地减小干扰对PLC控制精度的影响,提高设备的稳定性和可靠性。
年月(下)1引言变频器在工业生产及日常生活的许多领域已广泛应用。
变频器调速技术是集自动控制、微电子、电力电子、通信等技术于一体的高科技,它以较好的调速和节能性能应用到了工业控制的各个领域中,但带来的变频系统的电磁干扰也比较严重。
变频器系统的干扰主要有两个方面:一是变频器对其他电子设备、通信设备和无线电等产生的干扰。
二是电网中的谐波干扰变频器的正常工作。
下面主要探讨一下变频器系统干扰问题及抗干扰措施。
2电磁辐射和高次谐波干扰的危害1)磁辐射使经过变频器输出导线附近的控制信号、检测信号等弱电信号受干扰,严重时使系统无法得到正确的检测信号,或是系统紊乱。
2)谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。
3)谐波可以通过电网传导到其他的用电器,影响了许多电气设备的正常运行。
4)谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。
5)谐波或电磁辐射干扰会导致继电器保护设置的误动作,使电器仪表计量不准确,甚至无法正常工作。
3变频器的主要干扰源电磁干扰(EMI ),是外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播。
变频器的整流电路对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。
另外,变频器的逆变大多采用PWM 技术,其工作于开关模式并作高速切换,产生大量耦合性噪声。
变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。
1)变频器的输入和输出电流中,都含有很多高次谐波成分和能构成电源无功损耗的较低次谐波。
它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。
2)电网中的谐波干扰主要通过变频器的供电电源干扰变频器。
电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。
这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生干扰。
供电电源对变频器的干扰主要有:过压、欠压、瞬时掉电,浪涌,尖峰电压脉冲,射频干扰等。
整流变频系统防干扰解决办法整流变频系统是现代工业中常用的一种电力控制系统,它可以将交流电源转换为直流电源,并通过变频器将直流电源转换成需要的频率和电压进行供电。
然而在实际应用中,由于外部干扰等原因,整流变频系统可能会出现故障,影响正常的运行,因此需要采取一些措施来防止系统受到干扰。
一、建立完善的系统地线在整流变频系统中,地线的建立是非常重要的一环,它可以有效地减少系统受到外部干扰的可能性。
要保证地线的导通性良好,接地电阻低,这样可以确保系统的安全运行。
还需要合理规划系统地线的布局,尽量减少地线环路的面积,避免形成大面积的感应环路,从而减少系统受到外部干扰的可能。
二、采用屏蔽措施在整流变频系统的设计与安装中,可以有效地采用屏蔽措施来防止系统受到干扰。
一方面可以在系统的电缆和接口处增加屏蔽层,尽量减少外部干扰信号的输入,从而保证系统的正常运行。
还可以采用金属电磁屏蔽罩来包裹整流变频设备,有效地隔离外部干扰,保证系统安全稳定地运行。
三、设计专门的滤波电路在整流变频系统中,滤波电路的设计对系统的抗干扰能力起着至关重要的作用。
通过合理设计滤波电路,可以有效地滤除系统中的杂波和谐波,减小系统对外部干扰的敏感度。
在整流变频系统的设计中,应该充分考虑滤波电路的设计和安装,从而提高系统的抗干扰能力。
四、使用抗干扰能力强的元器件在整流变频系统的设计与选型中,应该尽量选择抗干扰能力强的元器件,从根本上提高系统的抗干扰能力。
比如在变频器的选型中,可以选择具有EMC认证的产品,这些产品经过严格的抗干扰测试,具有较强的抗干扰能力,可以有效地保证系统的安全稳定运行。
五、定期进行系统检测与维护为了确保整流变频系统的正常运行,需要定期进行系统的检测与维护。
通过定期的系统检测,可以及时发现系统中的故障和问题,从而采取有效的措施进行修复和处理。
还需要定期对系统进行清洁和维护工作,保证系统设备的正常运行,减少故障的发生。
整流变频系统在现代工业中具有非常重要的作用,但在实际应用中也可能会受到外部干扰的影响,影响系统的正常运行。
变频器产生的干扰及解决方案一、引言变频器作为一种常见的电力调节设备,在工业生产中得到了广泛的应用。
然而,变频器在运行过程中会产生一定的电磁干扰,对其他设备和系统造成不利影响。
本文将详细介绍变频器产生的干扰原因及其解决方案。
二、变频器产生的干扰原因1. 高频噪声干扰:变频器在工作时会产生高频噪声,这些噪声会通过电源线、信号线以及空气传导到其他设备和系统中,造成干扰。
2. 电磁辐射干扰:变频器内部的电子元件在工作时会产生电磁辐射,这些辐射会通过电磁波的形式传播到周围环境中,对其他设备和系统造成干扰。
3. 电源波形失真:变频器在将直流电源转换为交流电源时,会引入波形失真,这些失真信号会干扰到其他设备和系统。
三、变频器产生的干扰解决方案1. 电磁屏蔽措施:a. 在变频器周围设置金属屏蔽罩,阻挡电磁辐射的传播,减少对周围设备的干扰。
b. 使用电磁屏蔽材料对变频器进行包裹,有效减少电磁辐射。
c. 优化变频器的布局,减少电磁辐射的产生。
2. 滤波措施:a. 在变频器的输入端和输出端分别安装滤波器,滤除高频噪声和电磁干扰。
b. 使用电源滤波器对电源进行滤波,减少电源波形失真。
3. 接地措施:a. 对变频器进行良好的接地,减少电磁辐射和电磁干扰。
b. 对其他设备和系统进行良好的接地,提高其抗干扰能力。
4. 信号隔离措施:a. 使用光电耦合器等信号隔离器件,将变频器的控制信号与其他设备隔离,减少干扰的传播。
b. 优化信号线的布线,减少信号线的长度和交叉,降低干扰的可能性。
5. 故障监测与处理:a. 定期对变频器进行故障监测,及时发现并处理可能导致干扰的故障。
b. 配备专业的维护人员,及时处理变频器故障,减少干扰对生产的影响。
四、结论变频器产生的干扰对其他设备和系统的正常运行造成为了一定的影响。
为了解决这一问题,我们可以采取电磁屏蔽、滤波、接地、信号隔离以及故障监测与处理等措施。
通过这些解决方案的应用,可以有效减少变频器产生的干扰,保障生产设备和系统的正常运行。
变频器产生的干扰及解决方案一、引言随着工业自动化的快速发展,变频器作为调节电机转速的重要设备,被广泛应用于各个行业。
然而,变频器在工作过程中会产生一定的电磁干扰,对其他电子设备和系统造成负面影响。
本文将详细介绍变频器产生的干扰及其解决方案。
二、变频器产生的干扰类型1. 电磁辐射干扰:变频器工作时,电源和电机之间会产生高频电流和电压,导致电磁辐射干扰,影响周围电子设备的正常工作。
2. 电源电压波动干扰:变频器在工作时,由于电机负载的变化,会引起电源电压波动,对其他设备的电源供应造成干扰。
3. 电磁感应干扰:变频器的高频电流和电压会在电源线和控制线上引起电磁感应,进而对周围设备和系统产生干扰。
三、变频器干扰的影响1. 对其他电子设备的干扰:变频器产生的电磁辐射干扰可能导致其他电子设备的噪声增加、通信异常、数据传输错误等问题。
2. 对电源系统的干扰:变频器的电源电压波动干扰可能引起其他设备的电源不稳定,甚至导致设备损坏。
3. 对控制系统的干扰:变频器的电磁感应干扰可能导致控制系统的误差增加,影响系统的稳定性和精度。
四、变频器干扰的解决方案1. 电磁屏蔽措施:通过在变频器和电机之间安装屏蔽罩、屏蔽线缆等措施,减少电磁辐射干扰的传播。
2. 滤波器的应用:在变频器的输入端和输出端安装滤波器,可以有效抑制电源电压波动干扰和电磁感应干扰。
3. 接地措施:合理的接地设计可以降低变频器产生的干扰,例如使用良好的接地网、接地线等。
4. 优化布线:合理布置电源线和控制线,减少电磁感应干扰的可能性。
5. 选择合适的变频器:在购买变频器时,应选择具有良好抗干扰性能的产品,降低干扰的概率。
五、干扰测试与评估为了确保变频器的干扰问题得到解决,可以进行干扰测试和评估。
测试过程中可以使用专业的测试设备,如频谱分析仪、示波器等,对变频器产生的干扰进行定量分析。
评估结果可用于判断干扰是否达到标准要求,并指导后续的干扰解决方案。
六、结论变频器产生的干扰对其他电子设备和系统造成不可忽视的影响。
优选文档素材归纳不易,仅供学习参考干扰信号的传播方法主要有以下几种方法:1〕空中辐射方法,即以电磁波的方法向外辐射。
2〕电磁感应方法,即通过线间电感而感应。
3〕静电感应方法,即通过线间电容而感应。
4〕线路传播方法,主要通过电源网络传播。
针对上述的干扰信号的不同传播方法,可以采取相应的抗干扰措施。
对于通过辐射传播的干扰信号,主要通过汲取的方法来削弱,可以在电源处设置由共模滤波电感及电容构成的无线电抗干扰滤波器。
对于通过感应方法传播的干扰信号,主要通过正确的布线和采纳屏蔽线来削弱。
如弱点操作系统距离电力电源至少100mm,绝不可以放在同一导线槽内;其它操作电路配线相交时要成直角。
操作电路的配线应该采纳双绞线,双绞线的节距应该在15mm以下;为了预防多电路信号的相互干扰,信号线采纳分别绞合为宜。
对于线路传播的干扰信号,有多种方法可以使用。
如在操作电源输入端设置进线滤波器;有的变频器操作电路的电源取自隔离变压器的一个二次绕组,一般要对变压器进行电气隔离。
在操作系统和主电路之间传递的信号,通常采纳光纤完成强弱电的隔离。
在设计变频器的操作系统时,要尽量缩短电源线,接地线,尽量预防由于多个操作单元因高速开关而在公共配线上引起的公共阻抗而形成的干扰。
合理的采取浮地和隔离措施,可以降低地环路的干扰。
在变频器设计和使用过程中,还应同意考虑变频器的内部结构、工作原理和使用环境,通过采取屏蔽、接地和隔离等多种可靠措施,以保证整个系统可靠,平安工作。
艾驰商城是国内最专业的MRO工业品网购平台,X现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广阔的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解相关变频器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。
变频器抗干扰解决方案
变频器包括整流电路和逆变电路,输入的交流电经过整流电路和平波回路,转换成直流电压,再通过逆变器把直流电压变换成不同宽度的脉冲电压(称为脉宽调制电压,PWM)。
用这个PWM电压驱动电机,就可以起到调整电机力矩和速度的目的。
这种工作原理导致以下三种电磁干扰:
1、谐波干扰
整流电路会产生谐波电流,这种谐波电流在供电系统的阻抗上产生电压降,导致电压波型发生畸变,这种畸变的电压对于许多电子设备形成干扰(因为大部分电子设备仅能工作在正弦波电压条件下),常见的电压畸变是正弦波的顶部变平。
谐波电流一定时,电压畸变在弱电源的情况下更加严重,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关;
2、射频传导发射干扰
由于负载电压为脉冲状,因此变频器从电网吸取电流也是脉冲状,这种脉冲电流中包含了大量的高频成分,形成射频干扰,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关;
3、射频辐射干扰
射频辐射干扰来自变频器的输入电缆和输出电缆。
在上述的射频传导发射干扰的情形中,变频器的输入输出电缆上有射频干扰电流时,由于电缆相当于天线,必然会产生电磁波辐射,产生辐射干扰。
变频器输出电缆上传输的PWM电压,同样包含丰富的高频的成分,会产生电磁波辐射,形成辐射干扰。
辐射干扰的特征是,当其他电子设备靠近变频器时,干扰现象变得严重。
根据电磁学的基本原理,形成电磁干扰必须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。
为防止干扰,可采用硬件抗干扰和软件抗干扰。
其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和放两方面入手来抑制干扰,其总体原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统干扰信号的敏感性。
具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。
以下内容是解决现场干扰的主要步骤:
1、采用软件抗干扰措施
具体来讲就是通过变频器的人机界面下调变频器的载波频率,把该值调低到一个适当的范围。
如果这个方法不能奏效,那么只能采取下面的硬件抗干扰措施。
2、进行正确的接地
通过现场的具体调研我们可以看到,现场的接地情况是不甚理想的。
而正确的接地既可以是系统有效地抑制外来干扰,又能降低设备本身对外界的干扰,是解决变频器干扰最有效的措施。
具体来讲就是做到以下几点:
(1)变频器的主回路端子PE(E、G)必须接地,该接地可以和该变频器所带的电机共地,但不能与其它的设备共地,必须单独打接地桩,且该接地点应该尽量远离弱电设备的接地点。
同时,变频器接地导线的截面积应不小于4mm2,长度应控制在20m以内。
(2)其它机电设备的地线中,保护接地和工作接地应分开单独设接地极,并最后汇入配电柜的电气接地点。
控制信号的屏蔽地和主电路导线的屏蔽地也应分开单独设接地极,并最后汇入配电柜的电气接地点。
3、屏蔽干扰源
屏蔽干扰源是抑制干扰的很有效的方法。
通常变频器本身用铁壳屏蔽,可以不让其电磁干扰泄露,但变频器的输出线最好用钢管屏蔽,特别是以外部信号(从控制器上输出
4~20mA信号)控制变频器时,要求该控制信号线尽可能短(一般为20m以内),且必须采用屏蔽双绞线,并与主电路线(AC380)及控制线(AC220V)完全分离。
此外,系统中的电子敏感设备线路也要求采用屏蔽双绞线,特别是压力信号。
且系统中所有的信号线决不能和主电路线及控制线放于同一配管或线槽内。
为使屏蔽有效,屏蔽层必须可靠接地。
4、合理的布线
具体方法有:
(1)设备的电源线和信号线应尽量远离变频器的输入输出线。
(2)其它设备的电源线和信号线应避免和变频器的输入输出线平行。
如果采取了以上的办法之后还是不能够奏效,那么继续以下办法:
5、干扰的隔离
所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使他们不发生电的联系。
通常是在电源和控制器及变送器等放大器电路之间在电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。
6、在系统线路中设置滤波器
设备滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源和电动机。
为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器;为减少对电源干扰,可在变频器输入侧设置输入滤波器。
若线路中有敏感电子设备如控制器和变送器等,可在该设备的电源线上设置电源噪声滤波器以免传导干扰。
滤波器根据使用位置的不同,可分为:
(1)输入滤波器
通常有两种:
a、线路滤波器:主要由电感线圈构成,它通过增大线路在高频下的阻抗来削弱频率较高的谐波电流。
b、辐射滤波器:主要由高频电容器构成,它将吸收频率点很高的、具有辐射能量的谐波成分。
(2)输出滤波器也由电感线圈构成
它可以有效地削弱输出电流中的高次谐波成分。
不仅起到抗干扰的作用,还能消弱电动机中由高次谐波产生的谐波电流引起的附加转矩。
对于变频器输出端的抗干扰措施,必须注意一下方面:
a、变频器的输出端不允许接入电容器,以免在功率管导通(关断)瞬间,产生峰值很大的充电(或放电)电流,损害功率管;
b、当输出滤波器由LC电路构成时,滤波器内接入电容器的一侧,必须与电动机侧相接。
7、采用电抗器
在变频器的输入电流中频率较低的谐波成分(5次谐波、7次谐波、11次谐波、13次谐波等)所占的比重是很高的,它们除了可能干扰其它设备的正常运行之外,还因为它们消耗了大量的无功功率,使线路的功率因素大为下降。
在输入电路内串入电抗器是抑制较低谐波电流的有效方法。
根据接线位置的不同,主要有以下两种:
(1)交流电抗器
串联在电源与变频器的输入侧之间。
其主要功能有:
a、通过抑制谐波电流,将功率因素提高至(0.75-0.85);
b、削弱输入电路中的浪涌电流对变频器的冲击;
c、削弱电源电压不平衡的影响。
(2)直流电抗器
串联在整流桥和滤波电容器之间。
它的功能比较单一,就是削弱输入电流中的高次谐波成分。
但在提高功率因素方面比交流电抗器有效,可达0.95,并具有结构简单、体积小等优点。
因此,变频器的抗干扰措施主要包括在变频器进线部分加装交流电抗器和滤波器,进线和出线采用屏蔽电缆,所有电缆的屏蔽层与电抗器、滤波器、变频器和电机的保护地共
同接地,且该接地点与其他接地点分开,保持足够的距离。
同时,信号电缆和变频器的动力电缆不要平行布置。
此外,为防止变频器干扰信号和控制回路,需要给控制器、仪表和工控机采用单独的隔离电源进行供电。