有限元非线性分析
- 格式:pdf
- 大小:2.01 MB
- 文档页数:31
非线性有限元法综述摘要:本文针对非线性有限元法进行综述,分别从UL列式及TL列式、CR列式、几何精确梁、壳理论三个方面介绍其分析思路和发展动态,旨在为相关学者提供一些思路参考。
关键词:几何非线性;UL列式;TL列式;CR列式;几何精确梁、壳理论1引言几何非线性是由于位置改变引起了结构非线性响应。
进行结构几何非线性分析,实质上就是要得到结构真实的变形与受力情况。
有限元方法是进行结构几何非线性分析的最成熟的方法,也是应用最广泛的分析方法.2非线性有限元法研究思路非线性有限元法主要指UL列式法、TL列式法、CR列式法和几何精确梁、壳理论等,它们有着基本相同的思路,即利用虚功原理建立平衡方程。
方程中充分考虑了非线性因素对结构应变和应力的影响,也就是将线性应变和非线性应变都代入到表达式中,然后确定单元的本构关系并选取合适的形函数,导出单元对应的弹性刚度矩阵和几何刚度矩阵,再选取合适的增量-迭代算法进行求解,由此就完成了结构的整个几何非线性分析求解过程。
非线性有限元法将结构的变形过程划分为三个主要阶段:C0状态、C1状态和C2状态,如图1所示。
图1 单元的变形C0状态是单元的初始状态,C1状态是单元受力变形后上一次处于平衡的状态;C2状态是单元的当前状态,也就是所求的状态。
2.1UL法和TL法研究思路UL法和TL法为几何非线性问题提供了新的分析思路。
这两种方法本质上没有很大区别,但是方程建立的参考状态有所不同。
完全拉格朗日法(TL法)是以结构变形前C0状态为参考建立平衡方程的,考虑结构从C0状态到C2状态之间的变形;而更新的拉格朗日法(UL法)以结构变形后C1状态为参考建立平衡方程的[2],考虑结构从C1状态到C2状态之间的变形。
两种拉格朗日法的主要形式如下:(1)TL列式(2)UL列式从上面两式可以看出:TL法和UL法的另一个不同是TL法的增量平衡方程中考虑了初位移矩阵的影响,而UL法则忽略了其影响,只考虑了弹性刚度矩阵和初应力矩阵的影响。
非线性有限元分析1 概述在科学技术领域内,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。
但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。
对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。
这类问题的解决通常有两种途径。
一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。
但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。
因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。
特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。
已经发展的数值分析方法可以分为两大类。
一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。
其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。
但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。
另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。
如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。
诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。
但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。
1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。
钢筋混凝土结构非线性有限元分析共3篇钢筋混凝土结构非线性有限元分析1钢筋混凝土结构是现代建筑结构中常用的一种结构形式。
由于钢筋混凝土结构自身的复杂性,非线性有限元分析在该结构的设计和施工过程中扮演着重要的角色。
非线性有限元分析是建立在解析的基础之上的,它可以更真实地模拟结构在实际载荷下的变形和破坏特性。
本文对钢筋混凝土结构的非线性有限元分析进行细致的介绍。
首先需要了解的是,钢筋混凝土结构存在多种非线性问题,如材料非线性、几何非线性和边界非线性等。
这些非线性问题极大地影响了结构的受力性能。
在结构的设计阶段,要对这些非线性因素进行充分分析。
钢筋混凝土结构在材料方面存在很多非线性问题,例如,混凝土的拉应力-应变曲线存在非线性变形,钢筋的本构关系存在弹塑性和损伤等等。
这些材料的非线性特性是钢筋混凝土结构变形和破坏的重要因素。
钢筋混凝土结构材料的非线性特性需要通过相关试验来获得,例如混凝土的轴向拉伸试验和抗压试验,钢筋的拉伸试验等,试验数据可以被用来建立预测结构非线性响应的有限元模型。
钢筋混凝土结构在几何方面存在很多非线性问题,例如,结构的非线性变形、结构的大变形效应、结构的初始应力状态等等。
钢筋混凝土结构几何的非线性效应可通过有限元分析明确地描述。
要对几何非线性进行分析,通常使用非线性有限元分析程序,其中包括基于条件梯度最优化技术的材料和几何非线性分析以及有限元法分析中使用的高级非线性模拟技术。
钢筋混凝土结构的边界条件也可能导致结构的非线性响应,例如基础的扰动、结构的支承和约束条件等。
所有这些条件都会导致模型在分析中出现非线性行为。
最后,非线性有限元分析可以简化结构设计的过程,并且可以更准确地分析结构的性能。
另外,分析过程中还可以考虑更多因素,例如局部的材料变形、应力浓度等等,让设计人员了解到结构的真实状态。
总之,钢筋混凝土结构非线性有限元分析是现代建筑结构中常用的一种结构分析方式,对于设计和施工都有着重要的意义。
第三部分非线性分析第一章非线性有限元概述1.1非线性行为1、 非线性结构的基本特征是结构刚度随载荷的改变而变化。
如果绘制一个非线 性结构的载荷一位移曲线,则 力与位移的关系是非线性函数。
2、 引起结构非线性的原因:a 几何非线性:大应变,大位移,大旋转 (例如钓鱼竿的变形)b 材料非线性:塑性,超弹性,粘弹性,蠕变c 状态改变非线性:接触,单元死活3、 非线性行为一一分析方法特点A 不能使用叠加原理!B 结构响应与路径有关,也就是说加载的顺序可能是重要的。
C 结构响应与施加的载荷可能不成比例。
1.2非线性分析的应用1、 一些典型的非线性分析的应用包括: 非线性屈曲失稳分析金属成形研究碰撞与冲击分析制造过程分析(装配、部件接触等)材料非线性分析 (塑性材料、聚合物)2、 橡胶底密封:一个包含几何非线性(大应变与大变形),材料非线性(橡胶), 及状态非线性(接触)的例子。
2.1非线性方程组的解法1、求解一个结构的平衡问题通常等于求解结构的总位能的驻值 问题。
结构总位能n : 口 "3弋门心 2、 增量法:就是将荷载分成一系列的荷载增量,即 ANSYS 中的荷载步或荷载子 步。
A 要点:在每一个荷载增量求解完成后,继续进行下一个荷载增量之前, 刚度矩阵以反映结构刚度的变化。
B 增量法的优点:可以追踪结构变形历程,这对于材料或几何非线性(特别是 极限值屈曲分析)十分有用。
C 增量法的缺点:随着荷载步增量的增加而产生积累误差,导致荷载-位移曲 线飘移。
D 对飘移进行平衡修正,可以大大提高增量法的精度。
应用最广的就是在每一 级载荷增量上用Newton-Raphsor 或其变形的迭代法。
3、 迭代法:割线刚度法:收敛性差,因此很少应用切线刚度法Newto n-Ra phsor 迭代法:切向刚度法中 2.2 Newto n-Ra phsor 迭代法 1、 优点:对于一致的切向刚度矩阵有 二次收敛速度。
建筑结构设计中的力学分析方法建筑结构设计是一门综合性学科,旨在确保建筑物能够在不同的力学荷载下保持结构稳定和安全。
力学分析是建筑结构设计中的关键环节之一,它通过深入研究和分析不同荷载对建筑结构产生的影响,以确定和优化结构的设计。
1. 引言在建筑结构设计中,力学分析是一项至关重要的技术。
通过运用力学原理和方法,可以预测建筑结构在外界荷载作用下的响应,为设计提供可靠的基础和指导。
本文将介绍建筑结构设计中常用的力学分析方法。
2. 静力分析静力分析是建筑结构设计中最基本的分析方法之一。
它基于力和力的平衡原理,通过计算建筑结构受力情况来确定结构的承载能力和稳定性。
静力分析常用的方法包括受力图法、弯矩计算、剪力计算等。
这些方法能够准确地描述结构在静力荷载下的受力状态。
3. 动力分析动力分析是一种更为复杂的分析方法,适用于考虑到地震、风载等动力荷载的建筑结构。
动力分析主要包括静力等效法、模态超静力法和时程分析等。
其中,静力等效法和模态超静力法都是基于模态分析的思想,并在考虑动力荷载的情况下简化了计算过程。
时程分析是一种更为精确的方法,通过模拟荷载和结构之间的相互作用来评估结构的响应。
4. 有限元分析有限元分析是一种广泛应用于建筑结构设计领域的数值分析方法。
它将结构划分为有限个单元,利用数学模型和计算机技术模拟结构的受力行为。
有限元分析可以综合考虑结构的几何形状、材料性质和边界条件等因素,对结构的受力性能进行精确分析。
由于有限元分析具有较高的计算精度和灵活性,因此在复杂建筑结构的设计和优化中得到广泛应用。
5. 非线性分析非线性分析是一种针对具有非线性特征的结构进行分析的方法。
在许多情况下,建筑结构在受到极限荷载或变形限制时会发生非线性响应。
非线性分析通过考虑结构材料的非线性特性、几何非线性和接触非线性等因素,准确地描述结构的受力性能,并提供合理的设计参考。
6. 结构优化方法结构优化方法在建筑结构设计中发挥着重要的作用。
【问题描述】如图I所示的模型,纵向尺寸均为100mm,水平尺寸均为30mm,圆角半径均为10mm,模型厚度为4mm。
图I 本例中所使用的模型【要求】在ANSYS Workbench软件平台上,通过改变材料属性,分别对该模型进行线性材料静力分析以及非线性材料的静力分析,并加以对比。
1.分析系统选择(1)运行ANSYS Workbench,进入工作界面,首先设置模型单位。
在菜单栏中找到Units下拉菜单,依次选择Units>Metric(kg,mm,s,℃,mA,N,mV)命令。
(2)在左侧工具箱【Toolbox】下方“分析系统”【Analysis Systems】中双击“静力结构分析”【Static Structural】系统,此时在右侧的“项目流程”【Project Schematic】中会出现该分析系统共7个单元格。
相关界面如图1所示。
图1 Workbench中设置静力分析系统2.输入材料属性(1)在右侧窗口的分析系统A中双击工程材料【Engineering Data】单元格,进入工程数据窗口。
(2)我们首先进行的是线性材料问题,选用系统默认的结构钢作为材料即可。
(3)可以看见,系统本身默认结构钢【Structural Steel】已在备选材料窗口中,在此不必再另行选择,直接单击【Project】选项卡回到项目流程界面即可。
3.导入几何模型(1)双击分析系统A中的“几何”【Geometry】单元格。
(2)找到菜单栏中的文件【File】选项,依次选择【File】>【Import External Geometry File】,在弹出的对话框中找到模型文件“non-linear.igs”并打开。
(3)单击工具栏中的【Generate】选项,即选项,确认生成导入的模型。
导入完成后的模型如图2所示。
(4)至此,模型导入步骤完成。
图2 导入的模型3.网格划分(1)双击Workbench界面中系统A的第四个单元格,模型【Model】单元格,进入【Static Structural】的静力分析模块。
基于ABAQUS的混凝土结构非线性有限元分析引言:混凝土结构在工程领域中应用广泛,其力学行为具有非线性特点。
在设计和分析混凝土结构时,需要考虑材料的非线性、几何的非线性以及边界条件的非线性等。
有限元方法是一种常用的分析工具,能够模拟复杂的结构非线性行为。
本文将介绍基于ABAQUS的混凝土结构非线性有限元分析。
方法:混凝土结构在非线性有限元分析中,需要建立几何模型、材料模型和加载模型。
ABAQUS提供了丰富的功能和材料模型,适用于混凝土结构的各种非线性分析。
1.几何模型:在建立几何模型时,可以使用ABAQUS提供的几何建模工具,也可以导入CAD软件中的几何模型。
在建立模型时,需要注意结构的几何形状、尺寸和边界条件。
2.材料模型:混凝土的力学行为通常可以用Drucker-Prager或Mohr-Coulomb材料模型来描述。
ABAQUS提供了这些材料模型的参数输入和选项设置。
在输入混凝土材料的参数时,需要考虑抗压强度、抗拉强度、杨氏模量、泊松比、体积变形模量等。
同时,材料的破坏准则也需要考虑。
ABAQUS支持多种破坏准则,如最大应变准则、耐久性准则等。
3.加载模型:在非线性有限元分析中,加载模型对于模拟真实工况非常重要。
ABAQUS提供了多种加载模型,如集中力、均布力、压力等。
除了静力加载,动力加载也是重要的分析手段。
ABAQUS可以模拟动力荷载,如地震、风载等。
加载模型的选择和参数的设置需要根据实际工程情况来确定。
4.边界条件:在模拟混凝土结构中,正确设置边界条件是至关重要的。
ABAQUS提供了多种边界条件的设定方法,如位移边界条件、约束边界条件等。
在设置边界条件时,需要根据结构的实际情况来选择合适的约束条件,确保分析结果的准确性。
结果与讨论:通过非线性有限元分析,可以得到混凝土结构的应力、应变分布,以及结构的变形和破坏情况。
这些结果对于工程设计和结构优化非常重要。
在使用ABAQUS进行混凝土结构非线性有限元分析时,需要进行结果的后处理和分析。