高中物理奥林匹克竞赛专题4.动量和角动量习题-word文档
- 格式:doc
- 大小:350.51 KB
- 文档页数:8
冲量:⎰=21ttdtFI为作用于物体上的力和作用时间之积求解方法:Ⅰ、若为恒力,则tFI∆=[C]1.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v.(B) 22)/()2(vv Rmgmπ+(C) v/Rmgπ. (D) 0.Ⅱ、若为变力,则①已知力的表达式,利用定义式⎰=21ttdtFI②已知动量的变化,利用动量定理⎰-==2112ttvmvmdtFI1、(自测提高6)质量为m的小球自高为y处沿水平方向以速率v抛出,与地面碰撞后跳起的最大高度为21y,水平速率为21v,如图3-17.(1)地面对小球的竖直冲量的大小为(1+(2)地面对小球的水平冲量的大小为12m v。
度为h处自由下落到倾角为30°的光滑固定斜面上。
设碰撞是完全弹性的,则小球对斜面的冲量的大小为,方向为垂直斜面向下。
⎰-==2112ttvmvmdtFI1.(自测提高7)一物体质量M=2 kg,在合外力(32)F t i=+(SI)的作用下,从静止开y21y始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v=2(/)i m s 。
【解法】用动量定理计算。
110()0Fdt mv mv =∆=-⎰[D ]2.(自测提高4)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则(A)下面的线先断. (B)上面的线先断. (C)两根线一起断. (D)两根线都不断. 3.(基础训练15)质量为m 的小球与桌面相碰撞,碰撞前、后小球的速率都是v ,入射方向和出射方向与桌面法线的夹角都是α,如图所示。
若小球与桌面作用的时间为∆t ,求小球对桌面的平均冲力。
【解法】由动量定理0()()t N mg dt mv ∆+=∆⎰N 为桌面对小球的作用力,mg为小球所受重力。
物理奥赛辅导:第5讲动量与⾓动量第4讲动量与⾓动量⼀、知识点击 1.动量定理⑴质点动量定理:0t F ma m tυυ-==合,即0t F t m m υυ=- 合I P =?合即合外⼒的冲量等于质点动量的增量.⑵质点系动量定理:将质点动量定理推⼴到有n 个质点组成的质点系,即可得到质点系的动量定理.令I 外和I内分别表⽰质点系各质点所受的外⼒和内⼒的总冲量,则t P 和0P 表⽰质点系中各质点总的末动量和初动量之⽮量和,则: 0t I I P P P +=-=?外内⽽0I =内,因质点系内各质点之间的相互作⽤⼒是成对出现的,且等值反向0t I P P =-外。
即所有外⼒对质点系的总冲量等于质点系总动量的增量2.动量守恒定律⑴内容:系统不受外⼒或所受外⼒的合⼒为零,这个系统的动量就保持不变.⑵表达式:系统内相互作⽤前总动量P 等于相互作⽤后总动量P ' :P P '=。
系统总动量的变化量为零:0P ?=对于两个物体组成的系统可表达为:相互作⽤的两个物体的动量的变化量⼤⼩相等,⽅向相反12P P ?=-?。
或者作⽤前两物体的总动量等于作⽤后的总动量:12121212m m m m υυυυ''+=+⑶适⽤范围:动量守恒定律适⽤于宏观、微观,⾼速、低速.⑷定律⼴义:质点系的内⼒不能改变它质⼼的运动状态—质⼼守恒.质点系在⽆外⼒作⽤或者在外⼒偶作⽤下,其质⼼将保持原来的运动状态。
质点系的质⼼在外⼒作⽤下作某种运动,则内⼒不能改变质⼼的这种运动。
质⼼运动定理:作⽤在质点系上的合外⼒等于质点系总质量与质⼼加速度的乘积,即c F ma = ,其质⼼加速度:i i c m a a M=∑。
定理只给出质⼼运动情况,并不涉及质点间的相对运动及它们绕质⼼的运动。
3.碰撞问题⑴弹性碰撞:碰撞时⽆机械能损失.1102201122m m m m υυυυ+=+ ①2222110220112211112222m m m m υυυυ+=+ ②由①②可得:12102201122m m m m m υυυ-+=+(),21201102122m m m m m υυυ-+=+()(2)⾮弹性碰撞:碰撞时有动能损失。
竞赛题汇编5 动量 能量 角动量 质心系1、 角动量定理2、 角动量守恒定律3、 质心系①质心加速度②质心系中动量③质心系中动能 一、(23届)如图所示,一根质量可以忽略的细杆,长为2l ,两端和中心处分别固连着质量为m 的小球B 、D 和C ,开始时静止在光滑的水平桌面上。
桌面上另有一质量为M 的小球A ,以一给定速度0v 沿垂直于杆DB 的方间与右端小球B 作弹性碰撞。
求刚碰后小球A,B,C,D 的速度,并详细讨论以后可能发生的运动情况。
参考解答:1. 求刚碰撞后小球A 、B 、C 、D 的速度设刚碰撞后,小球A 、B 、C 、D 的速度分别为A v 、B v 、C v 、D v ,并设它们的方向都与0v 的方向相同.由于小球C 位于由B 、C 、D 三球组成的系统的质心处,所以小球C 的速度也就是这系统的质心的速度.因碰撞前后四小球组成的质点组的动量守恒, 故有0A C 3M M m =+v v v(1) 碰撞前后质点组的角动量守恒,有C D 02ml ml =+v v(2)这里角动量的参考点设在与B 球重合的空间固定点,且规定顺时针方向的角动量为正.因为是弹性碰撞,碰撞前后质点组的动能相等,有222220A B C D 11111+22222M M m m =++v v mv v v (3)因为杆是刚性杆,小球B 和D 相对于小球C 的速度大小必相等,方向应相反,所以有B C C D --v v =v v(4)解(1)、(2)、(3)、(4)式,可得两个解 C v =0(5)和C 0456MM m=+v v(6)因为C v 也是刚碰撞后由B 、C 、D 三小球组成的系统的质心的速度,根据质心运动定律,碰撞后这系统的质心不可能静止不动,故(5)式不合理,应舍去.取(6)式时可解得刚碰撞后A 、B 、D 三球的速度 A 05656M mM m -=+v v(7)B 01056M M m =+v v(8)D 0256MM m =-+v v(9)2.讨论碰撞后各小球的运动碰撞后,由于B 、C 、D 三小球组成的系统不受外力作用,其质心的速度不变,故小球C 将以(6)式的速度即C 0456MM m=+v v 沿0v 方向作匀速运动.由(4)、(8)、(9)式可知,碰撞后,B 、D 两小球将绕小球C 作匀角速度转动,角速度的大小为656B M l M m ω-==+C v v v l(10)方向为逆时针方向.由(7)式可知,碰后小球A 的速度的大小和方向与M 、m 的大小有关,下面就M 、m 取值不同而导致运动情形的不同进行讨论:(i )A 0v =,即碰撞后小球A 停住,由(7)式可知发生这种运动的条件是 560M m -=即65M m = (11)(ii )A 0v <,即碰撞后小球A 反方向运动,根据(7)式,发生这种运动的条件是65M m < (12)(iii )A 0v >但A C <v v ,即碰撞后小球A 沿0v 方向作匀速直线运动,但其速度小于小球C 的速度.由(7)式和(6)式,可知发生这种运动的条件是 560M m ->和m M M 654->即665m M m << (13)(iv )A C >v v ,即碰撞后小球A 仍沿0v 方向运动,且其速度大于小球C 的速度,发生这种运动的条件是6M m >(14)(v )A C =v v ,即碰撞后小球A 和小球C 以相同的速度一起沿0v 方向运动,发生这种运动的条件是6M m = (15)在这种情形下,由于小球B 、D 绕小球C 作圆周运动,当细杆转过180 时,小球D 将从小球A 的后面与小球A 相遇,而发生第二次碰撞,碰后小球A 继续沿0v 方向运动.根据质心运动定理,C 球的速度要减小,碰后再也不可能发生第三次碰撞.这两次碰撞的时间间隔是()056πππ6M m l l t Mω+===v v(16)从第一次碰撞到第二次碰撞,小球C 走过的路程C 2π3ld t ==v (17)3.求第二次碰撞后,小球A 、B 、C 、D 的速度刚要发生第二次碰撞时,细杆已转过180 ,这时,小球B 的速度为D v ,小球D 的速度为B v .在第二次碰撞过程中,质点组的动量守恒,角动量守恒和能量守恒.设第二次刚碰撞后小球A 、B 、C 、D 的速度分别为A 'v 、B 'v 、C 'v 和D 'v ,并假定它们的方向都与0v 的方向相同.注意到(1)、(2)、(3)式可得0A C 3M M m ''=+v v v (18) CB 02ml ml ''=+v v (19)222220A B C D 11111+22222M M m m ''''=++v v mv v v(20)由杆的刚性条件有D C C B''''-=-v v v v (21)(19)式的角动量参考点设在刚要发生第二次碰撞时与D 球重合的空间点.把(18)、(19)、(20)、(21)式与(1)、(2)、(3)、(4)式对比,可以看到它们除了小球B 和D 互换之外是完全相同的.因此它们也有两个解C0'=v (22) 和C0456MM m'=+v v(23)对于由B 、C 、D 三小球组成的系统,在受到A 球的作用后,其质心的速度不可能保持不变,而(23)式是第二次碰撞未发生时质心的速度,不合理,应该舍去.取(22)式时,可解得A 0'=v v(24)B 0'=v (25)D 0'=v(26)(22)、(24)、(25)、(26)式表明第二次碰撞后,小球A 以速度0v 作匀速直线运动,即恢复到第一次碰撞前的运动,但已位于杆的前方,细杆和小球B 、C 、D 则处于静止状态,即恢复到第一次碰撞前的运动状态,但都向前移动了一段距离2π3ld =,而且小球D 和B 换了位置.评分标准: 本题25分.二、(29届)如图所示,两根刚性轻杆AB 和BC 在B 段牢固粘接在一起,AB 延长线与BC 的夹角α为锐角,杆BC 长为l ,杆AB 长为αcos l 。
5.3角动量例题例1、在一根长为3l的轻杆上打一个小孔,孔离一端的距离为l,再在杆的两端以及距另一端为l处各固定一个质量为M的小球。
然后通过此孔将杆悬挂于一光滑固定水平细轴O上。
开始时,轻杆静止,一质量为m的铅粒以v0的水平速度射入中间的小球,并留在其中。
求杆摆动的最大高度。
例2、质量m=1.1 kg的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动.圆盘边缘绕有绳子,绳子下端挂一质量m1=1.0 kg的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v0=0.6 m/s匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.例3、两个质量均为m的质点,用一根长为2L的轻杆相连。
两质点以角速度ω绕轴转动,轴线通过杆的中点O与杆的夹角为θ。
试求以O为参考点的质点组的角动量和所受的外力矩。
例4、小滑块A位于光滑的水平桌面上,小滑块B位于桌面上的小槽中,两滑块的质量均为m,并用长为L、不可伸长、无弹性的轻绳相连。
开始时,A、B之间的距离为L/2,A、B间的连线与小槽垂直。
突然给滑块A一个冲击,使其获得平行与槽的速度v0,求滑块B开始运动时的速度例5、有一半径为R的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?例6、一质量为M a,半径为a的圆筒A,被另一质量为M b,半径为b的圆筒B同轴套在其外,均可绕轴自由旋转。
在圆筒A的内表面上散布了薄薄的一层质量为M o的沙子,并在壁上开了许多小孔。
在t=0时,圆筒A以角速度ω0绕轴匀速转动,而圆筒B静止。
打开小孔,沙子向外飞出并附着于B筒的内壁上。
设单位时间内喷出的沙子质量为k,若忽略沙子从A筒飞到B筒的时间,求t 时刻两筒旋转的角速度。
*例7、如图,CD、EF均为长为2L的轻杆,四个端点各有一个质量为m的质点,CE、DF为不可伸长的轻绳,CD的中点B处用一细线悬于天花板A点。
第四讲动量角动量和能量§4.1动虽与冲量动童定理4. 1. 1.动量在牛顿定律建立以前,人们为了量度物体作机械运动的“运动量”,引入了动量的概念。
当时在研究碰撞和打击问题时认识到:物体的质量和速度越大,其“运动量”就越大。
物体的质量和速度的乘积mv遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必然是数值相等、方向相反。
在这些事实基础上,人们就引用mv来星度物体的“运动量”,称之为动量。
4. 1. 2.冲量要使原来静止的物体获得某一速度,可以用较大的力作用较短的时间或用较小的力作用较长的时间,只要力F和力作用的时间也的乘积相同,所产生的改变这个物体的速度效果就一样,在物理学中把F△,叫做冲量。
4. 1. 3.质点动量定理由牛顿定律,容易得出它们的联系:对单个物体:FAi=ma^t=/nAv=mv x-mv Q FZ=Np即冲量等于动量的增量,这就是质点动定理.在应用动量:定理时要注意它是矢量式,速度的变化前后的方向可以在一条直线上,也可以不在一条直线上,当不在一宣线上时,可将矢景投影到某方向上,分量式为:F4=mv tt-mv Qs气&=-mv Qy F=Z=mv c-mv0:对于多个物体组成的物体系,按照力的作用者划分成内力和外力。
对各个质点用动量定理:第1个,外+L内=扪十1,一川+|。
第2个匕外+4内='"2四一华玲0第n个/“外+/”内=""”一〃"”0由牛顿第三定律:,内+匕内+....+A»内=0因此得到:L外+】2外+……+.外=(WiV l/+zn2v2/+......+m n v n,)_(w,v,0+/n2v20+......m…v nQ)即:质点系所有外力的冲量和等于物体系总动量的增量。
§4,2角动虽角动虽守值定律动量对空间某点或某轴线的矩,叫动量矩,也叫角动量。
它的求法跟力矩完全一样,只要把力F换成动量P即可,故B点上的动量P对原点O的动量矩J为J=rxP(尸=OB)以下介绍两个定理:O(1).角动量定理:质点对某点或某轴线的动景矩对时间的微商,等于作用在该质点上的力对比同点或同轴的力矩,即dJ u出(M为力矩)。
第 1 页习题4-1. 如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。
在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I ;(2)质点所受张力T 的冲量I T 。
解:(1)根据冲量定理:⎰⎰∆==tt P P d dt 00P P F 其中动量的变化:0v v m m -在本题中,小球转动一周的过程中,速度没有变化,动量的变化就为0,冲量之和也为0,所以本题中质点所受合外力的冲量I 为零(2)该质点受的外力有重力和拉力,且两者产生的冲量大小相等,方向相反。
重力产生的冲量=mgT=2πmg /ω;所以拉力产生的冲量=2πmg /ω,方向为竖直向上。
4-2.一物体在多个外力作用下作匀速直线运动,速度=4m/s 。
已知其中一力F 方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。
求:(1)力F 在1s 到3s 间所做的功;(2)其他力在1s 到s 间所做的功。
解:(1)由做功的定义可知:(2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F 做的功为125.6J 时,其他的力的功为-125.6J 。
4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为j i r t b t a ωωsin cos +=,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。
解:(1)根据动量的定义:(sin cos )P mv m a t b t ωωωω==-+i j(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量等于它在这段时间内动第 2 页量的变化,因为动量没变,所以冲量为零。
4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。
今有一质量为m =20g 的子弹以0v =600m/s 的水平速度射穿物体。
刚射出物体时子弹的速度大小v =30m/s ,设穿透时间极短。
求:(1)子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量。
解:(1)解:由碰撞过程动量守恒可得: 10Mv mv mv +=代入数据 123002.060002.0v +⨯=⨯ 可得:s m v /7.51=根据圆周运动的规律:T-G=2v M R 2184.6v T M g M N R=+= (2)根据冲量定理可得: s N mv mv I ∙-=⨯-=-=4.1157002.00 4-5. 一静止的原子核经放射性衰变产生出一个电子和一个中微子,巳知电子的动量为m/s kg 102.122⋅⨯-,中微子的动量为236.410kg m/s -⨯⋅,两动量方向彼此垂直。
(1)求核反冲动量的大小和方向;(2)已知衰变后原子核的质量为kg 108.526-⨯,求其反冲动能。
由碰撞时,动量守恒,分析示意图,可写成分量式:所以221.410/P kg m s -=⨯∙ 9.151=-=απθ(2)反冲的动能为:2180.17102k P E J m-==⨯ 4-6. 一颗子弹在枪筒里前进时所受的合力大小为3/1044005t F ⨯-=,子弹从枪口射出时的速率为m/s 300。
设子弹离开枪口处合力刚好为零。
求:(1)子弹走完枪筒全长所用的时间t ;第 3 页(2)子弹在枪筒中所受力的冲量I ;(3)子弹的质量。
解:(1)由3/1044005t F ⨯-=和子弹离开枪口处合力刚好为零,则可以得到:03/1044005=⨯-=t F 算出t=0.003s 。
(2)由冲量定义:(3)由动量定理:0.00300.60.6/3000.002I Fdt P mv N s m kg ==∆==∙==⎰所以: 4-7. 有质量为m 2的弹丸,从地面斜抛出去,它的落地点为c x 。
如果它在飞行到最高点处爆炸成质量相等的两碎片。
其中一碎片铅直自由下落,另一碎片水平抛出,它们同时落地。
问第二块碎片落在何处。
解:在爆炸的前后,质心始终只受重力的作用,因此,质心的轨迹为一抛物线,它的落地点为x c 。
112212c m x m x x m m +=+ 因为12m m m ==,12c x x = 故 2223,c c c mx mx x x x +== 4-8. 两个质量分别为1m 和2m 的木块B A 、,用一劲度系数为k 的轻弹簧连接,放在光滑的水平面上。
A 紧靠墙。
今用力推B 块,使弹簧压缩0x 然后释放。
(已知m m =1,m m 32=)求:(1)释放后B A 、两滑块速度相等时的瞬时速度的大小;(2)弹簧的最大伸长量。
解:分析题意,可知在弹簧由压缩状态回到原长时,是弹簧的弹性势能转换为B 木块的动能,然后B 带动A 一起运动,此时动量守恒,可得到两者相同的第 4 页速度v ,并且此时就是弹簧伸长最大的位置,由机械能守恒可算出其量值。
所以mk x v 3430= (2)22122022212121v m m kx v m )(++= 那么计算可得:021x x = 4-9. 二质量相同的小球,一个静止,一个以速度0与另一个小球作对心碰撞,求碰撞后两球的速度。
(1)假设碰撞是完全非弹性的;(2)假设碰撞是完全弹性的;(3)假设碰撞的恢复系数5.0=e .解:由碰撞过程动量守恒以及附加条件,可得(1)假设碰撞是完全非弹性的,即两者将以共同的速度前行:mv mv 20= 所以:021v v = (2)假设碰撞是完全弹性的,两球交换速度, 01=v 02v v =(3)假设碰撞的恢复系数5.0=e ,也就是 所以:0141v v = , 0243v v = 4-10. 如图,光滑斜面与水平面的夹角为 30=α,轻质弹簧上端固定.今在弹簧的另一端轻轻地挂上质量为kg 0.1=M 的木块,木块沿斜面从静止开始向下滑动.当木块向下滑cm 30=x 时,恰好有一质量kg 01.0=m 的子弹,沿水平方向以速度m/s200=v 射中木块并陷在其中。
设弹簧的劲度系数为N /m 25=k 。
求子弹打入木块后它们的共同速度。
解:由机械能守恒条件可得到碰撞前木快的速度,碰撞过程中子弹和木快沿第 5 页斜面方向动量守恒,可得:22111sin 22Mv kx Mgx α+= 10.83v ⇒= (碰撞前木快的速度) 4-11. 水平路面上有一质量kg 51=m的无动力小车以匀速率0m/s 2=运动。
小车由不可伸长的轻绳与另一质量为kg 252=m 的车厢连接,车厢前端有一质量为kg 203=m 的物体,物体与车厢间摩擦系数为2.0=μ。
开始时车厢静止,绳未拉紧。
求:(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移;(2)从绳绷紧到三者达到共同速度所需要的时间。
(车与路面间摩擦不计,取g =10m/s 2)解:(1)由碰撞过程动量守恒,可得(2)t g m μv m 33=' s g μv t 1.0102.02.0=⨯='= 4-12. 一质量为M 千克的木块,系在一固定于墙壁的弹簧的末端,静止在光滑水平面上,弹簧的劲度系数为k .一质量为m 的子弹射入木块后,弹簧长度被压缩了L .(1)求子弹的速度;(2)若子弹射入木块的深度为s ,求子弹所受的平均阻力。
解:(1)碰撞过程中子弹和木块动量守恒,碰撞结束后的运动由机械能守恒条件可得, 计算得到:)(M m k mL v +=0 (2)子弹射入木快所受的阻力做功使子弹动能减小,木块动能增加,两次作功的位移差为s ,所以:221v M x f '=' 其中s x x ='- 所以:m sMkL f 22=第 6 页4-13. 质量为M 、长为l 的船浮在静止的水面上,船上有一质量为m 的人,开始时人与船也相对静止,然后人以相对于船的速度u 从船尾走到船头,当人走到船头后人就站在船头上,经长时间后,人与船又都静止下来了。
设船在运动过程中受到的阻力与船相对水的速度成正比,即kv f -=.求在整个过程中船的位移x ∆.4-14. 以初速度0将质量为m 的质点以倾角θ从坐标原点处抛出。
设质点在Oxy 平面内运动,不计空气阻力,以坐标原点为参考点,计算任一时刻:(1)作用在质点上的力矩M ;(2)质点的角动量L 解:(1)k t mgv F r Mθcos 0-=⨯=(2)k t mgv dt M v m r L t 200cos 2θ-==⨯=⎰ 4-15. 人造地球卫星近地点离地心r 1=2R ,(R 为地球半径),远地点离地心r 2=4R 。
求:(1)卫星在近地点及远地点处的速率1和2(用地球半径R 以及地球表面附近的重力加速度g 来表示);(2)卫星运行轨道在近地点处的轨迹的曲率半径ρ。
解:利用角动量守恒:2211mv r mv r L == 2142v v =⇒同时利用卫星的机械能守恒,所以:所以: 321Rg v = 62Rg v = (2)ρρ220v m Mm G = 可得到:R 38=ρ 4-16火箭以第二宇宙速度2v 离地球过程中,火箭发动机停止工作,不计空气阻力,求火箭在距地心4R 的A第 7 页处的速度。
解:第二宇宙速度0E =,由机械能守恒:2v =30θ⇒=思考题44-1. 一α粒子初时沿x 轴负向以速度v 运动,后被位于坐标原点的金核所散射,使其沿与x 轴成120的方向运动(速庹大小不变).试用矢量在图上表出α粒子所受到的冲量I 的大小和方向。
见图4-25。
4-2. 试用所学的力学原理解释逆风行舟的现象。
可用动量定理来解释。
设风沿与航向成α角的方向从右前方吹来,以风中一小块沿帆面吹过来的空气为研究对象,m Δ表示这块空气的质量,1v 和2v 分别表示它吹向帆面和离开帆面时的速度,由于帆面比较光滑,风速大小基本不变,但是由于m Δ的速度方向改变了,所以一定是受到帆的作用力,根据牛顿第三定律,m Δ必然对帆有一个反作用力f ',此力的方向偏向船前进的方向,将f '分解为两个分量,垂直船体的分量与水对船的阻力相平衡,与船的航向平行的分量就是推动帆及整个船体前进的作用力。
4-3. 两个有相互作用的质点1m 和2m (212m m =),已知在不受外力时它们的总动量为零,1m 的轨迹如图,试画出2m 质点的运动轨迹。
见图4-26。
4-4. 当质量为m 的人造卫星在轨道上运动时,常常列出下列三个方程: 试分析上述三个方程各在什么条件下成立。
4-5. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)哪些量守恒?对于这个系统,能量守恒,因为没有外力做功;4-6. 体重相同的甲乙两人,分别用双手握住跨过无摩擦滑轮的绳子两端,当他们由同一高度向上爬时,相对于绳子,甲的速度是乙的两倍,则到达顶点情况是:(A)甲先到达;(B)乙先到达;(C)同时到达;(D)谁先到达不能确定。