按键控制灯亮灭
- 格式:docx
- 大小:1.33 MB
- 文档页数:7
交流调速课程设计说明书设计题目:基于单片机的单键单灯亮/灭控制系统设计指导教师: xxxxx设计者: xxxx学号: xxxxxxxxx系别:机械工程学院班级:目录一、题目 (1)二、内容要求 (1)三、总体方案设计思路 (1)四、电路原理图 (1)五、程序 (2)六、课程设计心得体会···························· (3)七、参考文件 (4)1题目:基于单片机的单键单灯亮/灭控制系统设计2内容要求:选用单片机为控制核心,用一个按钮控制一只LED 灯的点亮和熄灭。
要求上电后,按一次按钮,灯点亮;再按一次,灯熄灭;第三次案又点亮,如此循环。
3总体方案设计思路:程序通过if判断语句,判断输入引脚,当输入引脚为低电平时,满足if语句判断条件,当条件满足时,通过取反指令,控制输出引脚,LED灯亮灭切换。
通过while循环语句,确定有效按键。
4电路原理图:5程序:#include<reg51.h> //单片机头文件sbit key=P1^0; //按键输入引脚定义sbit led=P2^0; //led灯输出引脚定义main () //主函数{while(1) //死循环{if (key==0) //按键判断低电平有效{led=~led; //灯取反}while(key==0); //按键上升沿等待}}6课程设计心得体会在整个设计中我懂得了许多东西,了解了单片机的电器原理,掌握了单片机的调试的基本原理,特别是单片机的编程技术,对C语言编程和汇编语言编程有了深入的理解,熟悉了单片机开发仪的操作。
对于本次课程设计对基于单片机的单键单灯亮/灭控制系统设计。
主题:单片机独立按键控制LED灯实验原理目录1. 概述2. 单片机独立按键控制LED灯实验原理3. 实验步骤4. 结语1. 概述单片机在现代电子设备中起着至关重要的作用,它可以通过编程实现各种功能。
其中,控制LED灯是单片机实验中常见的任务之一。
本文将介绍单片机独立按键控制LED灯的实验原理及实验步骤,希望对初学者有所帮助。
2. 单片机独立按键控制LED灯实验原理单片机独立按键控制LED灯的实验原理主要涉及到单片机的输入输出端口及按键和LED的连接方式。
在单片机实验中,按键与单片机的输入端口相连,LED与单片机的输出端口相连。
通过按键的按下和松开来改变单片机输出端口电平,从而控制LED的亮灭。
3. 实验步骤为了完成单片机独立按键控制LED灯的实验,需要按照以下步骤进行操作:步骤一:准备材料- 单片机板- 按键- LED灯- 连线- 电源步骤二:搭建电路- 将按键与单片机的输入端口相连- 将LED与单片机的输出端口相连- 连接电源步骤三:编写程序- 使用相应的单片机开发软件编写程序- 程序中需要包括按键状态检测和LED控制的部分步骤四:烧录程序- 将编写好的程序烧录到单片机中步骤五:运行实验- 按下按键,观察LED的亮灭情况- 确保按键可以正确控制LED的亮灭4. 结语通过上述实验步骤,我们可以实现单片机独立按键控制LED灯的功能。
这个实验不仅可以帮助学习者了解单片机的输入输出端口控制,还可以培养动手能力和程序设计能力。
希望本文对单片机实验初学者有所帮助,谢谢阅读!实验步骤在进行单片机独立按键控制LED灯实验时,需要按照一定的步骤进行操作,以确保实验能够顺利进行并取得预期的效果。
下面将详细介绍实验步骤,帮助读者更好地理解和掌握这一实验过程。
1. 准备材料在进行单片机独立按键控制LED灯实验前,首先需要准备相应的材料。
这些材料包括单片机板、按键、LED灯、连线和电源。
在选择单片机板时,需要根据具体的实验需求来确定,常见的有51单片机、Arduino等,不同的单片机板具有不同的特性和使用方法,因此需要根据实验要求来选择适合的单片机板。
1.Led灯控制程序#include "msp430g2553.h"void main( void ){// Stop watchdog timer to prevent time out resetWDTCTL = WDTPW + WDTHOLD; //关闭看门狗//P1DIR = 0x41;//P1OUT = 0x41; //程序点亮led1//P1DIR |=BIT0+BIT6;//P1OUT |=BIT0+BIT6; //程序点亮led2P1DIR |=BIT0;P1OUT |=BIT0;P1DIR |=BIT6;P1OUT &=~BIT6;while(1){P1OUT ^=BIT0;P1OUT ^=BIT6;__delay_cycles(1000000);} //led交替亮,持续1s2.Led按键控制灯亮#include "msp430g2553.h"void main( void ){// Stop watchdog timer to prevent time out resetWDTCTL = WDTPW + WDTHOLD;//关闭看门狗P1DIR &=~BIT3;P1DIR |=BIT0;P1IES |=BIT3;P1IE |=BIT3;_EINT();_BIS_SR(LPM0_bits+GIE);}#pragma vector=PORT1_VECTOR__interrupt void PORT1_ISR(void){int i;char pushkey;pushkey=P1IFG&BIT3;//第三位中断标志位for(i=0;i<1000;i++)//短暂延时软件去抖if((P1IN&pushkey)==pushkey){P1IFG=0;//中断标志清零return;}if(P1IFG&BIT3)//判断按键是否按下{P1OUT^=BIT0;}P1IFG=0;return;}3.矩阵键盘和数码管程序#include <msp430g2553.h>#include"Key&Display.h"//unsigned char Receive(void);void main( void ){// Stop watchdog timer to prevent time out resetWDTCTL = WDTPW + WDTHOLD;Init_4lines_Mode();//初始化4线工作模式Send_Command(CH452_RESET);//CH452芯片内部复位Send_Command(KeyDisplay_ON);//允许显示驱动并启动键盘扫描//开中断,P2.0接CH452的DOUT引脚,当有键按下时,DOUT上产生由高到低的脉冲// P2SEL &= ~(BIT6+BIT7);P2IE|=BIT0;P2IES|=BIT0;P2IFG&=~BIT0;_EINT();while(1){}}//中断处理函数#pragma vector = PORT2_VECTOR//中断处理程序,接收到DOUT脉冲信号时,运行之__interrupt void Port2(void){unsigned char Keyvalue;Send_Command(CH452_GET_KEY);//单片机向CH452发送读取按键代码命令Keyvalue=Key_Read();// Keyvalue=Receive();switch(Keyvalue){case 0x40://按键K0按下{Send_Command( NDis1); //第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis00);//第0位数码管显示0break;}case 0x41://按键K1按下{Send_Command( NDis1); //第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis01);//第0位数码管显示1break;}case 0x42://按键K2按下{Send_Command( NDis1); //第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis02);//第0位数码管显示2break;}case 0x43://按键K3按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis03);//第0位数码管显示3break;}case 0x48://按键K4按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis04);//第0位数码管显示4break;}case 0x49://按键K5按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis05);//第0位数码管显示5break;}case 0x4A://按键K6按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis06);//第0位数码管显示6break;}case 0x4B://按键K7按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis07);//第0位数码管显示7break;}case 0x50://按键K8按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis08);//第0位数码管显示8break;}case 0x51://按键K9按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis09);//第0位数码管显示9break;}case 0x52://按键K10按下{Send_Command(Dis00);//第0个数码管显示字符"0"Send_Command(Dis11);//第1个数码管显示字符"1"break;}case 0x53://按键K11按下{Send_Command(Dis01);//第0个数码管显示字符"1"Send_Command(Dis11);//第1个数码管显示字符"1"break;}case 0x58://按键K12按下{Send_Command(Dis02);//第0个数码管显示字符"2"Send_Command(Dis11);//第1个数码管显示字符"1"break;}case 0x59://按键K13按下{Send_Command(Dis03);//第0个数码管显示字符"3"Send_Command(Dis11);//第1个数码管显示字符"1"break;}case 0x5A://按键K14按下{Send_Command(Dis04);//第0个数码管显示字符"4"Send_Command(Dis11);//第1个数码管显示字符"1"break;}case 0x5B://按键K15按下{Send_Command(Dis05);//第0个数码管显示字符"5"Send_Command(Dis11);//第1个数码管显示字符"1"break;}default:break;}P2IFG&=~BIT0;}4.红灯0.2秒闪一次,绿灯0.8秒闪一次#include <msp430g2553.h>void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop WDT BCSCTL1 &=~XTS; //配置时钟BCSCTL3 |=LFXT1S_2;IFG1 &=OFIFG;P1DIR |=BIT0+BIT6; // P1.0,P1.6 output P1OUT &=~BIT0; // P1.0,P1.6置0 P1OUT &=~BIT6;TACCR0 = 12000-1; //1秒定时,产生中断TACCR1 = 2400; //频率0.2*12000,定时0.2秒TACCR2 = 9600; //定时0.8秒TACTL = TASSEL_1 + MC_1+TAIE; // ACLK, 增计数模式TACCTL1 |=CCIE; // TACCR1中断使能TACCTL2 |=CCIE; // TACCR1中断使能_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt}// Timer_A3 Interrupt Vector (TA0IV) handler#pragma vector=TIMER0_A1_VECTOR__interrupt void Timer_A(void){switch( TA0IV ){case 2: P1OUT ^= BIT0; // 捕获/比较寄存器TACCR1break;case 4: P1OUT ^= BIT6;break; // 捕获/比较寄存器TACCR2case 10: break; // 未使用,计数达到TACCRO时执行中断,即1秒执行一次}}5.PMW波控制led灯亮度#include "msp430g2553.h"void main( void ){// Stop watchdog timer to prevent time out resetWDTCTL = WDTPW + WDTHOLD;P1DIR |=BIT6; //方向寄存器P1SEL |=BIT6; //功能寄存器TACTL=TASSEL_2+MC_1+ID_0; //定时器A控制寄存器选择增计数模式TACCTL1 |=OUTMOD_3; //捕获/比较控制寄存器TACCR0=1000-1;TACCR1=10;_BIS_SR(CPUOFF);}。
pyqt框架实现按键控制led灯的亮灭状态实验总结下文以中括号内的主题为中心,详细探讨了使用PyQt框架实现按键控制LED灯的亮灭状态实验,涵盖了实验目的、实验背景、实验步骤、实验结果与分析以及对实验的总结。
一、实验目的本实验的目的是利用PyQt框架实现按键控制LED灯的亮灭状态,通过控制电路中的LED灯,达到对灯的开关进行控制的目的。
通过这个实验,我们可以了解PyQt框架的基本应用以及灯的电路控制原理。
二、实验背景随着科技的不断发展,图形化界面已经成为了现代软件设计的重要一环。
PyQt是Python语言的GUI编程解决方案之一,它结合了Qt库的功能和Python语言的灵活性,具有操作方便、界面友好等特点,被广泛应用于各个领域。
LED灯是现代电子设备中常见的一种指示灯。
通过控制LED灯的亮灭状态,我们可以在软件界面上显示不同的状态,从而提高用户体验。
三、实验步骤1. 确认实验所需硬件设备:一个LED灯、一个电阻、一个面包板、杜邦线等。
2. 搭建电路:将LED灯通过电阻连接到电源正极,并将其负极连接到面包板上。
3. 准备开发环境:安装Python和PyQt,并导入相关库文件。
4. 创建GUI窗口:使用PyQt框架创建一个窗口,并设置窗口大小、标题等属性。
5. 设计界面元素:在窗口中添加一个按钮,用于控制LED灯的亮灭状态。
6. 编写控制逻辑:通过编写相应的代码,实现点击按钮时灯亮灭的切换。
7. 运行程序:在终端中运行程序,查看窗口显示效果。
8. 调试与优化:根据实际情况进行调试,修复可能出现的bug,并对程序进行优化。
四、实验结果与分析经过以上步骤的实验操作,我们成功地使用PyQt框架实现了按键控制LED灯的亮灭状态。
通过点击按钮,我们可以对LED灯进行开关控制,从而在界面上显示不同的状态。
对于实验结果的分析,我们可以从以下几个方面进行讨论:1. 界面友好度:PyQt框架提供了丰富的控件和布局方式,使得界面的设计更加美观、直观。
day12:按键KEY1和KEY2控制LED灯的亮灭KEY1控制LED1,KEY2控制LED2bsp_led.h:/* 和LED功能模块相关的程序 */#ifndef __BSP_LED_H__#define __BSP_LED_H__#include "stm32f10x.h"/*宏定义*/#define GPIO_CLK_D4 RCC_APB2Periph_GPIOC // 时钟#define GPIO_PORT_D4 GPIOC // C端⼝#define GPIO_PIN_D4 GPIO_Pin_2 // PC2引脚#define GPIO_CLK_D5 RCC_APB2Periph_GPIOC // 时钟#define GPIO_PORT_D5 GPIOC // C端⼝#define GPIO_PIN_D5 GPIO_Pin_3 // PC2引脚/*参数宏定义*//*digitalTOGGLE(p,i)是参数宏定义,p表⽰LED的端⼝号,ODR是数据输出寄存器,查stm32f10x的官⽅中⽂⼿册的第8.2章的ODR寄存器,要点亮LED,根据原理图,要输出低电平0,C语⾔中,^表⽰异或,即a^b表⽰a和b不同时输出为1,相同时输出为0,⽐如0^1=1,1^1=0,0^0=0,这⾥为什么操作ODR,p是什么?查看stm32f10x.h⽂件,搜索GPIO_TypeDef就会明⽩,i是LED的引脚对应的位电平,经过digitalTOGGLE(p,i) {p->ODR ^= i;}之后,第⼀次p为0,i⼀直为1,第⼀次异或结果输出1,第⼆次输出0,第三次输出1,这样间断输出010101,灯不断亮灭*/#define digitalTOGGLE(p,i) {p->ODR ^= i;}#define LED1_TOGGLE digitalTOGGLE(GPIO_PORT_D4,GPIO_PIN_D4)#define LED2_TOGGLE digitalTOGGLE(GPIO_PORT_D5,GPIO_PIN_D5)/*配置GPIO*/void LED_GPIO_Config(void);#endif /*__BSP_LED_H__*/bsp_led.c:/* 和LED功能模块相关的程序头⽂件 */#include "./led/bsp_led.h" /*绝对路径,也可在Options for target中设置头⽂件*//*GPIO初始化*/void LED_GPIO_Config(void){/*外设结构体*/GPIO_InitTypeDef GPIO_InitStruct_D4, GPIO_InitStruct_D5;/*第⼀步:打开外设的时钟,看stm32f10x_rcc.c这个⽂件的RCC_APB2PeriphClockCmd函数介绍*/RCC_APB2PeriphClockCmd(GPIO_CLK_D4, ENABLE);/*第⼆步:配置外设的初始化结构体*/GPIO_InitStruct_D4.GPIO_Pin = GPIO_PIN_D4; // PC2的那盏LED灯(D4)的引脚GPIO_InitStruct_D4.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出模式GPIO_InitStruct_D4.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率GPIO_InitStruct_D5.GPIO_Pin = GPIO_PIN_D5; // PC3的那盏LED灯(D5)的引脚GPIO_InitStruct_D5.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出模式GPIO_InitStruct_D5.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率/*第三步:调⽤外设初始化函数,把配置好的结构体成员写到寄存器⾥⾯*/GPIO_Init(GPIO_PORT_D4, &GPIO_InitStruct_D4);GPIO_Init(GPIO_PORT_D5, &GPIO_InitStruct_D5);}bsp_key.h:#ifndef __BSP_KEY_H__#define __BSP_KEY_H__#include "stm32f10x.h"#define KEY_ON 1#define KEY_OFF 0// 按键相关的宏定义#define GPIO_CLK_KEY1 RCC_APB2Periph_GPIOA // 端⼝A时钟#define GPIO_PORT_KEY1 GPIOA // A端⼝#define GPIO_PIN_KEY1 GPIO_Pin_0 // PA0引脚#define GPIO_CLK_KEY2 RCC_APB2Periph_GPIOC // 端⼝C时钟#define GPIO_PORT_KEY2 GPIOC // C端⼝#define GPIO_PIN_KEY2 GPIO_Pin_13 // PC13引脚// 配置GPIOvoid KEY_GPIO_Config(void);// 按键扫描,看按键是否被按下,如果按下返回KEY_ON,否则返回KEY_OFF(进⾏宏定义)uint8_t KEY_SCAN(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);#endif /* __BSP_KEY_H__ */bsp_key.c:#include "./key/bsp_key.h"/* 按键初始化 */void KEY_GPIO_Config(void){/*外设结构体*/GPIO_InitTypeDef GPIO_InitStruct_KEY1, GPIO_InitStruct_KEY2;/*第⼀步:打开外设的时钟,看stm32f10x_rcc.c这个⽂件的RCC_APB2PeriphClockCmd函数介绍*/RCC_APB2PeriphClockCmd(GPIO_CLK_KEY1|GPIO_CLK_KEY2, ENABLE); // 按下KEY1或KEY2/*第⼆步:配置外设的初始化结构体*/GPIO_InitStruct_KEY1.GPIO_Pin = GPIO_PIN_KEY1; // KEY1的引脚GPIO_InitStruct_KEY1.GPIO_Mode = GPIO_Mode_IN_FLOATING; // 浮空输出模式(引脚电平由外部决定) GPIO_InitStruct_KEY1.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率GPIO_InitStruct_KEY2.GPIO_Pin = GPIO_PIN_KEY2; // KEY1的引脚GPIO_InitStruct_KEY2.GPIO_Mode = GPIO_Mode_IN_FLOATING; // 浮空输出模式(引脚电平由外部决定) GPIO_InitStruct_KEY2.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率/*第三步:调⽤外设初始化函数,把配置好的结构体成员写到寄存器⾥⾯*/GPIO_Init(GPIO_PORT_KEY1, &GPIO_InitStruct_KEY1);GPIO_Init(GPIO_PORT_KEY2, &GPIO_InitStruct_KEY2);}/* 按键扫描(检测按键是否被按下):GPIOx为端⼝,GPIO_Pin为引脚 */uint8_t KEY_SCAN(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin){/*查看stm32f10x_gpio.h⽂件最后⾯的函数,这个函数表⽰读引脚的输⼊电平(按键触发后输⼊的)*/// 这个函数,如果按键按下,则输出1.8V⾼电平,置1,否则为0if(GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) == KEY_ON){// 如果⼀直按着就进⼊死循环while(GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) == KEY_ON);// 放开按键就置1return KEY_ON;}else{// 否则置0return KEY_OFF;}}main.c:#include "stm32f10x.h"#include "./led/bsp_led.h"#include "./key/bsp_key.h"// 延迟函数void delay(unsigned int i){for(; i!=0; i--);}int main(void){/*GPIO初始化,在程序来到main函数的时候,系统时钟已经配置成72MHz*/LED_GPIO_Config(); // LED初始化KEY_GPIO_Config(); // KEY初始化while(1){// 如果按下KEY1,则D4亮灭,KEY1对应的是PA0,A端⼝的第1个引脚if(KEY_SCAN(GPIOA, GPIO_PIN_KEY1) == KEY_ON){LED1_TOGGLE;}// 如果按下KEY2,则D5亮灭,KEY2对应的是PC13,C端⼝的第14个引脚if(KEY_SCAN(GPIOC, GPIO_PIN_KEY2) == KEY_ON){LED2_TOGGLE;}}}实验现象:程序烧录到板⼦中,⼀开始LED1和LED2都是亮的(应该都是灭的才对),按下KEY1控制LED1的亮和灭,按下KEY2控制LED2的亮和灭============================================下⾯是默认情况下LED2和LED2都是熄灭的情况:main.c/*KEY控制LED亮灭实验,LED⼀开始默认都熄灭,等按下KEY1或KEY2后才能亮*/#include "stm32f10x.h"#include "./led/bsp_led.h"#include "./key/bsp_key.h"// 延迟函数void Delay(unsigned int time){for(;time!=0;time--);}int main(void){uint8_t count = 1;KEY_GPIO_Config();while(1){// LED默认情况下是灭的,等按下KEY1或KEY2时,对应的LED才会亮if(KEY_SCAN(GPIO_PORT_KEY1, GPIO_PIN_KEY1) == KEY_ON){if(count == 1){LED_GPIO_Config(); // 按下KEY1时两个LED都亮LED2_TOGGLE; // 让LED2灭(其实是亮-->灭),时间很短,⼈眼分辨不出来count++;}else{LED1_TOGGLE;}}if(KEY_SCAN(GPIO_PORT_KEY2, GPIO_PIN_KEY2) == KEY_ON){if(count == 1){LED_GPIO_Config(); // 按下KEY2时两个LED都亮LED1_TOGGLE; // 让LED1灭(其实是亮-->灭),时间很短,⼈眼分辨不出来count++;}else{LED2_TOGGLE;}}}}。
标记的用法,用一个按键控制1个LED灯的亮灭,按键去抖我们学习怎么用一个按键K1控制1个LED灯的亮和灭两种状态。
按一次K1灯亮,再按一次K1灯灭。
再按一次又亮,再按一次又灭。
我们学习一下用一个bit变量来做一个标记,然后在按键的控制下,这个标记会变化,再根据这个标记的值,LED也输出不同的状态。
因为按键按下时可能会有抖动的情况,每次按下时,可能会发生了人难以觉察到的多次抖动,相当于一下子按下了很多次。
这会导致程序无法识别出您真正的按键意图。
但是抖动一般都是发生在刚按下键和松开键的时候,所以,我们只要避开这一段时间,等键稳定按下或者松开时,再去读它的值,一般就可以正确读取了。
所以,当读到第一次按键的值时,要延时等待一会,再处理。
在松开后,也延时一会,免得检测到松开的抖动以为又有按键。
(注,更复杂的应用,需要在按下延时之后重新验证按键,为了简化和方便理解,这个例程里没有这样做。
)另外,因为程序是循环运行的,当一次按键处理后,又会再循环回来继续检测,如果您的按键这时还没有松开,又会被读到一次新的按键,并做处理。
所以我们还要做一个特殊的处理,识别到一个按键并处理完成之后,还要等待这个按键松开后,再继续循环运行。
看程序:请根据例程里的注释理解程序。
请编译,进入仿真,全速运行,看结果。
全速后,由于light变量初始化时默认为0,所以灯是亮的。
按下K1,松开后,灯灭了;再按一次K1,松开后,灯灭了。
这个例子里,我们只用一个按键就控制了灯的亮灭,这种方法可以节省了硬件资源,也就是节省了硬件成本。
在实际项目设计中,有成本优势,产品就更具竞争力。
所以我们应该多学习类似的可以节省资源的方法。
作业:改为4个按键,分别控制4个LED 的亮和灭。
相当应用到多个房间的单键开关灯共用一个cpu处理。
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
汇编按键控制led灯亮灭编写程序概述1. 引言1.1 概述本文旨在介绍使用汇编语言编写程序,以实现按键控制LED灯亮灭的功能。
通过该实验,我们可以深入了解汇编语言的基本原理和操作方法,并学会将其应用于具体的电路控制中。
1.2 文章结构本文主要分为四个部分,分别是引言、汇编按键控制LED灯亮灭编写程序、程序测试与调试过程及结果分析以及总结和展望。
在引言部分,我们将简要介绍文章的背景和目的,为读者提供整个实验的概览。
接下来的部分将逐步介绍硬件准备工作、程序设计思路、关键代码解读与实现步骤等内容。
随后,我们将介绍测试环境搭建、测试过程记录以及结果分析与优化方案等内容。
最后,在总结和展望部分,我们将对整个实验进行总结,并提出改进方向和未来发展方向。
1.3 目的本文的目的是帮助读者了解如何使用汇编语言编写按键控制LED灯亮灭的程序,通过这一示例项目引导读者熟悉汇编语言的基础知识,并培养其分析和解决问题的能力。
通过实验过程,读者可以了解硬件准备工作、程序设计思路以及测试调试过程,并能够根据实际需求进行结果分析和优化方案的提出。
此外,本文还展望了未来发展方向,希望读者能够在此基础上进一步探索和应用汇编语言的相关知识。
以上是文章“1. 引言”部分的内容,旨在概述本文的背景、结构和目的。
如果需要更加详细的内容,请继续阅读后续章节。
2. 汇编按键控制LED灯亮灭编写程序:2.1 完成硬件准备工作:在开始编写汇编程序之前,首先需要进行硬件准备工作。
我们将使用一个单片机来控制LED灯的亮灭,并通过按键来触发控制操作。
为此,我们需要将LED与单片机的输出引脚连接,并将按键与单片机的输入引脚连接。
确保电路连接正确无误后,我们可以开始进行程序设计。
2.2 程序设计思路:在本部分中,我们将介绍如何使用汇编语言设计一个按键控制LED灯亮灭的程序。
该程序的基本原理是通过检测按键状态来改变LED的亮度状态,即当按键被按下时,LED亮起;当按键未被按下时,LED熄灭。
stm32按键控制灯亮灭实验总结stm32是一款常用的单片机芯片,具有强大的处理能力和丰富的外设资源。
在很多嵌入式系统中,常常需要使用按键来控制某些功能或操作。
本文将介绍如何使用stm32按键控制灯亮灭的实验过程和总结。
实验目的:通过按键控制stm32开发板上的LED灯的亮灭,实现简单的开关控制功能。
实验原理:stm32开发板上通常会有一些按键,按键是一种常见的输入设备,通过按下按键可以改变开关的状态。
LED灯是一种常见的输出设备,可以通过控制其电流来实现亮灭效果。
我们可以通过将按键与LED 灯连接,并通过编程控制按键的状态来控制LED灯的亮灭。
实验步骤:1. 准备工作:首先,我们需要准备一块stm32开发板,一根USB数据线和一只LED灯。
将开发板连接到计算机上,并安装好开发环境(如Keil 或IAR)。
2. 连接电路:将LED灯的正极连接到stm32开发板上的一个IO口,并将负极连接到开发板上的地(GND)。
将按键的一个引脚连接到另一个IO 口上,另一个引脚连接到地(GND)。
3. 编写程序:打开开发环境,创建一个新的工程,并编写相应的程序。
首先需要初始化IO口,将控制LED的IO口设置为输出模式,将控制按键的IO口设置为输入模式。
然后,编写一个循环,不断检测按键的状态。
当按键被按下时,将LED的控制IO口置高,LED灯亮起;当按键松开时,将LED的控制IO口置低,LED灯熄灭。
4. 烧录程序:将开发板通过USB数据线连接到计算机上,选择正确的芯片型号和调试器,将程序烧录到开发板上。
5. 实验验证:将开发板上的按键按下,观察LED灯的亮灭情况。
按下按键时,LED灯应该亮起;松开按键时,LED灯应该熄灭。
通过不断按下和松开按键,可以实现LED灯的开关控制。
实验总结:通过本次实验,我们成功实现了使用stm32按键控制LED灯亮灭的功能。
通过编写程序,我们可以很方便地通过按下按键来控制LED的状态。
Zigbee模块之间的互相通讯:#include "ZComDef.h"#include "OSAL.h"#include "OSAL_Nv.h"#include "OnBoard.h"#include "ZMAC.h"/* Hal */#include "hal_lcd.h"#include "hal_led.h"#include "hal_adc.h"#include "hal_drivers.h"#include "hal_assert.h"#include "hal_flash.h"// 初始化一些配置/********************************************************************* * MACROS//宏指令*//********************************************************************* * CONSTANTS//常量*/// Maximun number of Vdd samples checked before go on#define MAX_VDD_SAMPLES 3#define ZMAIN_VDD_LIMIT HAL_ADC_VDD_LIMIT_4//工作电压限制/********************************************************************* * TYPEDEFS//典型定义*//********************************************************************* * GLOBAL V ARIABLES//全局变量*//********************************************************************* * EXTERNAL V ARIABLES//外部变量*//********************************************************************* * EXTERNAL FUNCTIONS//外部函数*/extern bool HalAdcCheckVdd (uint8 limit);//外部转换器工作电压检查/********************************************************************* * LOCAL V ARIABLES//局部变量*//********************************************************************* * LOCAL FUNCTIONS//局部函数*/static void zmain_dev_info( void );static void zmain_ext_addr( void );static void zmain_vdd_check( void );#ifdef LCD_SUPPORTEDstatic void zmain_lcd_init( void );#endif/********************************************************************* * @fn main* @brief* @return don't care*/int main( void ){// 关闭中断osal_int_disable( INTS_ALL );// 参数为INTS_ALL则关闭所有中断,否则关闭相应中断// Initialization for board related stuff such as LEDs// 处理器运行时钟,LED IO口设置HAL_BOARD_INIT();// 初始化板子硬件部分// Make sure supply voltage is high enough to run// 确保电源电压足够高来运行zmain_vdd_check();// Initialize board I/O// 初始化I / OInitBoard( OB_COLD );// Initialze HAL drivers// 硬件驱动HalDriverInit();// Initialize NV System // nv系统初始化osal_nv_init( NULL );// Initialize the MAC // 初始化计算机系统ZMacInit();// Determine the extended address// 确定扩展地址zmain_ext_addr();// Initialize basic NV items // 初始化虚拟条目zgInit();#ifndef NONWK// Since the AF isn't a task, call it's initialization routine// 初始化程序afInit();#endif// Initialize the operating system// 初始化操作系统osal_init_system();// Allow interrupts// 允许中断osal_int_enable( INTS_ALL );// Final board initialization// 最终的硬件初始化InitBoard( OB_READY );// Display information about this device// 显示关于这个设备的信息zmain_dev_info();/* Display the device info on the LCD *// 在液晶屏上显示设备信息#ifdef LCD_SUPPORTEDzmain_lcd_init();#endif#ifdef WDT_IN_PM1//如果监视器被占用,这个位置可以启用WatchDogEnable( WDTIMX );#endifosal_start_system();// 操作系统初始化// No Return from here此处无返回return 0; // Shouldn't get here.// 禁止到达这里} // main()/********************************************************************* * @fn zmain_vdd_check * @brief Check if the Vdd is OK to run the processor.* @return Return if Vdd is ok; otherwise, flash LED, then reset*********************************************************************/static void zmain_vdd_check( void )// 确认VDD是否达到运行处理器的要求,如果没有达到就会闪烁LED{uint8 vdd_passed_count = 0;bool toggle = 0;// Repeat getting the sample until number of failures or successes hits MAX// 重复检测VDD的状态,直到成功检测的次数达到规定过的要求为止,估计是等电源稳定// then based on the count value, determine if the device is ready or not// 然后根据计算值,确定设备是否准备好while ( vdd_passed_count < MAX_VDD_SAMPLES )//工作电压最大值校验{if ( HalAdcCheckVdd (ZMAIN_VDD_LIMIT) )//转换器电压{vdd_passed_count++; // Keep track # times Vdd passes in a row计算通过的电压MicroWait (10000); // 延时10毫秒else{vdd_passed_count = 0; //重置通过的电压MicroWait (50000); / / 延时50毫秒MicroWait (50000); // 50毫秒后再次尝试//HalAdcCheckVdd ()【hal_adc.c】函数用来检查VDD是否大于或等于最小的要求./* toggle LED1 and LED2 *// 切换LED1、LED2if (vdd_passed_count == 0){if ((toggle = !(toggle)))HAL_TOGGLE_LED1();elseHAL_TOGGLE_LED2();}}/* turn off LED1 关闭LED1HAL_TURN_OFF_LED1();HAL_TURN_OFF_LED2();}/********************************************************************** ***************************** @fn zmain_ext_addr** @brief Execute a prioritized search for a valid extended address and write the results* into the OSAL NV system for use by the system. Temporary address not saved to NV.** input parameters** None.** output parameters** None.** @return None.*************************************************************************** */static void zmain_ext_addr(void)//静态的外部地址扩展{uint8 nullAddr[Z_EXTADDR_LEN] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};uint8 writeNV = TRUE;//将8位数位写入虚拟化层// First check whether a non-erased extended address exists in the OSAL NV.// 检查非扩展地址是否存在于操作虚拟化层if ((SUCCESS != osal_nv_item_init(ZCD_NV_EXTADDR, Z_EXTADDR_LEN, NULL)) ||(SUCCESS != osal_nv_read(ZCD_NV_EXTADDR, 0, Z_EXTADDR_LEN, aExtendedAddress)) ||(osal_memcmp(aExtendedAddress, nullAddr, Z_EXTADDR_LEN))) {// 尝试阅读扩展地址的位置锁位页面// 确定编程工具位置HalFlashRead(HAL_FLASH_IEEE_PAGE, HAL_FLASH_IEEE_OSET, aExtendedAddress, Z_EXTADDR_LEN);if (osal_memcmp(aExtendedAddress, nullAddr, Z_EXTADDR_LEN)){// 尝试阅读扩展地址从指定的位置信息页面if (!osal_memcmp((uint8 *)(P_INFOPAGE+HAL_INFOP_IEEE_OSET), nullAddr, Z_EXTADDR_LEN)){osal_memcpy(aExtendedAddress, (uint8 *)(P_INFOPAGE+HAL_INFOP_IEEE_OSET), Z_EXTADDR_LEN);}else // No valid extended address was found.// 没有发现有效的扩展地址{uint8 idx; // 8位的变址寻址#if !defined ( NV_RESTORE )writeNV = FALSE; // 如果写入错误,使用临时的地址#endif/* Attempt to create a sufficiently random extended address for expediency.// 尝试创建一个完全随机扩展地址* Note: this is only valid/legal in a test environment and* must never be used for a commercial product.// 有效的地址永远不会被占用*/for (idx = 0; idx < (Z_EXTADDR_LEN - 2);){uint16 randy = osal_rand();aExtendedAddress[idx++] = LO_UINT16(randy); // 16位的振荡寻址aExtendedAddress[idx++] = HI_UINT16(randy);}// 接下来建立无线局域网#if defined ZDO_COORDINATORaExtendedAddress[idx++] = 0x10;#elif defined RTR_NWKaExtendedAddress[idx++] = 0x20;#elseaExtendedAddress[idx++] = 0x30;#endif// MSB has historical signficance.aExtendedAddress[idx] = 0xF8;}}if (writeNV){(void)osal_nv_write(ZCD_NV_EXTADDR, 0, Z_EXTADDR_LEN, aExtendedAddress);}}// 定义16进制的地址位,根据上面结果设置扩展后的地址(void)ZMacSetReq(MAC_EXTENDED_ADDRESS, aExtendedAddress);}/********************************************************************** * @fn zmain_dev_info** @brief This displays the IEEE (MSB to LSB) on the LCD.** input parameters** None.** output parameters** None.** @return None.*************************************************************************** */static void zmain_dev_info(void){#ifdef LCD_SUPPORTEDuint8 i;uint8 *xad;uint8 lcd_buf[Z_EXTADDR_LEN*2+1];// Display the extended address.// 显示扩展地址xad = aExtendedAddress + Z_EXTADDR_LEN - 1;for (i = 0; i < Z_EXTADDR_LEN*2; xad--){uint8 ch;ch = (*xad >> 4) & 0x0F;lcd_buf[i++] = ch + (( ch < 10 ) ? '0' : '7');ch = *xad & 0x0F;lcd_buf[i++] = ch + (( ch < 10 ) ? '0' : '7');}lcd_buf[Z_EXTADDR_LEN*2] = '\0';HalLcdWriteString( "IEEE: ", HAL_LCD_LINE_1 );HalLcdWriteString( (char*)lcd_buf, HAL_LCD_LINE_2 );#endif}#ifdef LCD_SUPPORTED/********************************************************************* * @fn zmain_lcd_init* @brief Initialize LCD at start up.* @return none*********************************************************************/ static void zmain_lcd_init ( void ){#ifdef SERIAL_DEBUG_SUPPORTED{HalLcdWriteString( "TexasInstruments", HAL_LCD_LINE_1 );#if defined( MT_MAC_FUNC )#if defined( ZDO_COORDINATOR )HalLcdWriteString( "MAC-MT Coord", HAL_LCD_LINE_2 );#elseHalLcdWriteString( "MAC-MT Device", HAL_LCD_LINE_2 );#endif // 设备对象#elif defined( MT_NWK_FUNC )#if defined( ZDO_COORDINATOR ) //协调HalLcdWriteString( "NWK Coordinator", HAL_LCD_LINE_2 ); //网络层协调#elseHalLcdWriteString( "NWK Device", HAL_LCD_LINE_2 );#endif // ZDO#endif // MT_FUNC}#endif // SERIAL_DEBUG_SUPPORTED// 序列号调试}#endif/********************************************************************* *********************************************************************/仅供个人用于学习、研究;不得用于商业用途。
用按键控制LED灯的亮灭,当按键按下时,LED灯亮,当按键松开时,LED灯灭。
#include"msp430f6638.h"unsigned char flag;void main(void){WDTCTL = WDTPW+WDTHOLD; // Stop WDTP4DIR &=~(BIT2);P4DIR |= BIT4+BIT5+BIT6; // P4.4,P4.5,P4.6 set as outputP4OUT &=~(BIT4+BIT5+BIT6); // set led offP2IE |= BIT6; // enable P2.6 interruptP2IFG &= ~(BIT6); // clean interrupt flag__enable_interrupt(); // enable interruptwhile(1){ if((P4IN & 0x04)==0){ P2IFG |= BIT6;}else{P2IFG &=~BIT6;}}} // PORT2 interrupt service routine#pragma vector=PORT2_VECTOR__interrupt void port_2(void){P4OUT ^=(BIT4+BIT5+BIT6); // set led onP2IFG &=~BIT6; // clean interrupt flag}用按键控制LED灯的亮灭,当按键按下时,LED灯亮,当按键松开时,LED灯灭。
(查询)#include"msp430f6638.h"void main(void){WDTCTL = WDTPW+WDTHOLD; // Stop WDT//setting directionP4DIR &= ~(BIT2); //setting IO for inputP4DIR |= BIT4+BIT5+BIT6; // P4.4,P4.5,P4.6 set as outputwhile (1){if ((P4IN & 0x04) == 0) //If key is pressed{P4OUT |= BIT4+BIT5+BIT6; //led on}else{P4OUT &=~(BIT4+BIT5+BIT6); // led off}}}将ACLK配置为VLOCLK(约为10K),并将ACLK通过P1.0口输出#include<msp430f6638.h>void main(void){WDTCTL = WDTPW + WDTHOLD; //关看门狗UCSCTL4 |= SELA_1; //将ACLK时钟源配置为VLO;P1DIR |= BIT0;P1SEL |= BIT0; //将ACLK通过P1.0输出__bis_SR_register(LPM3_bits);//进入LPM3,SMCLK和MCLK停止,ACLK活动}设ACLK = XT1 = 32768Hz,并通过P1.0输出。
一个按键控制四个灯的亮灭
#define uchar unsigned char //定义一下方便使用#define uint unsigned int#define ulong unsigned long#include //包括一个52 标准内核的头文件
sbit P10 = P1; //头文件中没有定义的IO 就要自己来定义了sbit P11 = P1;sb it
P12 = P1 ;sbit P13 = P1;sb it K1= P3;
bit ldelay=0; //长定时溢出标记,预置是0uchar speed=10; //设置一个变量保存默
认的跑马灯的移动速度uchar speedlever=0; //保存当前的速度档次
char code dx516[3] _at_ 0x003b;//这是为了仿真设置的//用外中断方式读按键
K1,点亮一个LEDvoid main(void)// 主程序{uchar i;//定义好像必须在第一行?
!IT0=1; //外中断跳变产生中断EX0=1;EA=1; //打开总中断while(1) //主程序循
环{ if(!K1) { for(i=0;i while(!K1);for(i=0;i } }}//外中断0int0() interrupt 0{
P10=~P10;P11=~P11;P12=~P12;P13=~P13;//在中断里点亮LED}
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
第1篇一、实验背景按键作为电子设备中常见的输入装置,其功能丰富,应用广泛。
本实验旨在通过设计和实现一系列按键功能,加深对按键工作原理的理解,并提高电子设计实践能力。
二、实验目的1. 掌握按键的基本原理和电路设计方法。
2. 熟悉按键在不同应用场景下的功能实现。
3. 培养电子设计实践能力,提高问题解决能力。
三、实验内容1. 实验器材:51单片机最小核心电路、按键、LED灯、电阻、电容、面包板等。
2. 实验内容:(1)单按键控制LED灯闪烁(2)按键控制LED灯点亮与熄灭(3)按键控制LED灯亮度调节(4)按键实现数字时钟调整(5)按键实现多功能计数器(6)按键实现密码输入与验证四、实验步骤1. 根据实验要求,设计电路图,并选择合适的元器件。
2. 使用面包板搭建实验电路,包括单片机、按键、LED灯、电阻、电容等。
3. 编写程序,实现按键功能。
4. 对程序进行调试,确保按键功能正常。
5. 实验完成后,撰写实验报告。
五、实验结果与分析1. 单按键控制LED灯闪烁实验结果:按下按键,LED灯闪烁;松开按键,LED灯停止闪烁。
分析:本实验通过单片机定时器实现LED灯的闪烁。
当按键按下时,定时器开始计时;当定时器达到设定时间后,LED灯点亮;定时器继续计时,当达到设定时间后,LED灯熄灭。
如此循环,实现LED灯的闪烁。
2. 按键控制LED灯点亮与熄灭实验结果:按下按键,LED灯点亮;再次按下按键,LED灯熄灭。
分析:本实验通过单片机的I/O口控制LED灯的点亮与熄灭。
当按键按下时,单片机将I/O口置为高电平,LED灯点亮;当按键再次按下时,单片机将I/O口置为低电平,LED灯熄灭。
3. 按键控制LED灯亮度调节实验结果:按下按键,LED灯亮度逐渐增加;松开按键,LED灯亮度保持不变。
分析:本实验通过单片机的PWM(脉宽调制)功能实现LED灯亮度的调节。
当按键按下时,单片机调整PWM占空比,使LED灯亮度逐渐增加;松开按键后,PWM占空比保持不变,LED灯亮度保持不变。
//51单片机独立按键控制八路LED灯亮灭程序代码//#include <reg51.h> //调用头文件unsigned int count,count1; //定义两个int类型的变量sbit key=P3^5; //定义按键接入串口sbit key1=P3^4; //定义按键接入串口//以下是一个延时函数,便于后面程序按键的消抖,除了这个用途外,延时函数还有很多用途......//void delay(unsigned int ms){while(ms--);}//以下是一个声明的按键检测函数,在这个函数中通过count及count1两个变量的值来确定按键按下LED的亮灭,我这用了两个按键,不同按键控制LED从不同方向一次点亮,函数中采用了if语句与switch语句相结合,这是关键所在。
//void keysan(){if(key==0){delay(10);if(key==0){count++;switch(count){case 0:P1=0xff;break;case 1:P1=0xfe;break;case 2:P1=0xfd;break;case 3:P1=0xfb;break;case 4:P1=0xf7;break;case 5:P1=0xef;break;case 6:P1=0xdf;break;case 7:P1=0xbf;break;case 8:P1=0x7f;break;case 9:P1=0xff;break;}if(count>=9){count=0;}while(!key);}}delay(10);if(key1==0){delay(10);if(key1==0){count1++;switch(count1){case 0:P1=0xff;break; case 1:P1=0x7f;break; case 2:P1=0xbf;break; case 3:P1=0xdf;break; case 4:P1=0xef;break; case 5:P1=0xf7;break; case 6:P1=0xfb;break; case 7:P1=0xfd;break; case 8:P1=0xfe;break; case 9:P1=0xff;break; }if(count1>=9){count1=0;}while(!key1);}}}void main(){while(1){keysan();}}。
按键控制灯亮灭实验:
一、下载代码
打开IAR751软件:
File------open----workspace
定位到目录,打开里面的工程。
打开工程后,如下图,进行设置下:
然后在workspace处选择:,然后直接debug
停止dbueg。
然后把该模块从仿真器上拔下,把另外一个模块连接到仿真器,按下仿真器的复位按钮,然后在workspace处选择
,然后debug再停止debug。
然后拔下模块。
二、操作模块
模块跳帽图:
1(多点配置中的小模块跳帽图):
Debug后模块首次启动测试顺序:
1,给SimpleControllerEB(也就是选择了SimpleControllerEB选项进行debug的模块)模块上好电池,开启电源开关,此时SimpleControllerEB模块的LED2闪烁。
2,按下SimpleControllerEB的up键,此时SimpleControllerEB模块的LED2熄灭,LED3闪烁数秒后一直保持常亮状态,表明该模块已经建立了zigbee网络。
3,等上一步中的LED3常亮后,按下up键,该步骤使SimpleControllerEB模块允许别的模块对其绑定。
(备注:该步骤必须在步骤4前完成,否则SimpleSwitchEB模块无法正常接入zigbee网络)
4,打开SimpleSwitchEB模块的电源,该模块的LED2闪烁。
按下该模块的up键,LED2灯熄灭,数秒后LED3进入快速闪烁状态,这表明该模块已经搜索到网络,并已加入到网络中。
5,再次按下SimpleSwitchEB的up键,正常情况下,SimpleControllerEB模块的LED1会闪烁一下,表明有设备与它建立了绑定。
6,到这里就可以交替按下SimpleSwitchEB的right键来控制SimpleControllerEB模块的LED1的交替亮灭了。
重启模块的情况说明:
重启SimpleControllerEB模块后,SimpleControllerEB模块直接完成步骤2的动作,此时测试顺序从步骤3开始。
重启SimpleSwitchEB模块后,SimpleSwitchEB模块直接完成步骤4的动作,此时测试顺序从步骤5开始。