7第七章平稳过程谱分析(上)
- 格式:ppt
- 大小:187.50 KB
- 文档页数:22
第二章 平稳过程的谱分析§1谱理论简介我们知道,由Wold 分解定理,一个平稳过程t Y 可以找到一个平稳的(,)ARM A p q 来近似。
且已知1,,T y y ,当T →∞,我们可以一致的估计(,)ARM A p q 模型中的未知参数,并由此来把握平稳过程t Y 。
现在,我们换一个角度看t Y ,把所有二阶矩平稳过程看成为一个Hilbert 空间,那么,由Hilbert 空间的谱表示定理,任何一个二阶矩平稳过程t Y 都可以表示成为一个右连续的正交增量过程的R —S 积分,即,()i tt Y edz πωπω-=⎰,()()()z A iB ωωω=+。
满足:[()()]0i j E dA dA ωω=, [()()]0i j E dB dB ωω=,i j ∀≠。
(正交增量性)[()][()]0E dA E dB ωω==, [()][()]Var dA Var dB ωω=,且右连续是指均方收敛,即,2[()()]0E A A ωδω+-→,0δ↓。
( 参见MIT 教本)将t Y 改写成,0cos()()sin()()t Y t dA t dB ππωωωω=+⎰⎰。
定义[()][()]Var dA Var dB ωω==2()dF ω,[0,]ωπ∀∈。
那么由(),()A B ωω的正交增量性和右连续性,知()F ω是一个[0,]π上的非减右连续的函数。
称()F ω为t Y 的谱分布函数。
又将()dF ω写成,()()dF f d ωωω=,则()f ω就称为t Y 的谱密度函数。
注意,()F ω或()f ω是由(),()A B ωω唯一决定的,也就是由t Y 唯一决定的。
这里唯一性指的是几乎处处唯一。
反过来也正确。
任给一个谱密度函数()f ω或谱分布函数()F ω,可以决定一个唯一的右连续的正交增量过程,()()()z A iB ωωω=+,并由()z ω决定一个唯一的平稳过程t Y 。