压力钢管结构计算和抗外压稳定校核
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
压力钢管结构计算和抗外压稳定校核1.计算原则:① 钢管结构在弹性状态下工作;② 除对钢管结构进行强度计算外,还要对钢管进行抗外压稳定校核; ③ 计算中不计地震力及弯段水流的离心力; ④ 钢材为普通碳素钢,即主炉3号镇定钢(A 3); ⑤ 焊接系数采用0.9,超声波检查率为100%; ⑥ 管壁厚度计算中,钢管允许应力为0.55σs ×75%。
2. 计算工况: (1)计算荷载:① 2180.0m 正常蓄水位时静水压力;② 2180.0m 正常蓄水位时机组丢弃全部负荷的正水锤压力; ③ 钢管的自重; ④ 管内的水重; ⑤ 温度荷载;⑥ 管道放空时通气设备造成的负压。
(2)荷载组合:工况一:①+②+③+④+⑤ 工况二:⑥3. 钢管管壁厚度的计算 ① 管壁厚度按锅炉公式计算:式中 δ—管壁厚度(mm )H —包括水击压力值的设计水头 (m );[]ϕσδHD50=D —钢管内径(m);[σ] —钢材允许应力,[σ]=0.55σs×75% (kg/cm2),σs=2400kg/cm2;φ—接缝坚固系数,φ取0.9。
②由上式计算得到的管壁计算厚度,在满足钢管抗外压稳定的条件下,再加上2mm的锈蚀及磨损厚度,即为钢管管壁选用厚度。
计算成果见表1.3.2。
钢管管壁厚度计算成果表表1.3.2项目管段设计水头(m)钢管内径(mm)计算壁厚(mm)选用壁厚(mm)取水口~M段53.088 1500 4.5 14M~M1段87.287 1500 7.3 14M1~N1段119.434 1500 10.05 14 N1~机组导叶前120.752 1250 8.5 12 4.管壁抗外压稳定校核钢管管壁厚度除应满足强度要求外,还需满足稳定性要求,管壁维持稳定的最小厚度为:对于φ1500管径对于φ1250管径130D≥δ54.11130150014=≥=δ62.9130125012=≥=δ故壁厚均满足抗外压稳定要求,即钢管在外部压力作用,若管内出现负压也不会失稳。
水电站压力管课程设计学院:水利学院专业:水利水电工程科目:水电站课题:水电站压力管道课程设计姓名:学号: 313174云南农业大学水利学院2017年12月设计说明压力管道的设计步骤一般包括:(1)压力管功能布置;(2)压力管固定方法、设计;(3)压力管应力分析、计算;(4)压力管强度校核;(5)压力管抗外压稳定计算。
一、基本资料及参数1、最大发电流量;2、上游正常水位1000m;3、下游设计尾水水位850m;4、管轴线与水平线夹角;5、上游正常水位至伸缩节水位差7m;6、镇墩与地基摩擦系数;7、支墩与管身摩擦系数;8、伸缩节摩擦系数;9.水轮机调节时间。
二、压力管功能及布置功能:从水库、前池或调压室向水轮机输送水量。
布置:采用明钢管敷设。
布置时要尽可能选择短而直的线路,明钢管敷设在陡峭的山坡上;尽量选择良好的地质条件,明钢管敷设在坚固而稳定的山坡上,支墩和镇墩尽量设在坚固的岩基上,并清除表面覆盖层;尽量减少管道的起伏波折,避免出现反坡,利于管道排空,明钢管底部应高出地表至少0.6米,以便安装和检修;避开可能发生山崩或滑坡的区,明钢管尽量沿山脊布置,避免布置在山水集中的山谷中,若明钢管之上有坠石或可能崩塌的峭壁,要事先清除;首部设事故闸门,并考虑设置事故排水和防冲设施。
三、明钢管的固定、设计1.明钢管的敷设明钢管敷设在一系列支墩上,底部应高出地表0.65米。
明钢管宜做成分段式,在首尾设镇墩,两镇墩之间设伸缩节。
伸缩节布置在管段的上端,靠近上镇墩处。
敷设方式如图:2.明钢管的设计(1)管径的确定采用经验公式——彭德舒公式来初步确定压力钢管的经济直径:式中:为钢管的最大设计流量,;H为设计水头,m。
由基本资料得:所以压力钢管直径进制采用D=50mm为模,所以取D=2.05m。
(2)管长确定上游正常水位1000m,闸门进口水位为993m,上游正常水位至伸缩节水位差7m,下游设计为水位850m。
取进口直管段长5m,出口直管段长5m。
钢支撑N=2750KN,L水平向=L竖向=20.9m钢支撑强度及整体稳定性验算(钢结构设计规范GB50017-2003 5.2):一、计算参数分项系数γs= 1.375初始偏心距e0=0.001*L=0.04m支撑面均布荷载q0=0.7Kpa支撑最大轴力标准值Nk=2692KN初始弯矩M0k=75.7381KN-m由自重及支撑面均布荷载引起的弯最大弯矩Mk=M0k+Nk*e0=183.4181KN-m稳定系数φ=0.851弯矩作用平面内的轴压构件稳定系截面塑性发展系数γ= 1.15钢管截面钢管外径D=0.609m钢管内径d=0.577m支撑实际长度L=14.8m截面模量W=0.0982*(D4-d4)/D0.004307m3弯矩作用平面内对较大受压纤维的截面惯性矩I=π(D4-d4)/64=0.001311m4截面回转半径i=√(D2+d2)/4=0.209733m截面积A=π*(D2-d2)/4=0.029807m2参数Nex=π2*EA/(1.1λ2)=11063.97KN OR Nex=π2*EI/[1.1*(μ*L)2]=弹性模量E= 2.06E+08Kpa Q235钢杆件计算长度修正系数μ=1构件长细比λ=L/i=70.56575等效弯矩系数βmx=1无端弯矩但有横向荷载作用二、钢支撑强度验算f=N/A+M/(γ*W)=175.0974Mpa< [f]=215 Mpa,满足要求其中M=γs*Mk三、钢支撑整体稳定验算1、钢支撑竖向平面内的稳定性验算f1=N/(φ*A)=145.8569Mpaf2=βmx*M/[γ*W*(1-0.8*N/Nex)]=69.52489Mpaf=f1+f2=215.3818Mpa< [f]=215 Mpa,满足要求2、钢支撑竖向平面外的稳定性验算f1=N/(φy*A)=145.8569其中弯矩作用平面外的轴心受压稳定系数φy=0.851根据L=11m计算。
钢管支撑刚度及稳定性计算钢管支撑设计中的刚度和稳定性是非常重要的考虑因素。
在设计过程中,需要通过计算和评估来确定合适的钢管尺寸、材料和支撑间距,以满足支撑的刚度和稳定性要求。
本文将从钢管支撑的刚度计算和稳定性计算两个方面进行介绍。
一、钢管支撑的刚度计算钢管支撑的刚度计算是指钢管在受到加载时的刚度特性。
钢管支撑的刚度主要取决于材料的特性、钢管截面形状和尺寸以及支撑间距。
其中,材料的特性可以通过弹性模量来表示,钢管截面形状和尺寸可以通过惯性矩来表征,支撑间距则是指支撑点之间的距离。
钢管支撑的刚度可以通过弹性变形来衡量。
根据梁弯曲理论,弯曲刚度与弹性模量、惯性矩和长度有关。
在计算钢管支撑的弯曲刚度时,可以采用梁的弯曲刚度公式:EI=1/2*p*t^3其中,E为钢管的弹性模量,I为钢管的惯性矩,p为弯矩,t为钢管的厚度。
一个简单的钢管支撑的弯曲刚度计算可以通过以下步骤进行:1.确定钢管的截面形状和尺寸。
2.根据钢管的材料特性,确定钢管的弹性模量。
3.根据钢管截面形状和尺寸,计算钢管的惯性矩。
4.根据设计要求,确定钢管支撑的弯矩。
5.根据钢管的厚度,计算钢管支撑的弯曲刚度。
根据计算结果,可以评估钢管支撑的刚度是否满足设计要求。
如果刚度不足,可以通过增加钢管的尺寸或者减小支撑间距来提高刚度。
钢管支撑的稳定性计算是指在受到加载时,钢管是否能够保持稳定的能力。
稳定性计算主要考虑的是钢管支撑在受到压力作用时的稳定性,即屈曲稳定性。
在钢管支撑的稳定性计算中,需要考虑钢管支撑的临界压力,即支撑失稳时的应力状态。
根据欧拉公式和Euler-Bernoulli梁理论,可以得到支撑的临界压力表达式:Pcr = (π^2 * E * I) / (L^2)其中,Pcr为临界压力,E为钢管的弹性模量,I为钢管的惯性矩,L 为支撑长度。
钢管支撑的稳定性评估可以通过以下步骤进行:1.确定钢管的截面形状和尺寸。
2.根据钢管的材料特性,确定钢管的弹性模量。
钢支撑N=2750KN,L水平向=L竖向=20.9m钢支撑强度及整体稳定性验算(钢结构设计规范GB50017-2003 5.2):一、计算参数分项系数γs= 1.375初始偏心距e0=0.001*L=0.04m 支撑面均布荷载q0=0.7Kpa 支撑最大轴力标准值Nk=2692KN初始弯矩M0k=75.7381KN-m 由自重及支撑面均布荷载引起的弯矩,按简支计;最大弯矩Mk=M0k+Nk*e0=183.4181KN-m稳定系数φ=0.851弯矩作用平面内的轴压构件稳定系数,a类构件截面塑性发展系数γ= 1.15钢管截面钢管外径D=0.609m钢管内径d=0.577m支撑实际长度L=14.8m截面模量W=0.0982*(D4-d4)/D0.004307m3弯矩作用平面内对较大受压纤维的毛截面模量截面惯性矩I=π(D4-d4)/64=0.001311m4截面回转半径i=√(D2+d2)/4=0.209733m 截面积A=π*(D2-d2)/4=0.029807m2参数Nex=π2*EA/(1.1λ2)=11063.97KN OR Nex=π2*EI/[1. 1*(μ*L)2]=弹性模量E= 2.06E+08Kpa Q235钢杆件计算长度修正系数μ=1构件长细比λ=L/i=70.56575等效弯矩系数βmx=1无端弯矩但有横向荷载作用二、钢支撑强度验算f=N/A+M/(γ*W)=175.0974Mpa <[f]=215 Mpa,满足要求其中M=γs*Mk三、钢支撑整体稳定验算1、钢支撑竖向平面内的稳定性验算f1=N/(φ*A)=145.8569Mpa f2=βmx*M/[γ*W*(1-0.8*N/Nex)]=69.52489Mpaf=f1+f2=215.3818Mpa <[f]=215 Mpa,满足要求2、钢支撑竖向平面外的稳定性验算f1=N/(φy*A)=145.8569其中弯矩作用平面外的轴心受压稳定系数φy=0.851根据L=11m计算。
压力钢管计算一、压力钢管简介压力钢管是一种用于输送流体的管道,广泛应用于石油、天然气、水力等领域。
它承受着内部流体的压力,以及外部环境的作用力,因此对其进行合理的计算和设计至关重要。
压力钢管的计算主要包括强度、稳定性和疲劳寿命等方面。
二、压力钢管计算方法1.强度计算压力钢管的强度计算主要依据材料的屈服强度、抗拉强度等性能参数。
计算公式为:σ= P/A其中,σ表示钢管的应力,P表示管道内流体的压力,A表示管道的横截面积。
2.稳定性计算压力钢管的稳定性计算主要考虑管道的弯曲、压缩和拉伸等失稳形式。
稳定性计算公式为:λ= 2π/ω其中,λ表示失稳波长,ω表示钢管的振动频率。
3.疲劳寿命计算压力钢管的疲劳寿命计算主要依据循环应力、疲劳极限等参数。
计算公式为:= Δσ/σ_0其中,N表示疲劳寿命,Δσ表示循环应力变化幅值,σ_0表示钢管的屈服强度。
三、计算实例以一个直径为0.5米、长度为100米的压力钢管为例,材料为Q345,流体压力为10MPa。
1.强度计算σ= 10MPa / (π * (0.5m)^2) = 100000000Pa2.稳定性计算ω= 1 / 2π * f = 1 / 2π * 10Hz = 1.59m/sλ= 2π / ω = 2π / 1.59m/s = 41.4m3.疲劳寿命计算Δσ= 0.5 * σ_0 = 0.5 * 345MPa = 172.5MPa= Δσ / σ_0 = 172.5MPa / 345MPa = 0.5四、注意事项1.压力钢管计算时,应充分考虑管道的材料、尺寸、流体压力等因素。
2.计算过程中,应注意单位的统一。
3.对于复杂工况,可采用数值模拟等方法进行计算。
五、总结压力钢管计算是管道设计的重要环节,通过对强度、稳定性和疲劳寿命的计算,可以确保管道的安全运行。
在实际工程中,应根据具体情况选择合适的计算方法,并结合实际工况进行调整。
一 、压力管水击计算 设计参数:Q=10m 3,s T S 3=,[]MPa 120=σ,4.0=K f ,6.0=f ,3.0=b f 。
1、直接或间接水击判断取在明钢管中水击波的传播速度s m C 1000=。
取i=0.001,b=1.5m ,K=Q/=316.233/m s ,故2.672.671.50.5490.017316.23b nk ==⨯,查表知,03.2, 1.5 3.2 4.8h h m b==⨯= 初估钢管直径由公式VQV Q D 13.1)4(21=⋅=π, 其中s m v 0.5=,,103s m Q = 代入公式计算得:m D 598.1=。
取mm m D 1600.600.1==。
进口底砍取1m ,由初始尺寸可计算[]188(4.80.81)sin 36144.6L m -=---= 则s T CLs 329.010006.14422=<=⨯=,因此,发生的水击为间接水击 2、第一相或极限水击判断 水击常数:0max2h g V C ⨯⨯⨯=ρ一般经验,露天钢管的经济流速为4.0~6.0s m ,取s m v 0.5=0.3858.920.5100020max =⨯⨯⨯=⨯⨯⨯=h g V C ρ,满负荷运行 10=τ, 则 10.30>=ρτ,因此,压力钢管内将产生极限水击。
3、计算 σ s T gH LV s 29.03858.90.56.1440max =⨯⨯⨯==σ 4、由于钢管内产生的是极限水击,则取34.029.0229.0222=-⨯=-=σσξm , 则水击压力的升高值m H H m 9.288534.00=⨯=⋅=∆ξ。
5、水击影响下阀门处最大水头:H ∆=28.9m m H H H p 9.1139.28850=+=∆+=二 、压力钢管计算1、荷载组合选择①:钢管自重分力1A (沿管轴方向); ②:关闭的阀门及闷头上的力2A ; ③:温度变化时支座对钢管的摩擦力3A ; ④:钢管自重分力4A (沿垂直管轴方向);⑤:钢管中水重分力5A ; 3、管壁厚计算 []σγδ20DH p ⋅⋅=其中,38.9m KN g ==ργ m H p 9.113= mm D 1600= , []MPa 120=σ则mm 44.710120260.19.113108.9630=⨯⨯⨯⨯⨯=δ, 0/80046D mm δ≥+= 符合要求。
压力钢管结构计算和抗外压稳定校核
1.计算原则:
① 钢管结构在弹性状态下工作;
② 除对钢管结构进行强度计算外,还要对钢管进行抗外压稳定校核; ③ 计算中不计地震力及弯段水流的离心力; ④ 钢材为普通碳素钢,即主炉3号镇定钢(A 3); ⑤ 焊接系数采用0.9,超声波检查率为100%; ⑥ 管壁厚度计算中,钢管允许应力为0.55σs ×75%。
2. 计算工况: (1)计算荷载:
① 2180.0m 正常蓄水位时静水压力;
② 2180.0m 正常蓄水位时机组丢弃全部负荷的正水锤压力; ③ 钢管的自重; ④ 管内的水重; ⑤ 温度荷载;
⑥ 管道放空时通气设备造成的负压。
(2)荷载组合:
工况一:①+②+③+④+⑤ 工况二:⑥
3. 钢管管壁厚度的计算 ① 管壁厚度按锅炉公式计算:
式中 δ—管壁厚度(mm )
H —包括水击压力值的设计水头 (m );
[]ϕ
σδHD
50=
D —钢管内径(m);
[σ] —钢材允许应力,[σ]=0.55σs×75% (kg/cm2),
σs=2400kg/cm2;
φ—接缝坚固系数,φ取0.9。
②由上式计算得到的管壁计算厚度,在满足钢管抗外压稳定的条件下,
再加上2mm的锈蚀及磨损厚度,即为钢管管壁选用厚度。
计算成果见表1.3.2。
钢管管壁厚度计算成果表
表1.3.2
项目管段设计水头
(m)
钢管内径
(mm)
计算壁厚
(mm)
选用壁厚
(mm)
取水口~M段53.088 1500 4.5 14
M~M1段87.287 1500 7.3 14
M1~N1段119.434 1500 10.05 14 N1~机组导叶前120.752 1250 8.5 12 4.管壁抗外压稳定校核
钢管管壁厚度除应满足强度要求外,还需满足稳定性要求,管壁维持
稳定的最小厚度为:
对于φ1500管径对于φ1250管径
130
D
≥
δ
54
.
11
130
1500
14=
≥
=
δ
62
.9
130
1250
12=
≥
=
δ
故壁厚均满足抗外压稳定要求,即钢管在外部压力作用,若管内出现负压也不会失稳。