非线性有限元法(1)
- 格式:ppt
- 大小:2.18 MB
- 文档页数:35
非线性问题的类型和求解特点1 非线性问题的类型1. 1 线性分析的含义在有限元分析中的线性假设包含下列含义:即结点位移为无限小量,材料为线弹性,加载时边界条件的性质保持不变。
于是,静力平衡方程可以表示为:[]{}{}R U K = (2.1)其中,[]K 为刚度矩阵,{}R 为荷载矢量。
由于[]K 和{}R 的元素为常数,故位移响应{}U 是荷载矢量{}R 的线性函数。
也就是说,如果{}R 变为{}R α,则{}U 变为{}U α,其中,α为常数。
这就是所谓的线性有限元分析。
如果上述假设中的任何一条不能得到满足,那么就属于非线性有限元分析。
1. 2 非线性分析的必要性结构力学问题,从本质上讲都是非线性的,线性假设只是实际工程问题的一种简化。
当然,任何实际工程问题的求解都避免不了适当地简化,简化是否合理主要应根据求解效果和实际经验来判断。
对于目前工程实际中的很多问题,如地震作用下结构的弹塑性动力响应,高层建筑抗风,大跨度网壳结构动力稳定性,索膜结构找形荷载与裁减分析,大型桥梁风致振动等问题的研究,仅仅假设为线性问题是很不够的,常常需要进一步考虑为非线性问题。
因此,对各种工程结构的非线性分析就是必不可少且日趋重要了。
对于结构力学的非线性问题来说,有限单元法是最为有效的数值分析方法。
1. 3 非线性问题的类型通常,把非线性问题分为两大类,即分为几何非线性和材料非线性。
但从建立基本方程和程序设计的方便出发,又可分为三种类型:1.材料非线性:非线性效应仅由应力应变关系的非线性引起,位移分量仍假设为无限小量,故仍可采用工程应力和工程应变来描述,即仅材料为非线性。
非线性的应力应变关系是结构非线性的常见原因,许多因素都可以影响材料的应力应变性质,包括加载历史(如在弹塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)等。
2.几何非线性:如果结构经受大变形,则变化了的几何形状可能会引起结构的非线性响应,这又可以分为两种情形:第一种情形,大位移小应变。
非线性有限元法综述摘要:本文针对非线性有限元法进行综述,分别从UL列式及TL列式、CR列式、几何精确梁、壳理论三个方面介绍其分析思路和发展动态,旨在为相关学者提供一些思路参考。
关键词:几何非线性;UL列式;TL列式;CR列式;几何精确梁、壳理论1引言几何非线性是由于位置改变引起了结构非线性响应。
进行结构几何非线性分析,实质上就是要得到结构真实的变形与受力情况。
有限元方法是进行结构几何非线性分析的最成熟的方法,也是应用最广泛的分析方法.2非线性有限元法研究思路非线性有限元法主要指UL列式法、TL列式法、CR列式法和几何精确梁、壳理论等,它们有着基本相同的思路,即利用虚功原理建立平衡方程。
方程中充分考虑了非线性因素对结构应变和应力的影响,也就是将线性应变和非线性应变都代入到表达式中,然后确定单元的本构关系并选取合适的形函数,导出单元对应的弹性刚度矩阵和几何刚度矩阵,再选取合适的增量-迭代算法进行求解,由此就完成了结构的整个几何非线性分析求解过程。
非线性有限元法将结构的变形过程划分为三个主要阶段:C0状态、C1状态和C2状态,如图1所示。
图1 单元的变形C0状态是单元的初始状态,C1状态是单元受力变形后上一次处于平衡的状态;C2状态是单元的当前状态,也就是所求的状态。
2.1UL法和TL法研究思路UL法和TL法为几何非线性问题提供了新的分析思路。
这两种方法本质上没有很大区别,但是方程建立的参考状态有所不同。
完全拉格朗日法(TL法)是以结构变形前C0状态为参考建立平衡方程的,考虑结构从C0状态到C2状态之间的变形;而更新的拉格朗日法(UL法)以结构变形后C1状态为参考建立平衡方程的[2],考虑结构从C1状态到C2状态之间的变形。
两种拉格朗日法的主要形式如下:(1)TL列式(2)UL列式从上面两式可以看出:TL法和UL法的另一个不同是TL法的增量平衡方程中考虑了初位移矩阵的影响,而UL法则忽略了其影响,只考虑了弹性刚度矩阵和初应力矩阵的影响。
第一篇 物理非线性有限元的一般解法第一节 概述从数学角度考虑,对于偏微分方程边值问题或初值问题,如果域内的控制方程是线性方程,边界条件也是给定的线性条件,就是线性问题。
线性问题的适定性提法可保证问题的解存在、唯一而且稳定。
线性问题具有一系列重要特性,例如其解具有比例特性,求解中可用叠加原理等等。
线性有限元法就是这样一类问题,它最后归结为一个线性代数方程组的求解。
只要力学建模过程处理合理,其解不仅唯一,而且具有很高的可靠性,因此已在工程界得到了广泛的应用,并已成为必不可少的一种辅助设计手段,在不少行业中,已正式成为设计规范的一个组成部分而强制性执行。
工程中所有的问题都是非线性的,为适应工程问题的需要,在解决某些具体问题时,往往忽略一些次要因素,将它们近似地作为线性问题处理,这也是完全合理的。
但是我们不能因此认为一切问题均可以简化为线性问题。
必须注意到有许多工程问题,应用非线性理论才能得到符合实际的结果。
为适应工程应用的需要,非线性有限元是目前进行非线性问题数值计算中最有效的方法之一。
因此,有必要对非线性有限元的基础知识作较为全面的阐述,以使读者有足够的基础知识,能够理解非线性有限元的各种基本方法,选择和比较不同近似计算方法,正确处理建模和计算分析中所遇到的困难。
本篇主要介绍材料非线性有限元的一般数值解法。
所谓材料非线性指的是材料的物理定律是非线性的。
材料非线性问题可以分为二类。
第一类是非线性弹性问题,例如橡皮、塑料、岩石、土壤等材料是属于这一类,它的非线性性质是十分明显的。
第二类是非线性弹塑性问题,材料超过屈服极限以后就呈现出非线性性质,各种结构的弹塑性分析就是这类问题。
若在加载过程,这两类材料非线性问题在本质上相同的,只要写出非线性物理定律而在计算方法上是完全一样。
但是卸载过程中就会出现不同的现象,非线性弹性问题是可逆过程,卸载后结构会恢复到加载前的位置;非线性弹性问题是不可逆的,它将会出现残余变形。
非线性有限元方法非线性有限元方法是大量应用于工程领域的计算方法,它主要用于求解复杂结构的力学问题,例如材料的变形、破坏和变形控制等。
与线性有限元方法不同,非线性有限元方法考虑因为载荷和边界条件的非线性导致问题的非线性本质,以及材料的非线性行为。
在这篇文章中,我们将讨论非线性有限元方法,包括其应用、工作原理以及其在工程领域中的重要性等内容。
首先,我们来研究一下非线性有限元方法的应用。
非线性有限元方法在许多方面都有应用。
其中最重要的领域是结构力学,包括建筑、航空航天、汽车等领域。
由于这些结构需要承受复杂的载荷,因此非线性有限元方法可以很好地模拟这些结构的行为,预测它们的性能和寿命。
此外,非线性有限元方法还可以应用于材料力学研究中,例如破碎、断裂和塑性变形等方面。
其次,我们来了解一下非线性有限元方法的工作原理。
与线性有限元方法类似,非线性有限元方法通过将结构分成小块进行离散,然后在每个小块中进行力学分析,最后将分析结果合并为整个结构的行为。
但是,与线性有限元方法不同的是,非线性有限元方法考虑到材料的非线性行为,采用迭代的方法计算结构的响应。
通常,在每一次迭代中,我们都将结构的当前状态作为一个初始猜测,然后求解出该状态下的切应力和位移场。
然后我们将这个位移场的结果代入底部,从而更新结构的状态。
如果解决方案收敛,则完成计算,否则就将新的状态再次代入求解。
这种方法的本质是将非线性问题转化为一系列线性问题的求解,通过迭代求解来逼近非线性问题的解。
最后,我们来讨论一下非线性有限元方法在工程领域中的重要性。
非线性有限元方法已成为现代工程设计和分析的不可或缺的工具。
它允许工程师们模拟和预测各种工程机构的行为,以及设计和优化各种结构。
例如,它可以帮助我们了解在不同载荷下建筑和桥梁行为的变化,预测材料的破坏和失效,以及优化汽车和飞机的结构以提高其性能。
总之,非线性有限元方法是一种复杂但十分有用的计算方法,它可以模拟各种结构的行为并预测其性能和寿命。
非线性有限元之非线性求解方法平衡回顾✧静态平衡是内力I和外载P力量平衡;✧在非线性问题中,模型的内力I可以是以下量的非线性函数;✧在非线性问题中,模型的外力P也可以是某些量的非线性函数,如位移u和时间t。
非线性求解方法1.已知一个分析,知道结构总载荷和初始刚度,目的是找到最后的位移。
线性分析中,一次计算就能求解出最终位移;非线性问题中不可能,因为结构刚度随着结构变形而改变。
2.求解这类非线性问题需要的是一种增量\迭代技术,获得的解是非线性问题准确的近似。
这些方程通常没有精确解。
3.Abaqus使用迭代求解该方程:使用牛顿拉普森方法求解近似解,使误差最小。
4.Abaqus用法:1)载荷历史被拆解为一系列的分析步;每个分析步拆解为一系列增量步;用户为初始时间增量猜测一个值;Abaqus使用自动增量算法确定其他的增量步。
在每个增量步结束时,Abaqus根据载荷与时间关系计算当前负载大小2)使用牛顿拉普森程序迭代求解每个增量结束时的解;根据收敛容差判断牛顿拉普森程序的收敛;如果迭代不收敛,减少增量步的大小;然后使用小增量步重新进行计算。
5.分析步、增量步、迭代步1)分析步仿真载荷历程含有一个或多个分析步。
2)增量步是分析步的一部分;在静态问题中,总载荷被分成很小的增量步。
以便可以沿着非线性路径求解。
3)迭代步迭代步是增量步中寻找平衡解得一次计算尝试。
5.牛顿拉普森方法Abaqus/Standard 基于牛顿拉普森方法的增量迭代求解技术,该方法是无条件稳定(任何大小的增量步都可以)。
增量步大小影响动态分析精度,每个增量步通常要求多次迭代才能满足收敛要求,每个分析步通常有多个增量步,牛顿拉普森定义了一个残差为0位移曲线。
6.牛顿拉普森方法基础。
平衡是u的非线性方程,牛顿拉普森迭代求解在Cu 处的线性方程,Cu是位移u的修正量。
7.残差定义为了得到线性方程组,重写一下平衡方程,R(u)是u的残差。
这个残差表示的是位移u处不平衡力。
非线性有限元方法及实例分析梁军河海大学水利水电工程学院,南京(210098)摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。
关键词:非线性有限元,方程组求解,实例分析1引 言有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。
有限元的线性分析已经设计工具被广泛采用。
但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。
根据产生非线性的原因,非线性问题主要有3种类型[1]:1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题3.接触非线性问题(简称接触非线性或边界非线性)2 非线性方程组的求解在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]:()()()00021212211=……==n n n n δδδψδδδψδδδψΛΛΛ (1.1)其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记号[]T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3)上述方程组(1.1)可表示为()0=δψ (1.4)可以将它改写为()()()0=−≡−≡R K R F δδδδψ (1.5)其中()δK 是一个的矩阵,其元素是矢量的函数,n n ×ijk R 为已知矢量。
在位移有限元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。
在线弹性有限元中,线性方程组0=-R K δ (1.6)可以毫无困难地求解,但对线性方程组()0=δψ则不行。
一般来说,难以求得其精确解,通常采用数值解法,把非线性问题转化为一系列线性问题。