浅谈变频器抗干扰措施
- 格式:doc
- 大小:26.00 KB
- 文档页数:4
变频器抗干扰措施以采用4m20mA的电流信号和一些开关量作控制连接;如果距离更远,可以采用RS485串行通讯方式来连接;若还要加长距离,可以利通讯中继器达到lkm的距离;如果采用光纤连接器,可以达到延长中心控制室与变频器机柜之间距离有利于缩短变频器到电机之间的距离,以便用更加合理的布局改善系统性能。
总之,在安装变频器时,需要综合考虑中心控制室、变频器、电机三者之间的距离,尽量减少谐波的影响。
外部控制指令信号通过控制回路导入变频器,与此同时,干扰源也在控制回路中产生干扰电势导入变频器,这势必造成变频器误动作,影响变频器一异步电动机系统正常工作。
常见的扰动电势来源有:(1)控制电缆与周围电气回路的静电耦合,在电缆中产生的电势;(2)周围电气回路产生的磁通变化在电缆中感应出的电势;(3)由外来电波在电缆中产生电势;(4)变频器输出的各种频率的谐波向空间发射不同程度的干扰,可能导致设备误动作;(5)变频器控制电缆的接点及继电器触点接触不良,电阻发生变化在电缆中产生的干扰;(6)各种电气设备共同使用同一电源时,由其它设备在电源系统直接产生电势。
对于扰动电势可以采取以下措施进行削弱:(1)加大与干扰源电缆的距离,达到导体直径40倍以上时,干扰程度就不明显了;或在两电缆间设置屏蔽导体,再将屏蔽导体接地,这样可以有效地削弱静电耦合在电缆中产生的电势;(2)将控制电缆与主回路电缆或其它动力电缆分离铺设,分离距离通常在3cm以上(最低为10cm),分离困难时,将控制电缆穿过铁管铺设。
将控制导体绞合,可以有效降低干扰源电缆产生的磁通,绞合间距越小,铺设的路线越短,抗干扰效果越好。
(3)将变频器放人铁箱内进行屏蔽,屏蔽用的铁箱要接地;(4)对继电器触点接触不良,可采用并联触点或镀金触点继电器或选用密闭式继电器,并对电缆连接点应定期做抒紧加固处理;(5)变频器的控制电源由另外系统供电。
除此之外,在控制电源的输人侧装设线路滤波器,装设绝缘变压器,且屏蔽接地。
变频器产生的干扰及解决方案标题:变频器产生的干扰及解决方案
引言概述:
变频器作为一种电力设备,在工业生产中被广泛应用,但同时也会产生一定的电磁干扰问题。
本文将针对变频器产生的干扰问题进行深入探讨,并提出相应的解决方案。
一、变频器产生的干扰问题
1.1 电磁辐射干扰:变频器在工作时会产生电磁辐射,影响周围设备的正常运行。
1.2 电磁感应干扰:变频器工作时会引起电磁感应,导致周围设备浮现异常。
1.3 电源线干扰:变频器接入电源路线时,可能会对电源系统产生干扰,影响电力设备的正常运行。
二、解决电磁辐射干扰的方案
2.1 优化变频器的设计结构,减少电磁辐射。
2.2 安装屏蔽罩或者屏蔽线,减少电磁波的传播。
2.3 使用电磁屏蔽材料,阻挠电磁辐射的扩散。
三、解决电磁感应干扰的方案
3.1 增加电磁屏蔽设备,减少电磁感应的影响。
3.2 调整变频器的工作频率,避免与其他设备频率冲突。
3.3 使用电磁隔离器件,隔离电磁感应干扰。
四、解决电源线干扰的方案
4.1 安装电源线滤波器,减少电源线干扰。
4.2 使用电磁屏蔽套管,隔离电源线干扰。
4.3 优化电源路线设计,减少电源线干扰的影响。
五、总结
通过对变频器产生的干扰问题进行深入分析,并提出相应的解决方案,可以有效减少电磁干扰对设备运行的影响,保障工业生产的正常进行。
未来在变频器设计和应用中,应更加重视干扰问题的解决,提高设备的稳定性和可靠性。
变频器如何抗干扰变频器干扰解决方法一、变频器干扰的原因变频器在工作过程中会产生一定的电磁干扰,主要有以下几个原因:1.高频脉冲干扰:变频器由电机驱动器和电子器件组成,电子器件工作时会产生高频脉冲干扰,对周围电子设备产生辐射干扰。
2.电磁辐射:变频器中的电路部件和电机线圈会产生电磁场辐射,导致周围电子设备受到电磁干扰。
3.电源线干扰:变频器需要接入电源,当供电电源线路不稳定或存在电磁干扰时,会影响变频器正常工作并产生干扰。
二、变频器抗干扰的解决方法1.优化变频器布局:合理安排变频器及其接线的位置,将尽量远离其他敏感设备,减少电磁辐射对其它设备的干扰。
2.使用屏蔽电缆:通过使用屏蔽电缆连接变频器与电机,减少电磁辐射和电磁感应,从而减小干扰。
3.安装滤波器:安装电力滤波器来滤除变频器输出端的高频脉冲干扰,减少对周围设备的辐射。
4.增加电磁隔离屏蔽:在变频器周围添加金属屏蔽罩或者设施屏蔽屏蔽间隔来减少电磁波的辐射,从而保护周围设备。
5.优化供电电源:通过增加稳压器、滤波电容、终端电阻等措施,保证供电线路稳定,减少电源线干扰。
6.地线连接优化:保证变频器、电机、控制系统等设备都接地良好,减少电磁波的辐射和对其他设备的干扰。
7.使用额外的电磁屏蔽材料:在关键部位使用电磁屏蔽材料,如电磁屏蔽垫、屏蔽套管等,减少电磁波干扰。
8.添加滤波和降压器:通过在变频器的输入端添加滤波器,滤除电网的高频干扰信号,降低输入电源的干扰。
9.使用低噪声电源:选择低噪声的电源供应系统,减少输入变频器的电源噪声。
三、变频器干扰预防1.确保变频器本身具备较低的辐射性和敏感性,选择正规生产厂家和合格产品。
2.在购买变频器时,要选择具有良好抗干扰能力的产品,并参考其抗干扰性能指标。
3.对变频器进行适当的屏蔽和隔离设计,加强变频器周围环境的电磁兼容性。
4.在使用变频器时,要仔细阅读和遵守变频器的使用说明书,正确安装和接线,避免出现安装错误和使用不当的情况。
变频器干扰解决方法
变频器干扰是指变频器在运行时产生的电磁干扰对其他设备或系统造成的影响。
以下是一些解决变频器干扰的方法:
1. 选择合适的变频器:选择质量可靠的变频器,它应该符合相应的国家标准和认证。
2. 使用滤波器:安装电磁滤波器可以有效地减少变频器产生的电磁干扰。
这些滤波器可以安装在电源线路上,也可以安装在变频器输入输出端口上。
3. 接地和屏蔽:确保变频器和受干扰设备都有良好的接地,使用金属屏蔽来减少电磁辐射。
4. 电磁隔离:对于特别敏感的设备,可以考虑使用电磁隔离技术,将变频器与其他设备隔离开来,减少干扰。
5. 优化布线:合理布置电源线和信号线,避免它们相互干扰。
6. 选择合适的工作频率:变频器的工作频率选择对干扰有一定影响。
根据被干扰设备的特点和要求,选择合适的工作频率。
7. 增加滤波元件:在变频器输入和输出端口上增加电容、电感等滤波元件,可
以进一步减少干扰。
8. 定期维护和检测:定期检查和维护变频器和相关设备,及时发现和排除问题,减少干扰的可能性。
9. 软起动:使用软起动功能可以减少变频器启动时的电磁干扰。
10. 良好的排风散热:保持变频器的良好散热,可以减少电磁干扰。
以上是一些常见的解决变频器干扰的方法,具体选择和采取哪些方法要根据具体情况和需要进行综合考虑。
变频器电磁干扰的解决方案标题:变频器电磁干扰的解决方案引言概述:变频器在工业生产中广泛应用,但其工作过程中常常会产生电磁干扰,给设备和系统稳定运行带来困扰。
本文将详细介绍变频器电磁干扰的解决方案,帮助读者更好地理解和解决这一问题。
一、电磁屏蔽措施1.1 金属屏蔽箱的使用:金属屏蔽箱能有效阻挡变频器产生的电磁辐射,减少对周围设备的干扰。
选择合适的金属材料和屏蔽结构,确保屏蔽效果。
1.2 电磁屏蔽罩的应用:对于特定的设备或系统,可以使用电磁屏蔽罩来隔离变频器产生的电磁干扰。
这种罩子通常由导电材料制成,能够有效地吸收和隔离电磁波。
1.3 电磁屏蔽材料的选择:在设计和制造过程中,选择合适的电磁屏蔽材料非常重要。
常见的电磁屏蔽材料包括铁氧体、铜箔、导电涂层等,根据具体需求选用合适的材料。
二、滤波器的应用2.1 输入滤波器的使用:安装输入滤波器可以有效减少变频器输入端的电磁干扰。
输入滤波器能够滤除高频噪声,确保电源电压的稳定性。
2.2 输出滤波器的应用:输出滤波器能够滤除变频器输出端的高频噪声,减少对周围设备的干扰。
选择合适的滤波器参数和类型,确保滤波效果。
2.3 滤波器的维护和调整:定期检查和维护滤波器的工作状态,确保其正常运行。
根据实际情况调整滤波器的参数,以达到最佳的滤波效果。
三、接地措施3.1 变频器的接地:合理的变频器接地可以有效降低电磁干扰。
将变频器接地导线与设备的共同接地点连接,确保接地的稳定性和可靠性。
3.2 设备的接地:除了变频器的接地,设备本身的接地也非常重要。
确保设备的接地导线良好连接,并与变频器接地导线连接在一起,形成良好的接地系统。
3.3 接地电阻的测量:定期测量接地电阻,确保接地系统的良好工作状态。
如果接地电阻过大,应及时采取措施进行修复。
四、电缆布线和屏蔽4.1 电缆的选择:选择合适的电缆类型和规格,能够有效减少电磁干扰。
屏蔽电缆对于抑制电磁辐射和抗干扰能力较强,是较好的选择。
变频器抗干扰方法变频器是一种用来控制电动机转速的装置,广泛应用于工业生产中。
然而,由于变频器的调节过程中涉及到高频开关过程,就会产生电磁干扰,对其它电子设备和通信系统造成干扰。
因此,为了减少变频器的电磁干扰对周围设备的影响,需要采取一系列抗干扰措施。
首先,为了降低变频器的辐射干扰,可以采取以下措施:1.优化布线:合理布设电源线、控制线和信号线,使其远离敏感的模拟控制线路和通信线路,减少干扰的传递。
2.使用屏蔽线缆:将电源线、以及输入输出信号线采用带有屏蔽层的线缆,以减少干扰的辐射和传递。
3.增加滤波器:在变频器输入端安装滤波器,能够滤除高频噪声,减少干扰的辐射。
4.安装金属屏蔽罩:在变频器周围安装金属屏蔽罩,能够有效屏蔽辐射干扰。
其次,为了降低变频器的传导干扰,需要采取以下措施:1.使用滤波器:在变频器输入端和输出端都安装滤波器,以减少输入输出电缆的传导干扰。
2.分开供电:变频器的电源线和控制信号线分开供电,减少共模干扰。
3.添加低噪声电源:为变频器提供低噪声的电源,减少变频器输出端的电磁噪声。
4.选择合适的电缆:使用屏蔽效果好的电缆线材以减少传导干扰。
此外,为了提高变频器的抗干扰能力,还可以采取以下措施:1.优化地线:建立良好的接地系统,确保变频器和其它设备的共同接地,减少干扰的传导。
2.合理设置工作频率:选择合适和规范的工作频率范围,减少对其它设备的干扰。
3.添加滤波电容:在变频器输入端和输出端添加滤波电容,以降低高频噪声和干扰。
4.合理布置设备:将变频器和其它设备互相隔离,减少干扰传递。
最后,为了保证变频器的抗干扰性能,需要进行电磁兼容性测试和评估。
这样能够及早发现问题,并对干扰源进行识别和消除。
总结来说,为了降低变频器的电磁干扰对周围设备的影响,我们可以从减少辐射干扰、传导干扰和提高抗干扰能力等方面进行考虑。
通过合理的设备布局,优化的电路设计以及合适的滤波措施,能够有效地降低变频器的干扰程度,确保其正常稳定的运行。
高压变频器抗干扰的措施1.物理层面措施:a.线缆隔离:采用屏蔽电缆或防干扰型电缆,能有效地阻挡外界干扰信号。
b.设备隔离:将高压变频器与其他可能产生干扰信号的设备进行隔离,避免互相影响。
c.地线处理:保证变频器的接地良好,以减少或消除地线回路的干扰信号。
d.电磁屏蔽:对高压变频器进行电磁屏蔽,减少电磁泄漏,降低相互干扰的可能性。
e.涂线处理:对高压变频器内部的线路进行涂敷处理,防止信号的外泄和互相干扰。
2.电子层面措施:a.滤波器:在高压变频器的输入端和输出端都安装滤波器,减少输入和输出信号中的高频噪声和尖峰电压。
b.绝缘处理:对高压变频器内部的电子器件进行绝缘处理,避免干扰信号的传播和扩散。
c.场效应管:选用具有较低开关损耗的场效应管替代普通的开关管,减少开关过程中的干扰噪声。
d.控制算法:改进高压变频器的控制算法,优化PWM调制技术,减少开关频率的干扰。
e.接口设计:合理设计高压变频器的输入输出接口,充分考虑干扰信号的抗干扰能力,采取合适的线路和防护措施。
3.地线处理:a.单点接地:采用单点接地,减少地线的回路干扰。
b.地线阻抗控制:控制地线的阻抗,确保地线回路的稳定性和良好接地。
c.地线设计:合理设计高压变频器的地线连接方式,减少共模干扰和电磁干扰。
4.综合性措施:a.屏蔽措施:对高压变频器进行屏蔽处理,减少电磁泄漏和外界电磁干扰。
b.系统布线:合理规划和优化系统的布线,避免信号线和电源线的交叉干扰。
c.温度控制:控制高压变频器的工作温度,降低温度对器件性能的影响,减少工作异常和干扰信号的产生。
d.绝缘性能:保证高压变频器的绝缘性能良好,减少绝缘故障对系统的干扰。
总之,高压变频器抗干扰的措施需要综合考虑物理层面和电子层面的因素,通过合理的设计和控制方案,来减少干扰信号的产生和传播,提高设备的稳定性和抗干扰能力。
变频器控制回路的抗干扰措施及谐波抑制变频器控制回路是现代工业中常见的一种电力控制装置,其作用是通过改变输入电源频率,控制电机的转速和扭矩。
然而,由于外界电源电压的波动、电磁干扰以及装置本身产生的谐波等原因,变频器控制回路容易受到干扰,影响其正常工作。
为了保证变频器控制回路的稳定性和可靠性,需要采取一些抗干扰措施和谐波抑制技术。
本文将对变频器控制回路的抗干扰措施及谐波抑制进行详细阐述。
一、抗干扰措施1.电源滤波器:电源滤波器可以有效地滤除电源波动和电磁干扰引入的高频噪声,保证变频器控制回路的稳定性。
常见的电源滤波器有电磁衰减滤波器、RC滤波器和磁性滤波器等。
2.屏蔽措施:通过在变频器控制回路的输入和输出电缆上增加屏蔽层,可以有效地阻止外界电磁干扰的影响,提高系统的抗干扰能力。
同时,还可以采用金属屏蔽箱等措施,对整个控制回路进行屏蔽,提高系统的整体抗干扰性能。
3.地线设计:良好的地线设计可以有效地减小电磁干扰对控制回路的影响。
要确保地线的良好连接,避免出现接地故障和回路互连引起的干扰。
4.滤波器设计:变频器输出端容易产生谐波噪声,通过增加滤波器,可以将谐波噪声滤除,减小对其他设备的干扰。
常见的滤波器包括LCL型滤波器和LC型滤波器等。
5.电磁兼容设计:在变频器控制回路的设计过程中,要考虑到电子设备之间的相互干扰。
通过合理的布线、距离和结构设计,可以减小控制回路之间的电磁干扰,提高系统的电磁兼容性。
二、谐波抑制技术1.谐波滤除器:谐波滤除器是一种专门用于抑制谐波的装置,通过选择性滤波的方式,将谐波滤除,保证电流和电压的波形符合标准要求。
常见的谐波滤除器有无源滤波器和有源滤波器两种类型。
2.变压器设计:通过变压器的设计,可以有效地抑制谐波的生成,减少对周围设备的干扰。
选择合适的变压器参数,可以降低谐波的含量,提高系统的功率因素。
3.电容器滤波:电容器滤波是一种简单有效的谐波抑制技术,通过增加适当的电容器,可以将谐波电流引导到电容器中,减少对系统的干扰。
变频器抗电磁干扰措施有哪些变频器是一种用于调节电动机转速的设备,它通过改变电源频率来控制电机的转速。
然而,由于其工作原理和电磁特性,变频器在工作过程中容易受到电磁干扰的影响。
为了保证变频器的正常工作和延长设备的使用寿命,必须采取一定的措施来抗电磁干扰。
1. 电磁屏蔽。
电磁屏蔽是最常见的抗电磁干扰措施之一。
通过在变频器的外壳和内部电路上添加屏蔽层,可以有效地阻止外部电磁波对设备的干扰。
屏蔽层通常采用导电材料制成,如铜箔、铝箔等,能够有效地吸收和屏蔽外部电磁波,保护设备的正常工作。
2. 地线连接。
良好的接地是抗电磁干扰的重要措施之一。
通过将变频器的外壳和内部电路与地线连接,可以有效地排除设备内部的静电和电磁干扰,保证设备的正常运行。
此外,地线连接还可以减少设备与外部环境的电磁耦合,提高设备的抗干扰能力。
3. 滤波器。
在变频器的输入端和输出端添加滤波器是抗电磁干扰的有效措施之一。
输入端滤波器主要用于滤除电源输入端的高频干扰信号,输出端滤波器主要用于滤除电机输出端的高频干扰信号。
通过滤波器的作用,可以有效地减少电磁干扰对设备的影响,保证设备的正常运行。
4. 等效电路设计。
在变频器的电路设计中,采用合理的等效电路设计是抗电磁干扰的重要手段之一。
通过合理设计电路的布局和连接方式,可以减少电路间的电磁耦合,减小电磁干扰的影响。
此外,合理设计电路的等效电路参数,可以提高电路的抗干扰能力,保证设备的正常工作。
5. 屏蔽电缆。
在变频器和电机之间采用屏蔽电缆连接是抗电磁干扰的有效措施之一。
屏蔽电缆通常具有导电屏蔽层,可以有效地阻止外部电磁波对信号传输的干扰,保证信号的准确传输。
此外,屏蔽电缆还可以减少电磁波对设备的影响,提高设备的抗干扰能力。
6. 环境监测。
定期对变频器周围的电磁环境进行监测是抗电磁干扰的重要手段之一。
通过监测周围的电磁干扰情况,可以及时发现和排除电磁干扰的影响,保证设备的正常运行。
此外,监测环境的变化还可以为设备的抗干扰措施提供参考依据,保证设备的稳定运行。
变频器有效的抗干扰措施变频器是一种电力设备,主要用于控制电动机的转速和频率。
由于其工作原理的特殊性,变频器在使用过程中容易受到干扰,从而影响工作的稳定性和性能。
为了提高变频器的抗干扰能力,下面列举了一些有效的措施。
1.地线连接良好:变频器的金属外壳和内部的各个部件都需要通过地线进行连接,确保设备的安全接地。
地线是变频器有效抗干扰的基础,良好的接地可以有效地降低干扰电压和干扰电流。
2.电源滤波:变频器电源端通常会存在电源波动、杂散干扰等问题,可以通过选用电源滤波器来过滤这些干扰。
电源滤波器可以将电源端的高频噪声滤掉,使得输入电源稳定,从而提高变频器的抗干扰能力。
3.屏蔽措施:通过给变频器的各个输入输出端口进行屏蔽处理,可以有效地防止外界的电磁干扰。
具体的屏蔽方式可以采用金属屏蔽罩、屏蔽隔离光耦、屏蔽线缆等。
屏蔽措施可以减少变频器对外界的敏感度,提高其抗干扰能力。
4.选择合适的电缆:变频器的输入输出端口通常需要连接电缆,合适的电缆选择可以降低电磁干扰的影响。
选用屏蔽性能好的电缆,并且尽量缩短电缆的长度,可以有效减少电磁干扰。
5.避免共模干扰:变频器内部的电源和控制信号线路之间通常会存在共模干扰问题,其中一种常见的共模干扰是电源端的地线干扰。
为了避免共模干扰,可以采用双层绕线、降低绕线电阻、增加绕线间距等措施。
6.引入滤波器:在变频器的输入端和输出端引入滤波器可以有效地降低电磁干扰的影响。
输入端滤波器可以将外界电磁干扰滤掉,使得变频器在供电稳定的情况下运行;输出端滤波器则可以减少变频器对外界设备的电磁干扰。
7.防止回流干扰:变频器在工作过程中会产生回流,即原电源线上产生的噪声通过电源线传播回来影响其它设备。
为了防止回流干扰,可以使用阻抗匹配网络、电源滤波器等措施,将回流电流的传播途径阻断,从而降低干扰的影响。
总结起来,变频器有效的抗干扰措施包括地线连接良好、电源滤波、屏蔽措施、选择合适的电缆、避免共模干扰、引入滤波器、防止回流干扰等。
1. 切断干扰传播途径(1)干扰的传播常通过共用的接地线传播。
将动力线的接地与控制线的接地分开是切断这一途径的根本方法,即将动力装置的接地端子接到地线上,将控制装置的接地端子接到该装置盘的金属外壳上。
(2)信号线靠近有干扰源的导线时,干扰会被诱导到信号线上,使信号受到干扰,布线分离对消除这种干扰行之有效。
实际工程中需把高压电缆、动力电缆、控制电缆常常与仪表电缆、计算机电缆分开布线,分走不同的桥架。
变频器的控制线也最好与其主回路线路以垂直的方式布线。
2. 抑制高次谐波(1)在变频器前侧安装线路电抗器,可抑制电源侧过电压,并降低变频器产生的电流畸变,避免使主电源受到严重干扰。
该方案价格便宜,但限制谐波的效率有限,且电抗太大时会产生无法接受的电压降损失。
(2)在变频器前加装LC 无源滤波器,滤掉高次谐波,通常滤掉5 次和7 次谐波,但该方法完全取决于电源和负载,灵活性小。
(3)设置专用滤波器用来检测变频器和相位,并产生一个与谐波电流的幅值相同且相位正好相反的电流,通到变频器中,从而可以有效地吸收谐波电流。
(4)当设备的附近环境受到电磁干扰时,应装设抗射频干扰滤波器,可减少主电源的传导发射,且要采取措施屏蔽电机电缆。
(5)当电机电缆长度大于50m或80m(非屏蔽)时,为了防止电机启动时的瞬时过电压,减少电机对地的泄漏电流和噪声,保护电动机,在变频器与电机之间安装电抗器。
(6)增加变频器供电电源内阻抗。
通常电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用,内阻抗越大,谐波含量越小,这种内阻抗就是变压器的短路阻抗。
因此选择变频器供电电源时,最好选择短路阻抗大的变压器。
(7)采用变压器多相运行。
通用变频器为六脉波整流器,因此产生的谐波较大。
如果采用变压器多相运行,使相位角互差30°,如Y- Δ、Δ- Δ组合的变压器构成12 脉波的效果,可减小低次谐波电流,很好的抑制谐波。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
变频器产生的干扰及解决方案变频器是一种将电源的频率和电压转换为所需的频率和电压的电力调节装置。
它在许多工业和家用设备中被广泛应用,如电机驱动、电梯、空调等。
然而,变频器在运行过程中会产生一些干扰问题,这些干扰可能对其他设备和系统造成负面影响。
本文将重点介绍变频器产生的干扰及其解决方案。
一、变频器产生的干扰类型:1.电磁辐射干扰:变频器运行时会产生较高频率的电磁辐射,对周围的电子设备和无线通信设备造成电磁干扰。
2.电功率干扰:变频器会对电源网络产生带有谐波成分的高电流脉冲,容易导致电网电压波动,同时也可能导致其他设备的故障。
3.传导干扰:变频器内部的电磁干扰会通过电力线或控制信号线传导到其他设备中,影响其正常工作。
二、变频器产生干扰的原因:1.变频器内部电路的高频振荡:变频器内部的开关电路会产生高频振荡,因为各种电容和电感元件之间的互联会产生谐振环路,导致电路的振荡频率高于基本频率。
2.高频开关的操作:变频器内部的半导体开关装置,如IGBT等,会频繁开关,导致高频电流脉冲。
三、解决变频器干扰问题的方法:1.滤波器的使用:通过在变频器和被干扰设备之间添加滤波器,可以有效减少电磁辐射干扰和传导干扰。
滤波器可以选择带通滤波器、陷波器等。
2.感应式隔离变压器:通过使用感应式隔离变压器,可以有效消除变频器产生的电功率干扰。
感应式隔离变压器可以将电网和变频器之间的电源隔离,降低干扰传导。
3.屏蔽和接地:在设计和安装变频器系统时,应注意使用屏蔽电缆和接地装置,以减少电磁辐射干扰和传导干扰。
正确的接地和屏蔽可以有效降低或消除干扰。
4.合理的电缆布线:将变频器和被干扰设备之间的电缆布线分离,避免电缆交叉和平行布线。
这样可以减少电磁辐射和传导干扰的发生。
5.系统优化:在设计和安装变频器系统时,应选择质量可靠、抗干扰能力较强的变频器产品。
优化系统结构,提高系统的抗干扰能力。
总结:变频器产生的干扰是一个普遍存在的问题,对于设备的正常运行和其他设备的工作状态产生了一定的影响。
变频器如何抗干扰变频器是一种能将电力源输入进行转换,输出恒定电压和频率的装置。
在实际应用中,变频器往往会受到各种干扰,如电网扰动、电磁干扰等。
如果这些干扰不得到有效的抑制,会导致变频器工作不稳定或功能不正常。
因此,抗干扰是确保变频器正常运行的重要因素之一变频器抗干扰主要从以下几个方面进行考虑和解决。
1.设计合理的电磁兼容性变频器作为一种带有高频开关电路的装置,其电磁辐射和抗扰能力直接影响其抗干扰性能。
为了提高变频器的抗干扰能力,需要对其电磁辐射和抗扰特性进行合理设计。
首先,通过合理设计和布局高频开关电路,减少电磁辐射;其次,通过合理的电路设计和接地布局,增强变频器的抗扰性能。
2.优化电源电路变频器的电源电路对其抗干扰能力有着重要影响。
变频器通常采用整流电路将交流电源转换为直流电源,然后再通过逆变电路将直流电源转换为交流电源。
通过优化电源电路的设计,例如增加滤波器来滤除电源中的高频噪声,可以有效提高变频器的抗干扰能力。
3.使用优质元器件选择和使用优质的元器件也是提高变频器抗干扰能力的一种重要方法。
优质元器件具有更好的电气性能和抗干扰能力,能够更好地抵抗外界干扰,从而提高变频器的稳定性和可靠性。
在选择元器件时,应选择具有抗干扰能力好、噪声低、温度稳定性高等特点的元器件。
4.加强屏蔽设计对于变频器而言,有效的屏蔽设计是提高其抗干扰能力的关键。
通过在变频器内部设置金属屏蔽罩、使用屏蔽接地等方法,可以有效减少电磁辐射和外界电磁干扰对变频器的影响,提高其抗干扰能力。
5.应用滤波器滤波器是抑制电磁干扰的重要装置。
在变频器的输入端或输出端加入合适的滤波器,可以有效滤除电网扰动和电磁干扰,提高变频器的抗干扰能力。
根据实际情况,选择适当类型的滤波器,如线性滤波器、有源滤波器、无源滤波器等,以满足不同的抗干扰要求。
6.地线设计良好的地线设计对于提高变频器的抗干扰能力也是非常重要的。
通过合理的地线布局设计,可以降低电磁辐射和耦合干扰程度,减少电流环的环路面积,从而减小干扰源对系统的影响。
浅谈变频器抗干扰措施随着变频高速技术的发展与综合利用,使变频器行业在诸多领域得到空前的发展和应用,几乎国民经济各行各业都与变频器密不可分。
“十二五”规划出台以来,节能减排就是各行各业发展的关键,受益于节能减排、绿色环保等战略的拉动,变频器的新技术改造越来越受到人们的重视。
主要介绍了在工业控制系统中,变频器在抗干扰方面的一些相应措施和技术改进措施。
标签:变频器;抗干扰;措施1 变频器应用状况随着工业自动化程度的不断提高,变频调速系统由于具有调速范围宽、调速精度高、动态响应快、运行效率高、节能效果显著等优点,被广泛的应用到了工业控制的各个领域中。
变频器是利用电力半导体器件的通断作用将工频电源|稳压器变换为另一频率的电能控制装置。
通常情况下采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。
用工频电源直接起动时,起动电流为6~7倍,因此,将产生机械电气上的冲击。
采用变频器传动可以平滑地起动(起动时间变长)。
起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。
2 变频器干扰的来源及途径变频器干扰来源可以分为两个方面,一个是外部电网的干扰,另外就是变频器自身的干扰。
电网中的谐波干扰,这些负荷都使电网中的电压、电流产生波形畸变,电网噪声就会通过电网电源电路干扰变频器。
比如晶闸管换流类设备对变频器的干扰。
另外就是自身的干扰,在诸多控制系统中,多采用微机或者PLC 进行控制,在系统设计或者改造过程中变频器对微机控制板自身有干扰问题。
当变频器的供电系统附近,存在高频冲击负载,变频器本身容易因为干扰而出现保护。
变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。
供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。
变频器电磁干扰的解决方案标题:变频器电磁干扰的解决方案引言概述:随着变频器在工业领域的广泛应用,电磁干扰问题也日益凸显。
本文将介绍变频器电磁干扰的解决方案,帮助读者更好地理解和解决这一问题。
一、优化电源设计1.1 减小电源电阻:通过减小电源电阻,可以降低电磁干扰的产生。
选用低阻值的导线材料,并确保连接牢固可靠。
1.2 选用滤波器:在电源输入端加装滤波器,可以有效地抑制高频噪声和电磁辐射。
滤波器应根据实际情况选择合适的类型和规格。
1.3 使用稳压电源:稳压电源可以提供稳定的电压输出,减少电源波动对变频器的干扰。
建议选用质量可靠的稳压电源。
二、改善电缆布线2.1 选择屏蔽电缆:屏蔽电缆能有效地阻止电磁辐射和干扰信号的传播,减少电磁干扰对周围设备的影响。
在布线时,尽量使用屏蔽电缆,并正确接地。
2.2 避免电缆交叉布线:电缆之间的交叉布线容易引起电磁干扰。
在布线时,应尽量避免电缆之间的交叉,并保持一定的距离。
2.3 适当延长电缆长度:适当延长电缆长度可以减少电磁干扰的传播。
但需注意,过长的电缆长度也会增加电缆损耗和功耗。
三、加强接地措施3.1 确保良好接地:良好的接地可以有效地减少电磁干扰的产生。
在安装变频器时,应确保接地电阻小于规定值,并保持接地点的良好接触。
3.2 使用接地屏蔽:在变频器和其他设备之间使用接地屏蔽,可以有效地隔离电磁干扰。
接地屏蔽应正确接地,并与设备的金属外壳连接良好。
3.3 消除接地回路:接地回路是电磁干扰的主要来源之一。
在设计和安装过程中,应尽量消除接地回路,减少电磁干扰的传播。
四、增加滤波器和隔离器4.1 安装输入滤波器:输入滤波器可以有效地抑制变频器输入端的电磁干扰。
根据实际情况选择合适的滤波器类型和规格,并确保正确安装。
4.2 使用输出滤波器:输出滤波器可以减少变频器输出端的电磁干扰。
根据负载特性选择合适的滤波器,并正确接地和安装。
4.3 隔离控制信号:将控制信号与功率电路隔离,可以有效地减少电磁干扰的传播。
变频器产生的干扰及解决方案引言概述:随着现代工业的发展,变频器在电气控制系统中得到了广泛应用。
然而,变频器在工作过程中会产生一定的干扰,给其他设备带来不利影响。
本文将探讨变频器产生的干扰问题,并提出解决方案。
正文内容:1. 变频器产生的干扰1.1 电磁干扰:变频器在工作过程中会产生高频电磁辐射,这种辐射会干扰周围的电子设备,导致其正常工作受阻。
1.2 电源干扰:变频器对电源系统的电流和电压波形产生扰动,引起电网电压波动,进而干扰其他设备的正常工作。
1.3 传导干扰:变频器的高频电流会通过电源线、信号线等传导到其他设备中,造成干扰。
2. 解决方案2.1 电磁屏蔽:通过在变频器外壳中添加屏蔽材料,减少电磁辐射对周围设备的干扰。
同时,合理设计电缆布线,使用屏蔽电缆,减少传导干扰。
2.2 滤波器的应用:在变频器的输入端和输出端添加滤波器,用于滤除电源干扰和输出端的高频噪声,降低干扰水平。
2.3 接地处理:优化变频器的接地方式,确保接地电阻符合标准要求,减少干扰的传导路径。
2.4 电源质量改善:通过加装稳压器、滤波器等设备,改善电源质量,减少电源波动对其他设备的干扰。
2.5 信号隔离:对变频器的输入和输出信号进行隔离处理,减少干扰信号的传递。
总结:综上所述,变频器产生的干扰主要包括电磁干扰、电源干扰和传导干扰。
为解决这些问题,可以采取电磁屏蔽、滤波器的应用、接地处理、电源质量改善和信号隔离等方案。
通过这些措施,可以有效降低变频器产生的干扰,确保其他设备的正常运行。
在实际应用中,需要根据具体情况选择合适的解决方案,并进行适当的调试和优化,以达到最佳效果。
变频器电磁干扰的解决方案变频器是将交流电源转换成可变频率、可调电压的设备,广泛应用于电机控制、电源供应等领域。
然而,由于变频器的工作原理,它会产生一定的电磁干扰,对周围的设备和电路造成干扰。
为了解决这个问题,我们可以采取以下几种方案。
1.过滤器的应用:通过使用EMI(电磁干扰)滤波器,可以帮助减少变频器产生的电磁干扰。
EMI滤波器通常采用电容、电感和电阻等元件组成,用于吸收和抑制高频干扰。
安装在变频器的输入端和输出端的EMI滤波器可以有效地减少变频器产生的干扰。
2.使用屏蔽材料:在变频器周围环境中铺设或安装屏蔽材料,可以将变频器产生的电磁辐射屏蔽在材料内部。
屏蔽材料通常是金属的,例如铝板或铜板等。
屏蔽材料的选择要根据需要屏蔽的频率范围和屏蔽效果来确定。
3.电源线的优化:电源线的长度、布线方式和接地方式都会对电磁干扰产生影响。
为了减少电磁干扰,应选择合适的电源线,并尽量将其与其他信号线分开布线,避免共享一个接地点。
此外,可以尝试使用屏蔽电缆来减少干扰传播。
4.设备的配置和调整:合理的设备配置和调整也可以减少电磁干扰的影响。
比如,变频器和被控电机之间应保持适当的距离,尽量避免干扰的传播。
此外,还可以对变频器进行参数调整,以减小干扰的程度。
5.地线的处理:良好的接地是减少电磁干扰的关键。
应确保设备的接地电阻大小符合标准要求,并尽量减小地线的长度,以降低接地电感和接地电阻。
此外,还可以采用分离式接地方案,将电源地和信号地分离,减少共式干扰。
6.屏蔽和滤波措施的综合应用:不同的设备和电路可能需要采取不同的电磁干扰解决方案。
综合应用屏蔽、滤波器、优化电源线和接地等技术,可有效地减小电磁干扰。
总结起来,变频器电磁干扰的解决方案主要包括使用EMI滤波器、屏蔽材料、优化电源线和接地、设备配置和调整等。
在实际应用中,可以根据具体情况采取相应的措施,以减小电磁干扰的影响。
变频器干扰的解决方法1.电源线的处理:-使用屏蔽电源线:屏蔽电源线可以有效地减少高频电磁辐射对周围设备的影响。
可以使用带有金属屏蔽层的电源线或者使用有预制的金属外壳的电源线。
-增加滤波器:安装滤波器可以有效地滤除变频器产生的高频电磁辐射。
可以在变频器电源线的输入端和输出端分别安装滤波器,以减少干扰。
2.接地的处理:-良好的接地:通过确保设备的良好接地,可以有效地减少变频器产生的电磁干扰。
接地必须是可靠的,并且要尽量避免接地回路的干扰。
-分离地:在使用变频器时,尽量将变频器的接地与其他设备的接地分离开来,以避免地线回路的相互干扰。
3.电磁屏蔽的处理:-金属屏蔽:在变频器周围加装金属屏蔽罩或金属壳体,能够有效地隔离高频电磁辐射,减少对周围设备的干扰。
-电磁屏蔽材料:使用电磁屏蔽材料制作电磁屏蔽罩,例如使用铁、铜或者其他合金材料制作可靠的屏蔽罩。
4.信号处理的优化:-添加滤波器:在电源输入端和输出端添加滤波器,以减少变频器产生的高频噪声。
滤波器应根据具体的变频器工作频率进行选择。
-圆滑信号:通过对变频器的输出信号进行平滑处理,可以减少信号的峰值,并降低其高频部分对其他设备的干扰。
5.电缆布线的改进:-使用屏蔽电缆:使用具有屏蔽层的电缆可以有效地减少高频电磁辐射和电磁感应。
尽量使用屏蔽电缆对变频器和其他设备进行连接。
-避免并行布线:尽量避免并行布置电缆,特别是高频电缆和低频电缆的并行布线容易引起干扰。
应尽量采用交错布线的方式。
6.间隔与屏蔽:-增加间隔:将变频器与其他设备之间的物理间隔增加,以减少电磁辐射的传导。
-增加物理屏蔽:在变频器和其他设备之间设置屏蔽隔离板,可以有效地减少电磁辐射以及电磁感应。
7.增加电磁兼容性测试:-定期进行电磁兼容性(EMC)测试:通过定期对变频器及其周围设备进行电磁兼容性测试,可以及时发现和解决干扰问题。
在测试过程中,可以对变频器的输入和输出电磁干扰进行评估,并对相关问题进行优化。
防止变频器被干扰的措施变频器的抗干扰措施包括防止变频器被干扰的措施和防止变频器引起的干扰措施两大内容。
外来的干扰包括传刀干扰、辐射干扰、雷电干扰等。
防止变频器被干扰的措施有:1、强、弱点分开。
变频器的外接掌握线应与主回路接线尽可能分开(10CM以上),否则简单受干扰而误动作。
一般做法是把上述两种接线分别穿入铁管进行安装,且两管之间的距离不应小于10CM。
2、外接掌握线应采纳金属屏蔽线或绞线(绞合节距离小于15mm),且布线不宜过长。
3、为了抑制电火花干扰,在靠近变频器的电磁线圈上宜并联RC 消火花电路。
一般电容C的容量取0.01-0.1μF,电阻R的阻值取几百欧至1000欧。
留意,RC汲取回路的接线不能超过20m,否则会引起天线作用。
4、plc与变频器连接时,屏蔽信号线必需接地。
如未接地,如图所示:较强的电磁干扰会引入通信线路并产生电流,导致通信错误,甚至损坏PLC通信接口。
正确的接线如图所示:图中,3,8为PLC通信接口,71/72为变频器输出接口,com为输入共用端。
5、掌握电缆过长(如50-100m)时,易受外界干扰,如使其频率给定所供应的4-20ma电流忽大忽小,时有时无,根本无法工作。
为此可实行以下措施:①、采纳屏蔽电缆,金属屏蔽层牢靠接地(坚固地接于变频器的PE端)。
②、仪表送出电流的元件采纳光电隔离式插件。
③、在4-20Ma电缆芯线上加防干扰旁路电容,如图所示:图中,C1为设定用电流输入端,COM为输入共用端。
④、掌握电缆尽量用成对双绞型电缆。
⑤、可将电缆线在数据线滤波器上绕2-3圈。
数据线滤波器尽可能装在变频器四周。
数据线滤波器实际上是一个磁环。
6、变频器本身或装有变频器的掌握柜(箱)的外壳必需屏蔽接地。
假如要求掌握回路与隔离,可通过始终100μF的电容器接地或采纳屏蔽线并接地。
7、输出线用钢管屏蔽,并与其他弱电信号线分别配线。
8、信号线不要与未屏蔽的电动机电线或未经滤波的电源线平行敷设。
变频器干扰信号处理解决方案1、传感器输出模拟信号上的干扰在传感器输出端加装ISO系列模拟信号隔离放大器可以有效解决模拟信号传输过程中的衰减和EMC干扰,增强显示控制系统的稳定性和可靠性。
用于变频器抗EMC干扰的模拟信号隔离放大器:ISO U-P-O-M系列,是在IC内部加装输入信号干扰抑制滤波电路和输出干扰谐波吸收电路,增强抗EMC电磁干扰和高频信号空间干扰功能。
特别适用于现场有变频控制设备、大功率电磁起动、GPS高频信号无线收发装置的场合2、抗电磁干扰的措施及注意事项为防止干扰,可采用硬件和软件的抗干扰措施。
其中,硬件抗干扰是最基本和最重要的抗干扰措施,总的原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统对干扰信号的敏感性,可从“抗”和“防”两方面入手采取措施抑制干扰[2]。
2.1 正确安装、合理布线变频器对安装环境要求较高。
一般变频器使用手册对环境温度、通风、湿度、海拔高度都有明确规定。
以下几个方面的安装工艺要求值得注意:(1) 确保控制柜中的所有设备接地良好,应该使用短、粗的接地线(最好采用扁平导体或金属网,因其在高频时阻抗较低)连接到公共地线上。
按国家标准规定,其接地电阻应小于4欧姆。
另外与变频器相连的控制设备(如plc或pid控制仪)要与其共地。
(2) 安装布线时将电源线和控制电缆分开,其它设备的电源线和信号线应尽量远离变频器的输入、输出线,例如使用独立的线槽等。
如果控制电路连接线必须和电源电缆交叉,应成90°交叉布线。
(3) 使用屏蔽导线或双绞线连接控制电路时,确保未屏蔽之处尽可能短,条件允许时应采用电缆套管。
(4) 确保控制柜中的接触器有灭弧功能,交流接触器采用r-c抑制器,也可采用压敏电阻抑制器,如果接触器是通过变频器的继电器控制的,这一点特别重要。
(5) 所有的电源线和信号线都应尽量屏蔽,用屏蔽和铠装电缆作为电机接线时,要将屏蔽层双端接地。
(6) 如果变频器运行在对噪声敏感的环境中,可以采用rfi滤波器减小来自变频器的传导和辐射干扰。
浅谈变频器抗干扰措施
随着变频高速技术的发展与综合利用,使变频器行业在诸多领域得到空前的发展和应用,几乎国民经济各行各业都与变频器密不可分。
“十二五”规划出台以来,节能减排就是各行各业发展的关键,受益于节能减排、绿色环保等战略的拉动,变频器的新技术改造越来越受到人们的重视。
主要介绍了在工业控制系统中,变频器在抗干扰方面的一些相应措施和技术改进措施。
标签:变频器;抗干扰;措施
1 变频器应用状况
随着工业自动化程度的不断提高,变频调速系统由于具有调速范围宽、调速精度高、动态响应快、运行效率高、节能效果显著等优点,被广泛的应用到了工业控制的各个领域中。
变频器是利用电力半导体器件的通断作用将工频电源|稳压器变换为另一频率的电能控制装置。
通常情况下采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。
用工频电源直接起动时,起动电流为6~7倍,因此,将产生机械电气上的冲击。
采用变频器传动可以平滑地起动(起动时间变长)。
起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。
2 变频器干扰的来源及途径
变频器干扰来源可以分为两个方面,一个是外部电网的干扰,另外就是变频器自身的干扰。
电网中的谐波干扰,这些负荷都使电网中的电压、电流产生波形畸变,电网噪声就会通过电网电源电路干扰变频器。
比如晶闸管换流类设备对变频器的干扰。
另外就是自身的干扰,在诸多控制系统中,多采用微机或者PLC 进行控制,在系统设计或者改造过程中变频器对微机控制板自身有干扰问题。
当变频器的供电系统附近,存在高频冲击负载,变频器本身容易因为干扰而出现保护。
变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。
供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。
其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。
对模拟传感器检测输入和模拟控制信号进行电气屏蔽和隔离。
在变频器组成的控制系统设计过程中,建议尽量不要采用模拟控制,特别是控制距离大于1M,跨控制柜安装的情况下。
因为变频器一般都有多段速设定、开关频率量输入输出,可以满足要求。
如果非要用模拟量控制时,建议一定采用屏蔽电缆,并在传感器侧或者变频器侧实现远端一点接地。
如果干扰仍旧严重,需要实现DC/DC隔离措施。
可以采用标准的DC/DC模块,或者采用V/F转换,光藕隔离再采用频率设定输入的方法。
3 变频器抗干扰的若干措施
变频器本身抗干扰给微机控制板输入电源加装EMI滤波器、共模电感、高频磁环等,成本低。
可以有效抑制传导干扰。
另外在辐射干扰严重的场合,如周围存在GSM、或者小灵通机站时,可以对微机控制板添加金属网状屏蔽罩进行屏蔽处理。
对模拟传感器检测输入和模拟控制信号进行电气屏蔽和隔离。
在变频器输入侧添加电感和电容,构成LC滤波网络。
主回路的非线性(进行开关动作),变频器本身就是谐波干扰源,而其周边控制回路却是小能量、弱信号回路,极易遭受其它装置产生的干扰,造成变频器自身和周边设备无法正常的工作。
因此,变频器在安装使用时,必须对控制回路采取抗干扰措施。
对于电源的扰动只需选择多重屏蔽的隔离变压器,并选择和处理好仪表供电电源的滤波、稳压就可以了。
但强电磁场的干扰处理起来就复杂多了,其对仪表的影响较大,而且较难解决。
因为这类干扰由于电磁感应而在仪表或系统的回路中产生感应电压,从而影响仪表及控制系统的正常工作或程序的正常运行。
3.1 变频器控制电路
给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,称为控制电路,控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路。
逆变器控制电路中的保护电路,可分为逆变器保护和异步电动机保护两种,保护功能如下
3.2 变频器控制回路的抗干扰措施
由于主回路的非线性(进行开关动作),变频器本身就是谐波干扰源,而其周边控制回路却是小能量、弱信号回路,极易遭受其它装置产生的干扰,造成变频器自身和周边设备无法正常的工作。
因此,变频器在安装使用时,必须对控制回路采取抗干扰措施。
变频器的基本控制回路,同外部进行信号交流的基本回路有模拟与数字两种:4~20mA电流信号回路(模拟);1~5V/0~5V电压信号回路(模拟)。
3.3 静电耦合干扰和静电感应干扰
指控制电缆与周围电气回路的静电容耦合,在电缆中产生的电势。
加大与干扰源电缆的距离,达到导体直径40倍以上时,干扰程度就不大明显。
在两电缆间设置屏蔽导体,再将屏蔽导体接地。
3.4 电波干扰和接触不良干扰
指控制电缆成为天线,由外来电波在电缆中产生电势。
必要时将变频器放入铁箱内进行电波屏蔽,屏蔽用的铁箱要接地。
对继电器触点接触不良,采用并联触点或镀金触点继电器或选用密封式继电器。
对电缆连接点应定期做拧紧加固处
理。
3.5 削弱干扰源
接入电抗器或滤波器,对小功率变频器,成本较高,我们采用一种低成本的电磁干扰抑制方法:将电机电缆从铁氧体环中穿过,使穿过部分导线的阻抗局部增大,阻止电磁干扰电流通过。
如将导线在铁氧体环上绕几圈,总的电感和阻抗值将随圈数的平方而增大。
电机电缆可从铁氧体环中穿过三次。
但应注意,连接电机和变频器的接地线应留在环外。
3.6 计算机系统及软件抗干扰技术
随着计算机技术的发展,在变频器的控制系统引入微处理器,使变频器的性能大大提高。
采用抗干扰技术软件来识别有用信号和干扰信号,并滤除干扰信号,大大提高变频器抗干扰能力。
3.7 变频器的接地可以在很大程度上抑制干扰,提高系统的抗干扰能力。
但是假如接地不良,反而会对设备产生干扰。
变频器的接地方式有多点接地、一点接地及经母线接地等几种形式。
4 结束语
本文通过对变频器运行过程中产生的干扰问题的分析,提出了解决这些实际问题的措施,随着科学技术的发展,变频器不但会在选矿行业而且会在其它各个行业应用越来越广泛,用户会对变频器应用提出更高的要求,同时变频器也会适应用户要求的取得更快的发展,工控系统对变频器的要求也越来越高,相信在不久的将来,满足更高技术水平的变频器将会应运而生。
参考文献
[1]王定华.电磁兼容性原理与设计[M].电子科技大学出版社,1995.
[2]吴忠智,吴加林.变频器应用手册[M].机械工业出版社,1997.
[3]张宗桐.变频器及其装置的EMC要求[J].变频器世界,2000,9.
[4]王兆安,黄俊.电力电子技术第四版[M].机械工业出版社,2000.
[5]郑旭东,关鸿权,吴赤兵.通用变频器运行过程中存在的新问题及策略[J].石化技术,2001,8.
[6]邓光平.BPJ-400/1140矿用隔爆兼本质安全型变频器漏电检测功能改进[J].科技信息,2011年19期.
[7]王建伟.基于PLC的电机变频调速试验系统开发[D].中北大学,2010.。