高考数学双曲线 椭圆仿射变换
- 格式:pdf
- 大小:796.80 KB
- 文档页数:14
椭圆的仿射变换(伸缩变换)本⽂转⾃奇趣数学苑注:本⽂为个⼈的笔记,例题为⾃⼰整理。
⼀、定义仿射变换,⼜称仿射映射,是指在⼏何中,⼀个向量空间进⾏⼀次线性变换并接上⼀个平移,变换为另⼀个向量空间。
以下称变换,为圆锥曲线标准变换。
在经过标准变换后,椭圆变为平⾯内的单位圆。
经过标准变换后,椭圆变为单位圆在椭圆转化为圆后,可以通过研究圆的性质来研究椭圆的性质,此处可以适当结合平⾯⼏何的知识。
⼆、性质1. 同素性:在经过变换之后,点仍然是点,线仍然是线2. 结合性:在经过变换之后,在直线上的点仍然在直线上3. 其它不变关系a. 直线与圆锥曲线的位置关系不变(相切、相交)例1 (⼀般情况下的标准椭圆与标准直线)已知直线,椭圆,讨论直线与椭圆的位置关系。
解标准变换后,,由直线与圆的位置关系易得答案。
推⼴标准变换后,直线变为。
此结论可以作为公式背下,提⾼平时做题的速度。
b. 对应图形的⾯积⽐不变例2 (椭圆的⾯积与单位圆的⾯积⽐)已知椭圆,经过变换,得到图形,求:椭圆的外接矩形的⾯积与经过变换后的图形的外接矩形的⾯积之⽐;椭圆⾯积与经过变换后的图形的⾯积之⽐.解易得 ;,,;,,;推⼴标准变换后,对应图形的⾯积变为原来的。
在平⾯直⾓坐标系中,图形的⾯积可理解作是,其中为常量。
c. 对应直线的斜率⽐不变例3 (变换前后的直线)已知直线,求经过变换,后得到的直线的斜率。
解易得,。
推⼴标准变换后,对应直线的斜率变为原来的。
在平⾯直⾓坐标系中,直线的斜率可理解作是,其中为常量。
d. 两平⾏线段或共线线段的⽐不变(三点共线的⽐不变)例4 (长度经过变换)已知向量,,记,经过变换,后⽐值为,求。
解易得,,推⼴标准变换后,向量变为,点变为。
此处易和直线混淆,可从矩阵变换的⾓度理解.。
159仿射变换与双曲线的标准方程22221x y a b 相比椭圆的标准方程22221x y a b 在形式上极为接近圆的标准方程222x y r .在这一讲,我们着重讲述利用仿射变换将椭圆变换为圆,再利用圆的良好几何性质解决问题的方法.对椭圆的标准方程22221x y a b ,我们需要在y 轴进行伸缩变换x x b y y a得到方程22221x y a a .伸缩变换不会改变直线与圆锥曲线的交点个数、也不会改变共线线段长度的比例关系、平行和直线共点关系等等,但是伸缩变换会改变线段的长度,这需要引起充分的注意.【备注】仿射变换(Affine Transform )是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”(译注: straightness ,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:parallelness ,其实是指保二维图形间的相对位置关系不变,平行线还是平行线,而直线上点的位置顺序不变,另特别注意向量间夹角可能会发生变化.仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation )、缩放(Scale )、翻转(Flip )、旋转(Rotation )和错切(Shear ).【备注】在伸缩变换①下,椭圆方程2222:1x y E a b变为圆222:E x y a ,椭圆上的点 00,P x y 变为00,a P x y b,因此过圆E 上一点P 的圆的切线方程为:l 200a x x y y a b该直线通过伸缩变换①就可以得到过椭圆E 上一点P 的椭圆的切线方程22002:a l x x y y a b即00221x x y ya b典型例题160例1(2010年上海)已知椭圆22x y ⑴ 设直线l【解析】 ⑴ 作仿射变换,椭圆方程变为222x y a ,则121k k∴C D O E ,根据垂径定理,E 是弦C D 的中点于是E 是CD 的中点.⑵ 如下图,求作点1P 、2P 的步骤为:1.以O 为圆心,椭圆的长轴长a 为半径作圆;2.过O 作射线,使Ox 轴正方向到该射线的角为 ,射线与圆交于Q ;3.过圆与y 轴正向的交点作y 轴的垂线,过圆与x 轴负向的交点作x 轴的垂线,两条垂线交于点P ;4.连结P Q ,取其中点N ;认识仿射变换1615.连结ON ,过N 作与ON 垂直的直线,交圆于点1P 、2P ; 6.过点1P 、2P 作x 轴的垂线,交椭圆于点1P、2P 即为所求. 证明:这样作图相当于作了纵轴方向上的伸缩变换22b y y a,容易证明线段P Q 与12P P互相平分,而坐标轴方向上的伸缩变换不改变线段的比例,因此PQ 与12PP 互相平分.这样就有12121222PQ PN PP PP PP PP【备注】题⑴说明弦中点问题中由点差法得到的结论可以看做是椭圆的“垂径定理”;题⑵利用仿射变换完成纯几何...作图,注意椭圆的参数方程在仿射变换图形下获得了确切的几何意义.练习1(2012年湖北理)设A 是单位圆221x y 上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足DM m DA (0m ,且1m ).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求焦点坐标.【解析】 曲线C 的方程为2221yx m. 当01m 时,曲线C 为焦点在x轴上的椭圆,焦点坐标为,0; 当1m 时,曲线C 为焦点在y轴上的椭圆,焦点坐标为 0,.通过仿射变换可以将椭圆内接三角形变为圆内接三角形,它们之间存在固定的比例关系.而求解圆内接三角形的面积运算量要低很多.例2 (2012年人大附开学考试)已知直线【解析】作仿射变换x x y,则直线l 是椭圆22334y x即2213944x y 的切线. 设O 到直线l 的距离为d ,23944d ≤(∵直线l 的斜率存在)12AOB A O B S d△△利用仿射变换处理面积问题。
仿射变换在椭圆中的应用—以2道高考试题为例发布时间:2021-08-18T10:53:56.857Z 来源:《教学与研究》2021年11期作者:马慧燕李三平[导读] 椭圆是高中圆锥曲线中的主要内容之一,在高中数学中占据重要的地位,同时也是高考的重要考点以及学生学习的重难点。
马慧燕李三平陕西师范大学数学与统计学院西安 710062摘要:椭圆是高中圆锥曲线中的主要内容之一,在高中数学中占据重要的地位,同时也是高考的重要考点以及学生学习的重难点。
本文主要通过仿射变换,来解决与椭圆相关直线斜率、面积等问题,发现应用仿射变换比常规的解析几何方法运算更加简便,最重要的是可以大大减少运算量,这为学生在考试或高考中,节省了一定的时间。
关键词:仿射变换高考椭圆应用1.仿射变换的定义[1]如果平面上的一个点变换,把共线的任意三点变成共线的三点,并且保持三点的单比不变,则可以称该点变换为仿射变换。
仿射变换是几何学中一个基本的变换,图形在变换中保持许多不变的性质和不变量。
其中包括:同素性不变,即把直线变成直线、点变成点;平行不变性是把平行直线变成平行直线。
一般地,在仿射平面上,仿射变换的代数表达式为注:下面两个性质可以根据上述代数表达式进行相关证明,但为了后面能更好地将仿射变换应用到椭圆的具体事例中,故直接采用椭圆的代数仿射表达式进行相关的证明,以便于读者更直观的理解和应用。
2.仿射变换的性质[1]仿射变换在椭圆中的应用,主要涉及直线的斜率、图形的面积等,故下面的研究都是基于椭圆和直线,它们的方程分别为:2.1椭圆的仿射变换像是圆证明:由方程(2.1)可作如下的仿射变换x1=x/a,y1=y/b。
椭圆方程变为:x21+y21=1,该方程是坐标为原点,半径为1的单位圆。
因此,通过仿射变换可以将椭圆变换为圆,同理,也可以将圆通过仿射变换转化为椭圆,这也是本节为什么将椭圆和仿射变换结合的目的。
2.2直线在仿射变换后还是直线证明:由上述仿射变换将直线方程变为y1=ak/b x1+1,因为所做的变换是非退化的,所以a,b均不为0,故上述方程还是一个直线方程。
11.双曲线中的仿射变换 利用仿射变换再解T8联考16题一.基本原理1. 压缩变换:xOy 平面上的所有点横坐标不变,纵坐标变为原来的a b ,即x x a y yb ''⎧=⎪⎨=⎪⎩,xOy平面上的双曲线1:2222=-by a x C 变为x O y '''平面上的等轴双曲线22'2'a y x =-.结论1.在压缩变换下,x O y '''平面对应封闭图形面积S '是原来xOy 平面上封闭图形面积S 的a b 倍,即a S S b'=. 2.旋转变化将等轴双曲线旋转︒45即可得到反比例函数,即变成了初中的反比例函数22ka yk x,两条渐近线分别是坐标轴,下面通过一个例子予以说明. 在平面直角坐标系中,已知双曲线2:22=-y x C ,将其绕原点O 逆时针旋转︒45,求所得到的的曲线的方程'C .3.反比例函数的一个重要性质若直线l 与反比例函数相切,同时交坐标轴分别与B A ,,则k S AOB 2=∆. 证明:设切点),(00y x P 因为2)('x kx f -=,所以斜率为20x k -,所以,直线l 的方程为: )(000x x x k x k y --=-,令0=y ,得02x x A =,令0=x ,得02x ky B =,所以, k y x S B A OAB 221=⋅=∆. 二.典例分析 例1(T8联考16题)已知双曲线)0,0(1:2222>>=-b a b y a x C 的左、右焦点分别为1F 和2F ,O 为坐标原点,过2F 作渐近线x a b y =的垂线,垂足为P ,若61π=∠PO F ,则双曲线的离心率为________;又过点P 作双曲线的切线交另一条渐近线于点Q ,且OPQ ∆的面积32=∆OPQ S ,则该双曲线的方程为_________.解析:第一个空较简单,321,23222=+==∴=∴a b a a c e b a . 第二个空:将双曲线压缩再旋转后得到反比例函数,于是2'''32a S S ba Q OP OPQ =⇒=∆∆, 由于b a 23=且32=ab ,可解得:双曲线方程为:14322=-y x . 例2.(2014年福建)已知双曲线2222:1(0,0)x y E a b a b -=>>的两条渐近线分别为1:2l y x =,2:2l y x =-.(1)求双曲线E 的离心率;(2)如图,O 点为坐标原点,动直线l 分别交直线1l ,2l 于A ,B 两点(A ,B 分别在第一、第四象限),且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程,若不存在,说明理由.解:(1)因为双曲线E 的渐近线分别为1:2l y x =,2:2l y x =-,所以2ba=.所以222c a a -=.故5c a =,从而双曲线E 的离心率5ce a ==. (2)由(1)知,双曲线E 的方程为222214x y a a-=.作22212xxx ya y y ,再将双曲线沿逆时针旋转45得:22a x y;""1482A OB AOB S S OA OB ,设A B 与双曲线切于点200,2a P x x ,则2202A Ba k x ,故A B 方程为 220222a a yx x x x ,002,2OBx OA y ,22004824x y aa,通过仿射变换回去可知,双曲线方程为221416x y -=。
椭圆仿射变换公式椭圆的仿射变换公式可以通过矩阵运算来表示。
假设我们有一个原始的椭圆,其方程为:(x/a)^2 + (y/b)^2 = 1其中,a和b分别为椭圆的长半轴和短半轴。
现在,我们进行仿射变换,可以通过以下矩阵运算来实现:1.平移:通过平移操作,我们可以将椭圆在平面上移动到指定位置。
假设平移的向量为 (h, k),则椭圆的新方程为:(x/a)^2 + (y/b)^2 = 1其中,x'和y'为平移后的椭圆上的点,与原始坐标之间的关系为:x' = x + h y' = y + k2.缩放:通过缩放操作,我们可以改变椭圆的大小。
假设缩放的比例因子为 (s_x, s_y),则椭圆的新方程为:((x'/a)^2)/s_x^2 + ((y'/b)^2)/s_y^2 = 1其中,x'和y'为缩放后的椭圆上的点,与平移后的坐标之间的关系为:x' = s_x * x y' = s_y * y3.旋转:通过旋转操作,我们可以改变椭圆的方向。
假设旋转角度为θ,则椭圆的新方程为:((x'/a)^2 + (y'/b)^2)/cos^2(θ) - ((x'/a)^2 - (y'/b)^2)sin^2(θ) = 1其中,x'和y'为旋转后的椭圆上的点,与缩放后的坐标之间的关系为:x' = x * cos(θ) - y * sin(θ) y' = x * sin(θ) + y * cos(θ)通过以上的仿射变换公式,我们可以对椭圆进行平移、缩放和旋转操作,得到新的椭圆。
这些操作可以帮助我们在几何计算和图形处理中对椭圆进行变换和调整。
仿射变换在椭圆中的应用椭圆是数学中一种具有特殊形状的曲线,它在许多领域中都有广泛的应用。
而仿射变换是一种能够保持平行线性质的变换,它在几何学和图像处理中也有着重要的作用。
本文将探讨仿射变换在椭圆中的应用,并介绍其中的原理和实际应用。
我们来了解一下椭圆的基本性质。
椭圆是平面上到两个定点F1和F2距离之和为常数2a的点的轨迹。
其中,F1和F2称为椭圆的焦点,a称为椭圆的半长轴。
椭圆还具有对称性,其对称轴是连接两个焦点的直线。
椭圆的形状由半长轴a和半短轴b决定,其中b是使得椭圆到两个焦点距离之和为常数2a的点的轨迹。
在几何学中,我们常常需要对椭圆进行变换,以便更好地研究其性质。
而仿射变换正是其中一种常用的变换方法。
仿射变换可以保持直线的平行性质,因此可以将椭圆变换为其他形状的曲线,同时保持其重要的几何性质。
那么,如何进行仿射变换呢?在平面几何中,仿射变换可以通过矩阵乘法来表示。
具体地说,对于平面上的一个点(x,y),其仿射变换可以表示为:x' = a*x + b*y + cy' = d*x + e*y + f其中,a、b、c、d、e、f是仿射变换的参数,它们决定了变换的具体效果。
通过调整这些参数,我们可以实现对椭圆的平移、旋转、缩放等变换操作。
接下来,我们将介绍仿射变换在椭圆中的具体应用。
首先是平移变换。
通过平移变换,我们可以将椭圆沿着平面上的任意方向移动一定的距离。
这在图形处理中非常有用,可以实现图像的平移和移动效果。
其次是旋转变换。
通过旋转变换,我们可以将椭圆绕着某个点旋转一定的角度。
这可以用于图像的旋转和扭曲效果,使得图像更具艺术效果。
仿射变换还可以用于椭圆的缩放和拉伸。
通过调整仿射变换的参数,我们可以改变椭圆的大小和形状,从而实现图像的缩放和形变效果。
仿射变换在椭圆中具有广泛的应用。
通过对椭圆进行平移、旋转、缩放等变换操作,我们可以改变椭圆的位置、形状和大小,从而实现各种图像处理效果。
仿射变换下一类椭圆问题的简单解法和椭圆相关的定点、定值、最值问题一直是高考的热点和重点.这类题目通常以压轴题的形式出现,并且由于计算量很大而具有很强的区分度.仿射变换可将椭圆转换为圆,而圆具有椭圆不具备的许多特殊性质,并且和圆有关的问题还可以借助初中平面几何知识解答,从而可以回避繁杂的计算,降低解题难度.因此,和椭圆相关的解析几何问题可以先转化为和圆相关的问题来研究,然后再回到椭圆中解决.本文给出仿射变换中的几个性质,再举若干例子展示其应用,旨在展示解题规律,揭示解题方法.以人教A版教材为例,课本在选修4-4中给出了坐标变换的概念:设P(x,y)是平面直角坐标系中的任意一点在坐标变换门x'=沾从>O,下,y =µy,µ> 0点P(x,y)的对应点为P'(x',y'),称中为平面直角坐标系中的伸缩变换.笔者发现,高中数学解题过程中,仿射变换常用到的性质主要包括以下四点[l]性质1A,B ,C三点在仿射变换下的对应点分别为A',B',c立若A,B,C三点共线,则A'' B',C'也三点共线,且满足对应线段的比值不变,如AB A'B'及=霆·性质2仿射变换前直线与曲线相切(相交、相离),仿射变换后直线与曲线依然相切(相交、相离).性质3直线在仿射变换前的斜率k与仿射变换后的斜率k'满足关系:k'=且k.入性质4变换前图形的面积S与变换后图形的面积s'满足关系:S'=扣s.下面我们来看一些应用(为节省篇幅和突出问题本身,部分例题作了必要的简化)..十一十叶一十。
十•I "I• I "I• 十•I "I•• 十~十..十一一十·•I"I•• 十"I"I" I" I•• 十一十..十~十..十~十“十"I"I•• 十心十“十“十一十“十"I••I" I" I" I" I·+·+·(A)ab =O (B)a+b=O(C)a=b (D)a2+b2=0原解由奇函数的定义得f(—x)= -f(x) ,x ER, 即八—x)=—xi—X +a l+b=—f(x) =—x I x+a l-b.讨论可得a=b=O,即a2+b2 =0. 反之,亦可得证,选D.定义是对数学概念的确切而简要的说明,在解题过程中考虑定义就是回归问题的本质.简洁明快的解题方法,往往蕴涵在对定义的深刻理解之中.评析王老师如何“讨论可得“,笔者不得而知,想必也要费点功夫.对于解选择题,特殊值法的重要性不用多说.由奇函数性质八0)=O, 解得b=O; 而对于f(x) = x I x + a I, 由f(—a)=—f(a), 即0=-2a I a I得a=O.例7已知O为c,.ABC内一点,角A,B,C的..对边分别是a,b,c,若a OA+bOB +cOC=O, 求证心是�ABC的内心.评析在书中,王金战老师详细介绍了他经过多番努力,终于解答出这道题的经过.其实此题并不困难,考查的是向量形式的定比分点公式和角平分线逆定理.要真正看透这道题的本质,需要用到重心坐标的思想,这在笔者的《绕来绕去的向量法》中有详细叙述... .. .. ..证明 a OA +bOB +cOC =0, 即二仁b+c OAb ——>一勹十--— Cb+c OB+ OC=O, 从这个式子容易看出,b +c .. ..b -沪 C在BC上有点仄满足OD=-OB+b+c b+c oc, BD C --DC b一-=—,且OD与OA共线简而言之,延长A O交BD CBC于D,则—-=-DC b .而BD= S纽BAD=DC S凶CAD c• ADsin乙BAD Cb• ADsin乙CAD b=—(此即角平分线的性质),可得乙BAD=乙CAD.同理可证其他.参考文献[1]王金战,许永忠,李锦旭.王金战教你玩转数学:数学是怎样学好的(魅力与方法篇)[M]. 北京:北京大学出版社,2010.讨论十二次之多的方法来解决这个问题.另外,三个三角形两两相似,且没有任何已知的明确的对应关系,考生们情急之下无从下手,备感焦躁.倘若运用先排除再分类的方法,那么问题可迎刃而解.由于对应元素中,对应角是最易入手的,因此我们不妨从角入手,找到解题的突破口.解假设存在这样的点Q,使得l:c,.(1.刀,b.QOA和b.QAB中的任意两个三角形均相似.因为乙QAB=乙AOQ+乙AQO,所以乙QAB>乙AOQ,乙QAB>乙AQO.因此,要使i:c,.QOA与b.QAB相似,只能乙QAO=乙BAQ= 90勹即QA_ix轴.因b>趴故AB>0儿从而乙QOA>乙ABQ,所以只能乙AOQ=乙AQB.此时乙CQB = 90°0由QA_l X轴知QA II Y轴,故乙COQ=乙心A.故要使b.QOA与b.CQC相似,只能乙oco = 90° 或乙CQC= 90°.心当乙OCQ=90° 时,b.CQO竺b.AOQC图4八所以AQ=W=一.b4b 2由AQ2=OA•AB, 得口)=b-1. 解得b= 8士4/3.因为b>趴所以b=8+4祁.故点Q的坐标是(1,2+祁).@当乙心C=90° 时,b.OCO U) b.AOQC图5), 故岱=沿,即心=OC• AQ.yC01 A B X 01 A图4图5又002= OA• O B, 所以CX•AQ =OA•bO B, 即—•AQ =l Xb. 解得AQ=4,此时b= 17 4>么符合题意,故点Q的坐标是(1,4).综上可知,存在点Q(l,2+戎-)或Q(l,4)'使得60C0,6QOA和6QAB中的任意两个三角形均相似从解答过程中可以看到,先对6AOQ与6ABQ进行探讨,通过“外角”进行第一次排除,明确一对对应角.一般情况下,得知一对相等的角后,常常会分两种情况继续讨论.但此处通过“大边对大角”进行第二次排除,最终筛选出唯一的那一种情况.两次“排除”需要大胆的尝试,续密的逻辑思维,以及对图形敏锐的洞察,难度较大,但难而不繁.此题也显露出命题者构思的巧妙与布局的精当.继对6AOQ与6ABQ的探讨之后,再对6AOQ与6COQ进行探讨.这里的讨论方法就是先确定一组角对应相等,再分两种情况继续讨论的方法.但是,这看似轻松的讨论,因需要用到前面讨论中得到的"QA上x轴”这一结论,故而不能孤立存在.最后,通过“先排除再讨论"'把一个复杂的问题变得简单明了.,十..+ .. I.. I.. • ·-+•-+•-+·-+---+·I .. I.. I•-+·-+---+---+---+---+•-+·-+•-+•-+---+---+•-+•-+---+---+·-+·-+---+·-+·-+--令..I•-+---+·-+--I ..I• I..I·I .. I•-+·-+· (上接笫42页)点评圆中有许多优美的性质和结论,通过仿射变换可以十分完美地拓展到椭圆,蝴蝶定理只是其中的一支奇葩,有兴趣的读者不妨多多研究这类问题笔者最后要指出的是,尽管仿射变换性质的运用或许已经超出高中学生所学的知识范畴,但随着新课改的推进,越来越多的高等数学的知识与方法渗透到中学数学之中已成为不争的事实.作为一名中学教师,能从高等数学的角度剖析初等数学试题,站得高、看得远,有利于理解中学数学问题的来龙去脉,看清问题的本质[3].基于这一点,笔者认为本文的研究具有一定的现实意义.参考文献。
教材上的仿射变换背景及应用一.引例.(《人教A 版选择性必修第一册》第115页“综合应用”第9题)如图,DP ⊥x 轴,垂足为D,点M 在DP 的延长线上,且|DM ||DP |=32,当点P 在圆x 2+y 2=4上运动时,求点M 的轨迹方程,并说明轨迹的形状.二.知识与方法在椭圆x 2a2+y 2b 2=1a >b >0 中,我们运用坐标变换x =x y =a b y,则可以得到圆x 2+y 2=a 2,这种操作叫做仿射变换,运用仿射变换,可以将某些椭圆问题转化到圆中来解决,从而使得问题简化,上述变换过程有如下对应关系:项目变换前变换后点的坐标P x 0,y 0 P x 0,aby 0 直线的斜率k k =a b k图形的面积SS =a b S点与点的位置关系AB 中点为MA B 中点为M线与线的位置关系直线m 和直线n 相交直线m 和直线n 相交直线m 和直线n 平行直线m 和直线n 平行点与线的位置关系点A 在直线l 上点A 在直线l 上点A 不在直线l 上点A 不在直线l 上等倾斜程度线段长的关系AB AC=λABAC=λ总之,经过仿射变换,绝对量(如坐标、面积、斜率、线段的长等)都发生了变化,相对量(如点、线、面的位置关系,直线与椭圆的位置关系,共线线段长度之比等)却没有发生变化.提醒:①仿射变换常用于解决面积问题(尤其是一个顶点为原点的三角形面积)、斜率问题、共线线段比例问题等;②需要注意的是,仿射变换的方法一般不推荐在解答题中使用,下面通过一些实例来分析在具体问题中2024年高考数学专项教材上的仿射变换背景及应用(解析版)如何操作.三.更多案例1(2023届合肥一模)已知曲线C:x2+y2=2,从曲线C上的任意点P x,y作压缩变换x =xy =y2得到点Px ,y.(1)求点P x ,y所在的曲线E的方程;(2)设过点F-1,0的直线l交曲线E于A,B两点,试判断以AB为直径的圆与直线x=-2的位置关系,并写出分析过程.2在同一平面直角坐标系xOy中,圆x2+y2=4经过伸缩变换φ:x =xy =12y后,得到曲线C.(1)求曲线C的方程;(2)设直线l与曲线C相交于A,B两点,连接BO并延长与曲线C相交于点D,且AD=2.求△ABD面积的最大值.3(2023届广东省一模)已知点A ,点B 和点C 为椭圆C :x 2a 2+y 2b2=1(a >b >0)上不同的三个点.当点A ,点B 和点C 为椭圆的顶点时,△ABC 恰好是边长为2的等边三角形.(1)求椭圆C 标准方程;(2)若O 为原点,且满足OA +OB +OC=0,求△ABC 的面积.4(23届南京盐城一模)已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的离心率2,直线l 1:y =2x +43与双曲线C 仅有一个公共点.(1)求双曲线C 的方程;(2)设双曲线C 的左顶点为A ,直线l 2平行于l 1,且交双曲线于M ,N 两点,求证:ΔAMN 的垂心在双曲线C 上.下证:若ΔABC 的顶点在反比例函数xy =m 的图像上,则ΔABC 的垂心也在反比例函数的图像上.5设直线l与椭圆相交于A、B两点,则△AOB的面积的最大值为.6已知椭圆C:x24+y2=1的左右顶点为A、B,P为椭圆C上不与A、B重合的动点,则直线PA、PB的斜率之积为.7已知过点M12,12的直线l与椭圆C:x24+y22=1交于A、B两点,若M恰好为AB的中点,则直线l的方程为.8已知椭圆C:x22+y2=1的A、B两点满足直线OA、OB的斜率之积为-12,其中O为原点,点P在射线OA上,且OP=2OA,若PB与椭圆交于另一点Q,则BPBQ=.四:强化训练1已知椭圆C :x 24+y 2=1的右顶点为A ,上顶点为B ,直线y =kx k >0 与椭圆C 交于M 、N 两点,则四边形AMBN 的面积的最大值是.2已知椭圆C :x 23+y 2=1的左、右顶点分别为A 和B ,P 为椭圆C 上不与A 、B 重合的动点,过原点O 作PA 、PB 的平行线与椭圆C 交于M 、N 两点,则△MON 的面积为.3已知椭圆C :x 22+y 2=1上有点P 22,32,过P 作两条倾斜角互补的直线交椭圆C 于另外两点M 、N ,则直线MN 的斜率为.4已知A 、B 、C 是椭圆E :x 22+y 2=1上的三个动点,则△ABC 的面积的最大值为.5设A 、B 两点在椭圆C :x 22+y 2=1上,且AB 的中点为Q 22,12,若椭圆C 外的点P 满足PA 、PB 的中点都在椭圆C 上,则直线OP 的斜率为.6已知直线l :x +2y -2=0与椭圆C :x 22+y 2=1相交于点T ,O 为原点,平行于OT 的直线l 与直线l 相交于点P ,与椭圆C 相交于A 、B 两点,若PT 2=λPA ⋅PB ,则λ=.教材上的仿射变换背景及应用一.引例.(《人教A 版选择性必修第一册》第115页“综合应用”第9题)如图,DP ⊥x 轴,垂足为D ,点M 在DP 的延长线上,且|DM ||DP |=32,当点P 在圆x 2+y 2=4上运动时,求点M 的轨迹方程,并说明轨迹的形状.解析:设点M 的坐标为x ,y ,点P x 0,y 0 ,由题意可知y 0≠0,则由题可得x =x 0y =32y 0 ,即x 0=xy 0=23y ,∵点P 在圆x 2+y 2=4上运动,∴x 2+23y 2=4,(y ≠0),即点M 的轨迹方程为x 24+y 29=1,(y ≠0),点M的轨迹为椭圆,除去与x 轴的交点.这个问题就是用仿射变换把圆变换为椭圆.二.知识与方法在椭圆x 2a 2+y 2b 2=1a >b >0 中,我们运用坐标变换x =x y =a b y ,则可以得到圆x 2+y 2=a 2,这种操作叫做仿射变换,运用仿射变换,可以将某些椭圆问题转化到圆中来解决,从而使得问题简化,上述变换过程有如下对应关系:项目变换前变换后点的坐标P x 0,y 0 P x 0,a by 0 直线的斜率k k =a b k图形的面积SS =a b S点与点的位置关系AB 中点为MA B 中点为M线与线的位置关系直线m 和直线n 相交直线m 和直线n 相交直线m 和直线n 平行直线m 和直线n 平行点与线的位置关系点A 在直线l 上点A 在直线l 上点A 不在直线l 上点A 不在直线l 上等倾斜程度线段长的关系AB AC=λABAC=λ总之,经过仿射变换,绝对量(如坐标、面积、斜率、线段的长等)都发生了变化,相对量(如点、线、面的位置关系,直线与椭圆的位置关系,共线线段长度之比等)却没有发生变化.提醒:①仿射变换常用于解决面积问题(尤其是一个顶点为原点的三角形面积)、斜率问题、共线线段比例问题等;②需要注意的是,仿射变换的方法一般不推荐在解答题中使用,下面通过一些实例来分析在具体问题中如何操作.三.更多案例1(2023届合肥一模)已知曲线C :x 2+y 2=2,从曲线C 上的任意点P x ,y 作压缩变换x =xy=y2得到点Px,y.(1)求点P x ,y 所在的曲线E 的方程;(2)设过点F -1,0 的直线l 交曲线E 于A ,B 两点,试判断以AB 为直径的圆与直线x =-2的位置关系,并写出分析过程.解析:(1)由x =x y =y 2得x =x y =2y ,代入x 2+y 2=2得x 22+y 2=1,∴曲线E 的方程为x 22+y 2=1.(2)由题知,当直线l 的斜率存在时,设l :y =k x +1 ,由x 22+y 2=1y =k x +1 消去y 整理得,1+2k 2x 2+4k 2x +2k 2-2=0.设A x 1,y 1,B x 2,y 2,则x 1+x 2=-4k21+2k 2x 1x 2=2k 2-21+2k 2,∴以AB 为直径的圆的圆心横坐标为-2k 21+2k 2.又∵AB =1+k 2x 1-x 2 =1+k 2x 1+x 2 2-4x 1x 2=1+k 2-4k 21+2k 22-4⋅2k 2-21+2k 2=221+k 2 1+2k 2,∴以AB 为直径的圆的半径为R =21+k 2 1+2k 2,圆心到直线x =-2的距离为d =2-2k 21+2k 2=2k 2+21+2k 2,d -R =2k 2+21+2k 2-21+k 2 1+2k 2=2-2 1+k 21+2k 2>0,即d >R ,∴以AB 为直径的圆与直线x =-2相离.当直线l 的斜率不存在时,易知以AB 为直径的圆的半径为22,圆的方程是x +1 2+y 2=12,该圆与直线x =-2相离.综上可知,以AB 为直径的圆与直线x =-2相离.2在同一平面直角坐标系xOy 中,圆x 2+y 2=4经过伸缩变换φ:x =xy =12y 后,得到曲线C .(1)求曲线C 的方程;(2)设直线l 与曲线C 相交于A ,B 两点,连接BO 并延长与曲线C 相交于点D ,且AD =2.求△ABD 面积的最大值.解析:(1)设圆x 2+y 2=4上任意一点M x ,y 经过伸缩变换ω:x =xy =12y得到对应点M x ,y .将x =x ,y=2y 代入x 2+y 2=4,得x 2+2y 2=4,化简得x 24+y 2=1.∴曲线C 的方程为x 24+y 2=1;(2)△ABD 面积得最大值为2.3(2023届广东省一模)已知点A ,点B 和点C 为椭圆C :x 2a 2+y 2b2=1(a >b >0)上不同的三个点.当点A ,点B 和点C 为椭圆的顶点时,△ABC 恰好是边长为2的等边三角形.(1)求椭圆C 标准方程;(2)若O 为原点,且满足OA +OB +OC=0,求△ABC 的面积.解析1:(仿射变换)考虑变换φ:x =x y =a b y ,则在φ的作用下椭圆x2a 2+y 2b2=1对应圆x 2+y 2=a 2,则在压缩变换下,x O y 平面对应封闭图形面积S 是原来xOy 平面上封闭图形面积S 的a b 倍,即S =abS .设点A ,B ,C 分别对应点A ,B ,C , 由O 为ΔA B C 的重心,又O 为ΔA B C的外心,从而ΔA B C 为正三角形.易得圆x 2+y 2=a 2的内接正三角形的面积为定值S ΔP AB=334a 2⋅S ΔP ABS ΔPAB =ab从而S ΔPAB =b a S ΔP AB=334ab 为定值.一般地,已知ΔABC 是椭圆x 2a 2+y 2b2=1(a >b >0)的内接三角形,若其重心恰为椭圆的中心O ,那么ΔABC 的面积为定值,即S ΔABC =334ab4(23届南京盐城一模)已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的离心率2,直线l 1:y =2x +43与双曲线C 仅有一个公共点.(1)求双曲线C 的方程;(2)设双曲线C 的左顶点为A ,直线l 2平行于l 1,且交双曲线于M ,N 两点,求证:ΔAMN 的垂心在双曲线C 上.下证:若ΔABC 的顶点在反比例函数xy =m 的图像上,则ΔABC 的垂心也在反比例函数的图像上.证明:由于点A 、B 在反比例函数xy =m (m ≠0)的图像上,所以x A y A =m ,x B y B =m .故y A −y B =m x A −m x B =m (x B −x A )x A x B ,则k AB =y A −y B x A −x B =−mx A x B =−y A y B m.由于k AB =−mx A x B ,则过点C 与直线AB 垂直的直线l C 的斜率为x A x B m,所以l C 为.x A x B x -my =x A x B x C-my C同理,过点B 且与直线AC 垂直的直线l B 为x A x C x −my =x A x B x C −my B .联立l B 、l C 的方程解得x H =m y B -y C x A x B -x C =m 2x A x B x C ,y H =x A x B x C m 2=-m 2y A y B y C .故x H y H =m ,即垂心H 也在反比例函数图象上.5设直线l 与椭圆相交于A 、B 两点,则△AOB 的面积的最大值为.解法1:直接法当直线l 的斜率不存在时,设其方程为x =t -a <t <a 且t ≠0联立x =tx 2a2+y 2b2=1解得:y =±ba a 2-t 2,所以S △AOB =12⋅2b a a 2-t 2⋅t =b a a 2-t 2 t 2≤b a ⋅a 2-t 2+t 22=ab 2C :x 2a 2+y 2b2=1a >b >0 ,当且仅当a 2-t 2=t 2,即t =22a 时取等号,所以S △AOB max =ab2当直线l 斜率存在时,设其方程为y =kx +m m ≠0 ,设A x 1,y 1 ,B x 2,y 2 ,联立y =kx +mx 2a2+y 2b2=1消去y 整理得:a 2k 2+b 2 x 2+2kma 2x +a 2m 2-a 2b 2=0,判别式Δ=4k 2m 2a 4-4a 2k 2+b 2 a 2m 2-a 2b 2 =4a 2b 2a 2k 2-m 2+b 2 ①,所以AB =1+k 2⋅x 1-x 2 =1+k 2⋅2ab a 2k 2-m 2+b 2a 2k 2+b 2,原点O 到直线l 的距离d =mk 2+1,从而S △AOB =12AB ⋅d =12⋅1+k 2⋅2ab a 2k 2-m 2+b 2a 2k 2+b 2⋅m k 2+1=ab a 2k 2-m 2+b 2 m 2a 2k 2+b 2≤ab a 2k 2+b2⋅a 2k 2-m 2+b 2+m 22=ab 2当且仅当a 2k 2-m 2+b 2=m 2时取等号,此时a 2k 2+b 2=2m 2,代入①知Δ=4a 2b 2m 2>0,故S △AOB max =ab2,综上所述,△AOB 的面积的最大值为ab2.解法2:仿射变换作变换x =xy =a b y ,则椭圆C 变成圆x 2+y 2=a 2,如图,因为S △AO B=12O A ⋅O B ⋅sin ∠A O B=a 22sin ∠A O B ,所以当∠A O B =90°时,S ∠AO B取得最大值a 22,因为S=a bS ,所以S =b a S ,从而S △AOB 的最大值为a 22⋅b a =ab 2.6已知椭圆C :x 24+y 2=1的左右顶点为A 、B ,P 为椭圆C 上不与A 、B 重合的动点,则直线PA 、PB 的斜率之积为.解法1.第三定义本题当然可以利用椭圆的第三定义,快速得出结果为-14,其推导方法是设点P 的坐标,运用点P 的坐标满足椭圆的方程来化简PA 、PB 的斜率之积,得出斜率之积为定值,解法2.仿射变换其实也可以用仿射变换来证明这一结果,作变换x =x y =2y ,则椭圆C 变换成圆O :x 2+y 2=4,如图,在圆O 中,显然A B 是直径,所以P A ⊥P B ,从而k P A⋅k P B=-1,又k P A=2k PA ,k P B=2k PB ,所以k P A⋅k P B=4k PA ⋅k PB =-1,故k PA ⋅k PB =-14.7已知过点M 12,12 的直线l 与椭圆C :x 24+y 22=1交于A 、B 两点,若M 恰好为AB 的中点,则直线l 的方程为.解法1:点差法如图1,由中点弦结论,k OM ⋅k AB =-12,而k OM =1,所以k AB =-12,从而直线l 的方程为y -12=-12x -12,即2x +4y -3=0解法2:仿射变换作变换x =xy =2y,则椭圆C 变换成圆O :x 2+y 2=4,如图2,在圆O 中,M 仍为A B 中点,所以O M ⊥A B ,且M 12,22,所以直线O M的斜率为2,从而直线A B 的斜率为-22,故直线A B 的方程为y-22=-22x -12 ,即22x +y -324=0,将x =x y=2y 代入可得22x +2y -324=0,即2x +4y -3=0,所以直线AB 的方程为2x +4y -3=08已知椭圆C :x 22+y 2=1的A 、B 两点满足直线OA 、OB 的斜率之积为-12,其中O 为原点,点P 在射线OA 上,且OP =2OA ,若PB 与椭圆交于另一点Q ,则BPBQ=.解析:作变换x =xy =2y,则椭圆C 变成圆O :x 2+y 2=2,如图,则k O A=2k OA ,k O B=2k OB ,由题意,所以k O A⋅k O B=2k OA ⋅k OB =-1,从而O A ⊥O B ,显然O P =22,O B =2,O Q=2,所以P B =O B2+O P 2=10,作O G ⊥P B 于G ,则OG =O P ⋅O BPB=2105,BG =O B2-O G 2=105,因为O B =O Q ,所以G 为B Q 的中点,从而B Q =2B G =2105,故BPB Q=52,所以在变换前的图形中,BP BQ=52.【答案】52【反思】在椭圆x 2a 2+y 2b 2=1a >b >0 中,若涉及到了两直线的斜率之积为-b 2a2,则可以考虑利用仿射变换转化为圆,因为变换后两直线的斜率之积为-1,从而产生了两直线垂直这一良好的几何特征,往往可以使得问题简化.四:强化训练1已知椭圆C :x 24+y 2=1的右顶点为A ,上顶点为B ,直线y =kx k >0 与椭圆C 交于M 、N 两点,则四边形AMBN 的面积的最大值是.【解析】解法1:如图1,A 0,1 ,B 2,0 ,所以A 、B 两点到直线MN 的距离分别为d 1=1k 2+1,d 2=2k k 2+1,将y =kx 代入x 24+y 2=1化简得:1+4k 2x 2=4,解得:x =±21+4k 2,所以MN =1+k 2⋅41+4k2,从而四边形AMBN 的面积S =12MN ⋅d 1+d 2 =12⋅1+k 2⋅41+4k 21k 2+1+2kk 2+1=21+2k 1+4k 2=21+4k +4k 21+4k 2=21+4k 1+4k 2=21+41k+4k ≤21+421k⋅4k =22,当日仅当1k=4k ,即k =12时取等号,所以四边形AMBN 的面积的最大值是2 2.解法2:作变换x =xy =2y,则椭圆C 变成圆O :x 2+y 2=4,如图2,显然M N =4,由图可知A 和B 到直线M N 的距离之和在A B ⊥M N 时取得最大值,且最大值为A B =22,所以四边形A M B N 的面积S 的最大值为12M N ⋅A B =12×4×22=42因为S =2S ,所以四边形AMBN 的面积的最大值是2 2.2已知椭圆C :x 23+y 2=1的左、右顶点分别为A 和B ,P 为椭圆C 上不与A 、B 重合的动点,过原点O 作PA 、PB 的平行线与椭圆C 交于M 、N 两点,则△MON 的面积为.【解析】解法1:如图1,由图形的对称性,不妨假设M 在第一象限,N 在第二象限,由椭圆的第三定义,k PA ⋅k PB =-13,又k OM =k PB ,k ON =k PA ,所以k OM ⋅k ON =-13,设k OM =k k >0 ,则k ON =-13k ,联立y =kx x 23+y 2=1消去y 整理得:1+3k 2 x 2=3,解得:x =±31+3k 2,所以x M =31+3k 2,故y M =3k 1+3k 2,从而M 31+3k 2,3k 1+3k 2,同理可得N -3k 3k 2+1,13k 2+1,所以S △MON =1231+3k 2⋅13k 2+1--3k 3k 2+1⋅3k 1+3k2=32.解法2:作变换x=xy =3y,则椭圆C 变成圆O :x 2+y 2=3,如图2,变换前,由椭圆的第三定义,k PA ⋅k PB =-13,又k OM =k PB ,k ON =k PA ,所以k OM ⋅k ON =-13,变换后,k O M =3k OM ,k O N =3k ON ,所以k O M ⋅k O N=3k OM ⋅k ON =-1,从而O M ⊥O N ,故S △MON=12×3×3=32,又S △MON=3S △MON ,所以S △MON =32.3已知椭圆C :x 22+y 2=1上有点P 22,32,过P 作两条倾斜角互补的直线交椭圆C 于另外两点M 、N ,则直线MN 的斜率为.【解析】作变换x =xy =2y ,则椭圆C 变成圆O :x 2+y 2=2,如图1中,作PQ ⊥x 轴交椭圆C 于Q ,则在图2中,P Q ⊥x 轴,由题意,在图1中,∠MPQ =∠NPQ ,所以在图2中,∠M P Q =∠N P Q ,所以M Q=N Q ,故Q 是M N的中点,从而O Q ⊥M N ,在图1中,由对称性可得Q 22,-32,所以在图2中,Q22,-62 ,从而k OQ=-3,所以k MN=33,又k MN=2k MN ,所以k MN =66.4已知A 、B 、C 是椭圆E :x 22+y 2=1上的三个动点,则△ABC 的面积的最大值为.【解析】作变换x =xy =2y ,则椭圆E 变成圆O :x 2+y 2=2,如图,显然当△A B C 的面积取得最大值时,应有C D ⊥A B ,且C D =O D +O C设O D =d 0≤d <2 ,则C D =d +2,A B =2O A 2-O D 2=22-d2所以S △A BC=12A B ⋅C D =12×22-d 2×d +2 =2-d 2×d +2 ,从而S △A BC 2=2-d 2 d +2 2=2-d 2+d 3=1332-3d 2+d 2+d 2+d≤13⋅32-3d +2+d +2+d +2+d 44=274故S △A BC≤332,当且仅当32-3d =2+d 时取等号,此时,d =22,所以△A B C 的面积的最大值为332,又S △A BC=2S △ABC ,所以△ABC 的面和的最大值为364.【答案】364【反思】圆的内接三角形中,正三角形面积最大,等于334R 2.5设A 、B 两点在椭圆C :x 22+y 2=1上,且AB 的中点为Q 22,12,若椭圆C 外的点P 满足PA 、PB 的中点都在椭圆C 上,则直线OP 的斜率为.【解析】不难发现A 为上顶点,B 为右顶点,作变换x =xy=2y ,则椭圆C 变成圆O :x 2+y 2=2,如图在图2中,Q 22,22,且P A 和P B 的中点都在圆O 上,所以点P 在A B 的中垂线y =x 上,显然原点O 也在直线y =x 上,从而直线O P 的斜率为1,因为k O P=2k OP ,所以k OP =22.【答案】226已知直线l :x +2y -2=0与椭圆C :x 22+y 2=1相交于点T ,O 为原点,平行于OT 的直线l 与直线l 相交于点P ,与椭圆C 相交于A 、B 两点,若PT 2=λPA ⋅PB ,则λ=.【解析】解法1:联立x +2y -2=0x 22+y 2=1解得:x =1,y =22,所以T 1,22 ,直线OT 的斜率为22,因为l与直线l 平行,所以可设l :x =2y +m ,设A x 1,y 1 ,B x 2,y 2 ,O x 0,y 0 ,联立x =2y +mx +2y -2=0 解得:y =22-m4,所以y 0=22-m4,从而PT =1+-2 2⋅22-y 0=3⋅22-22-m 4=64m ,故PT 2=38m 2PA ⋅PB =1+2 2⋅y 1-y 0 ⋅1+2 2⋅y 2-y 0 =3y 1-22-m 4y 2-22-m 4,联立x =2y +mx22+y 2=1消去x 整理得:4y 2+22my +m 2-2=0①,因为y 1、y 2是方程①的两根,所以4y 2+22my +m 2-2=4y -y 1 y -y 2 ②,在②中令y =22-m4可得4⋅22-m 216+22m ⋅22-m 4+m 2-2=422-m 4-y 1 22-m 4-y 2化简得:22-m4-y 122-m 4-y 2=m 28,从而PA ⋅PB =3m 28,所以PT 2=PA ⋅PB ,故λ=1.解法2:作变换联立x +2y -2=0x 22+y 2=1解得:x =1,y =22,所以T 1,22 ,直线OT 的斜率为22,从而变换后,T 1,1 ,直线O T 和直线A B 的斜率为1,直线P T 的斜率为-1,从而PT PT=1+-22 2⋅x P -x T1+-1 2⋅x P -x T=32⋅x P -x Tx P-x T,又由变换过程知x P=x P ,x T=x T ,所以PT P T =32,同理可得,PA P A=1+2221+12=32,PBP B=1+2221+12=32,所以PT 2=34P T 2,PA ⋅PB =34P A ⋅P B,从而PT 2PA ⋅PB =P T 2P A ⋅P B,在图2中,由切割线定理,P T 2=P A ⋅P B,所以P T 2P A ⋅P B=1,故PT 2PA ⋅PB=1,因为PT 2=λPA ⋅PB ,所以λ=PT 2PA ⋅PB=1.【答案】1【反思】本题改编自2016年四川高考的解析几何大题,可以看到,运用放射变换,问题可以轻松解决.。
高考数学复习:利用仿射变换解决椭圆谈及利用仿射变换可以解决一些初等几何的问题,可以使问题变得更加简洁、透彻,对笔者启发很大,笔者通过自己的教学实践感觉到利用仿射变换,可以将椭圆的有关问题转化为圆的问题,从而可以借助圆当中的一些性质解决问题,使问题的解决过程大大简化,在利用仿射变换解决相关问题时,主要利用以下几个性质:性质1 变换后共线三点单比不变(即变换后三点的两个线段的比值和变换前的比值一样);性质2 变换后保持同素性和接合性(即变换前直线与曲线若相切,变换后仍相切); 性质3 变换前后对应图形的面积比不变;现以一些高考试题为例加以说明。
例1设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D ,与椭圆相交于E 、F 两点 ⑴若6=,求k 的值;⑵求四边形AEBF 面积的最大值。
分析:此例按照常规解法较为繁杂,但利用仿射变换将椭圆变换为单位圆,点A 、B 、D 、E 、F 分别变换为点A ’、B ’、D ’、E ’、F ’, 线段E ’F ’恰为圆的直径,根据性质1,D ’分线段E ’F ’的比与D 分线段EF 的比相同,利用圆当中的相交弦定理.....求得D ’点的坐标,再反求出D 点坐标,从而很容易求出k 值;利用性质3,可以求得四边形AEBF 与四边形A ’E ’B ’F ’的面积关系,由于四边形A ’E ’B ’F ’面积的最大值较易求出,这样也就很容易求得四边形AEBF 面积的最大值。
解:依题设得椭圆的方程为1y 4x 22=+ 作仿射变换,令x ’=2x ,y ’=y ,则得仿射坐标系x ’O ’y ’,在此坐标系中,上述椭圆变换为圆x ’2+y ’2=1,点A 、B 、D 、E 、F 分别变换为点A ’、B ’、D ’、E ’、F ’,且E ’F ’为圆的直径,E ’F ’=2,A ’(1,0),B ’(0,1)⑴根据性质1 ∵DF 6ED = ∴''''F D 6D E = ∴E ’D ’=712 D ’F ’=72 ∵E ’D ’·D ’F ’=A ’D ’ ·D ’B ’ A ’D ’+D ’B ’=A ’B ’=2∴A ’D ’=724 D ’B ’=723或A ’D ’=723 D ’B ’=724 ∴''''B D 34D A =或''''D 43A = 由定比分点公式可得:D ’(7374,)或D ’(7473,) ∴D 点坐标为(7378,)或(7476,) ∴k=83或k=32 ⑵设四边形AEBF 的面积为S ,四边形A ’E ’B ’F ’的面积为S ’,E ’F ’与A ’B ’的夹角为θ,则S ’=θ⋅⋅sin ''''B A F E 21=θsin 2≤2(当θ=2π时取“=”号,此时F ’ (2222,))由于椭圆的面积为πab=2π,圆的面积为πr 2=π根据性质3有π=π'S 2S ,故S=2S ’ ∴S ≤22 当且仅当F 坐标为(22222,),即k=21时取“=”号 说明:由上述证明过程可知,当D ’为A ’B ’中点是时四边形A ’E ’B ’F ’的面积取到最大值,根据性质1,当D 为AB 中点时四边形AEBF 的面积取到最大值。
大招7仿射变换 大招总结仿射变换,通俗来讲,就是将一个空间内的图形按照一定法则变换,就会在另一个空间内得到与之对应的新图形.在高考数学解析几何题目中,我们可以利用仿射变换将一部分有关椭圆的问题转化为圆的问题,这样就可以借助圆中的特有的一些性质解决问题,从而使问题的解决过程大大简化.椭圆22221(0)x y a b a b +=>>,经过仿射变换x xa y yb '=⎧⎪⎨'=⎪⎩,则椭圆变为了圆222x y a ''+=,并且变换过程有如下对应关系:(1)点()00,P x y 变为00,a P x y b ⎛⎫' ⎪⎝⎭(2)直线斜率k 变为ak k b '=(3)图形面积S 变为aS S b''=(4)点、线、面位置不变(中点依然是中点,相切依然是相切)(5)弦长关系满足||A B AB ''=因此同一条直线上线段比值不变. 仿射变换一般而言主要应用于选填中快速得出结果,对于大题可以利用仿射变换快速得出结果但是容易丟掉步骤分,因此还是用正常方法写出过程.当出现以下几个场景的时候就可以联想仿射变换去处理:(1)面积问题(尤其是有一个顶点是坐标原点的时候);(2)斜率之积出现22b a-之类;(3)同一条线段的比例问题;(4)其他与之相关联的问题.典型例题例1.(2014-新课标)I 已知点(0,2)A -,椭圆2222:1(0)x y E a b a b+=>>的离心率为2F 是椭圆的右焦点,直线AFO 为坐标原点.+ (I)求E 的方程;(II)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 分析:这里第二问出现OPQ ∆面积最大,因此可以联想仿射变换化椭为圆去做..解(I)设(,0)F c ,由条件知2c =得c =,又2c a =,所以2222,1a b a c ==-=,故E 的方程2214x y +=.(II)方法1:依题意当l x ⊥轴不合题意,故设直线:2l y kx =-,设()()1122,,,P x y Q x y 将2y kx =-代入2214x y +=,得()221416120k x kx +-+=,当()216430k ∆=->,即234k >时,21,22824314k k x k ±-=+ 从而2221224143||114k k PQ k x x k+⋅-=+-=+ 又点O 到直线PQ 的距离221d k =+,所以OPQ ∆的面积221443||214OPQk S d PQ k∆-==+,设243k t -=,则2440,144OPQt t S t t t∆>==++,当且仅当72,2t k ==±等号成立,且满足0∆>, 所以当OPQ ∆的面积最大时,l 的方程为:722y x =-或722y x =--. 方法2:作变换2x xy y'=⎧⎨'=⎩,椭圆E 变为圆:224x y ''+=,,此时P Q ''过点(0,4)A '-,此时,2OPQ OPQ S S ∆'∆+=因此OPQ S ∆最大时,OP Q S ∆''同样最大.1sin 2sin 22OP Q S OP OQ P OQ P OQ ∆''='⋅'∠''=∠''当且仅当2P OQ π∠''=时最大 设直线P Q ''方程为4y k x '=''-,那么O 到直线P Q ''距离2421d k '==+17722PQ k k k ⇒'=±⇒='=± ∴直线l 的方程为722y x =±- 总结思考:当过椭圆外一个定点P 作一条直线与椭圆交于,A B 两点时,AOB ∆面积最大值2ab,当且仅当经过仿射变换之后的A B ''与原点O 所构成的三角形为直角三角形时取到最大值.如果定点P 是圆内点,则有两种情况:(1)如果作仿射变换之后P '到圆心距离大于等于22a ,那么面积最大值仍然是;(2)2ab如果作仿射变换之后P '到圆心距离小于22a ,那么当OP A B '⊥''时面积取到最大值.例2.设1F 、2F 分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求12PF PF ⋅的取值范围;(2)设(2,0),(0,1)A B 是它的两个顶点,直线(0)y kx k =>与AB 相交于点D ,与椭圆相交于E 、F 两点.求四边形AEBF 面积的最大值. 解(1)由题意可知2,1a b ==,∵c ==∴12(F F 设 (,)P x y∴2212(,),)3,PF PF x y x y x y ⋅=-⋅=+-+()2221133844x x x =+--=-由椭圆的性质可知,2228384x x -⇒--*()212138[2,1]4PF PF x ∴⋅=-∈- (2)方法1:设()()1122,,,E x kx F x kx ,联立2214y kx x y =⎧⎪⎨+=⎪⎩消去y 整理可得()22144k x+=12x x ∴==(2,0),(0,1)A B∴直线AB 的方程为:220x y +-=根据点到直线的距离公式可知,点,E F 到直线AB 的距离分别为1212k h ++==2212k h +==∴12h h+=∴||AB ==∴四边形的面积为()1211||22S AB h h =+===4212214k k=++(当且仅当14k k =即12k =时,上式取等号,所以S 的最大值为22. 方法2:作变换2x xy y'=⎧⎨'=⎩之后椭圆变为圆,方程为224x y ''+=+此时(0,2),22,4B A B E F '''=''=当且仅当E F A B ''⊥''时面积取到最大此时1222ABBF AE B F S S '''==四边形四边形例 3.(2017-肇庆三模)已知圆221:(1)16F x y ++=,定点2(1,0),F A 是圆1F 上的一动点,线段24F A的垂直平分线交半径1F A 于P 点.(I)求P 点的轨迹C 的方程;(II)四边形EFGH 的四个顶点都在曲线C 上,且对角线,EG FH过原点O ,若34BG FH k k ⋅=-,求证:四边形EFGH 的面积为定值,并求出此定值.解(1)解:因为P 在线段2F A 的中垂线上,所以2||PF PA =. 所以211112||4PF PF PA PF AF F F +=+==>所以轨迹C 是以12,F F 为焦点的椭圆,且1,2c a ==,所以3b =。
1.(2014•新课标I)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.2.(2011•重庆)如图,椭圆的中心为原点O,离心率e=,一条准线的方程为x=2.(Ⅰ)求该椭圆的标准方程.(Ⅱ)设动点P满足,其中M,N是椭圆上的点.直线OM与ON的斜率之积为﹣.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.3.(2016•北京)已知椭圆C:+=1(a>0,b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|•|BM|为定值.4.(2016•四川)已知椭圆E:+=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=﹣x+3与椭圆E有且只有一个公共点T.(Ⅰ)求椭圆E的方程及点T的坐标;(Ⅱ)设O是坐标原点,直线l′平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|•|PB|,并求λ的值.5.(2015•新课标II)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l 与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.6.(2014•湖南)如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:﹣=1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2=,且|F 2F4|=﹣1.(Ⅰ)求C1、C2的方程;(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.7.(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).8.(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.。
仿射变换与双曲线的标准方程22221x y a b 相比椭圆的标准方程22221x y a b在形式上极为接近圆的标准方程222x y r .在这一讲,我们着重讲述利用仿射变换将椭圆变换为圆,再利用圆的良好几何性质解决问题的方法.对椭圆的标准方程22221x y a b ,我们需要在y 轴进行伸缩变换x x b y y a得到方程22221x y a a .伸缩变换不会改变直线与圆锥曲线的交点个数、也不会改变共线线段长度的比例关系、平行和直线共点关系等等,但是伸缩变换会改变线段的长度,这需要引起充分的注意.【备注】仿射变换(Affine Transform )是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”(译注: straightness ,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:parallelness ,其实是指保二维图形间的相对位置关系不变,平行线还是平行线,而直线上点的位置顺序不变,另特别注意向量间夹角可能会发生变化.仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation )、缩放(Scale )、翻转(Flip )、旋转(Rotation )和错切(Shear ).【备注】在伸缩变换①下,椭圆方程2222:1x y E a b变为圆222:E x y a ,椭圆上的点 00,P x y 变为00,a P x y b,因此过圆E 上一点P 的圆的切线方程为:l 200a x x y y a b 该直线通过伸缩变换①就可以得到过椭圆E 上一点P 的椭圆的切线方程22002:a l x x y y a b即00221x x y ya b典型例题例1(2010年上海)已知椭圆22x y ⑴设直线l 【解析】 ⑴ 作仿射变换,椭圆方程变为222x y a ,则121k k∴C D O E ,根据垂径定理,E 是弦C D 的中点于是E 是CD 的中点.⑵如下图,求作点1P 、2P 的步骤为:1.以O 为圆心,椭圆的长轴长a 为半径作圆;2.过O 作射线,使Ox 轴正方向到该射线的角为 ,射线与圆交于Q ;3.过圆与y 轴正向的交点作y 轴的垂线,过圆与x 轴负向的交点作x 轴的垂线,两条垂线交于点P ;4.连结P Q ,取其中点N ;认识仿射变换5.连结ON ,过N 作与ON 垂直的直线,交圆于点1P 、2P ; 6.过点1P 、2P 作x 轴的垂线,交椭圆于点1P、2P 即为所求. 证明:这样作图相当于作了纵轴方向上的伸缩变换22b y y a,容易证明线段P Q 与12P P互相平分,而坐标轴方向上的伸缩变换不改变线段的比例,因此PQ 与12PP 互相平分.这样就有12121222PQ PN PP PP PP PP【备注】题⑴说明弦中点问题中由点差法得到的结论可以看做是椭圆的“垂径定理”;题⑵利用仿射变换完成纯几何...作图,注意椭圆的参数方程在仿射变换图形下获得了确切的几何意义.练习1(2012年湖北理)设A 是单位圆221x y 上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足DM m DA (0m ,且1m ).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求焦点坐标.【解析】 曲线C 的方程为2221y x m.当01m 时,曲线C 为焦点在x轴上的椭圆,焦点坐标为,0;当1m 时,曲线C 为焦点在y轴上的椭圆,焦点坐标为 0,.通过仿射变换可以将椭圆内接三角形变为圆内接三角形,它们之间存在固定的比例关系.而求解圆内接三角形的面积运算量要低很多.例2(2012年人大附开学考试)已知直线【解析】作仿射变换x x y,则直线l 是椭圆22334y x即2213944x y 的切线. 设O 到直线l 的距离为d ,23944d ≤(∵直线l 的斜率存在)12AOB A O B S d△△利用仿射变换处理面积问题等号当且仅当23 2d 时取得.因此AOB△.练习2(2010年朝阳一模文)已知椭圆22162x y中有一内接三角形ABC,其顶点C的坐标 1,AB.当ABC△的面积最大时,求直线AB的方程.B'A'O【解析】将椭圆通过仿射变换x xy y变成圆226x y,则A B C ABCS△△,1A Bk,C 坐标为,.∵直线OC ∥直线A B ,∴A B C OA BS S△△设直线A B 的方程为0x y m,则O到直线A B ,A B12OA BS△3≤∴当232m,即mOA BS△取得最大值3,此时直线A B 的方程为0xy.因此OABS△AB的方程为0x .练习3(2011年顺义二模)已知椭圆2214xy的左、右顶点分别记为A、B.过A斜率为1的直线交椭圆于另一点S,在椭圆C上的T满足:TSA△的面积为15.试确定点T的个数.【解析】将椭圆通过仿射变换12x xy y变成圆224x y,则225S AT SATS S△△.AS :22y x,即240x y∴圆心到直线ASAS∴T 到直线AS的距离为25142,∴在优弧上存在两个T 点2 T 点.综上,点T 的个数也即点T 的个数是2.练习4 (2010年宣武一模文)直线:220l x y 与椭圆2214y x 的交点为A 、B .求使PAB 的面积为12的点P 的个数;【解析】 2.练习5(2011年西城二模)设直线l 与椭圆2219x y 交于A 、B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求ABC △面积的最大值.【解析】 如图,将坐标系原点平移至C ,则椭圆方程变为22319x y 即22690x x y .设直线AB 的方程为x my a ,则联立直线方程与椭圆方程有22690x my x x y a ,即266910y m yx a x a而12121y y x x ,∴6910a ,35a ,因此35CD . 将椭圆通过变换3x x y y变为圆229x y ,则13ABC A B C S S △△O (O')B'A'D (D')C (C')∵35C D ,3O C ,∴3153435A B C O A B S C D S O D△△设O 到A B 的距离为d,1122O A B S A B d d △∴当且仅当29d 时,O A B S △取得最大值92于是13128ABC O A B S S △△≤,即ABC △面积的最大值为38.例3(2011年辽宁)如图,已知椭圆的短轴为MN ,且1C 、C 这四点按纵坐标从大到小依次为【解析】 ⑴ 设2MN a ,则椭圆1C :2222211e x y a a ;椭圆2C :2222211e x y a a ;231e 4BC AD.⑵对椭圆1C 作仿射变换x x y ,则1C :222x y a ;对椭圆2C 作仿射变换x x ,1y y ,则2C :222x y a .BO AN EO EN BO AN k k∥211e EO EN k k设点 cos ,sin E a a (0π ),则sin cos EO k,sin cos 1EN k利用仿射变换处理弦长问题∴设cos 1cos EO EN k y k,则cos 1cos y , 1cos 1,11y 因此 ,02,y BO AN ∥2121e,∴当0<e时,不存在;当e 时,存在.利用仿射变换可以将一些题目中“平凡”的条件转化为对解题很有利的“特殊”条件,比如:① 利用仿射变换可以改变斜率,从而可以使得某些与椭圆相关的平行四边形转化为矩形,从而简化问题;② 利用仿射变化可以将椭圆变为圆,从而可以使某些与椭圆相关的平行四边形转化为菱形,从而简化问题. 例422x y【解析】 作仿射变换,椭圆方程变为224x y ,且OM ON .(理科)四边形OM P N 为正方形,于是OP M N∴P 点的轨迹方程为圆228x y , 因此P 点的轨迹方程为228x,即22184x y .∴存在符合题意的点1F 、2F ,坐标为 2,0 .(即椭圆的两个焦点) (文科)四边形OM P N 为矩形,OP M N ∴P 点的轨迹方程为圆2220x y ,因此P 点的轨迹方程为2220x,即2212010x y .∴存在符合题意的点F ,坐标为,0.(即椭圆的右焦点). 练习1(2011年海淀一模)设直线:l y kx m (12k ≤)与椭圆22143x y 相交于A 、B 两点,以线利用仿射变换凸显隐藏几何条件段OA ,OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点.求OP 的取值范围.【解析】 用仿射变换椭圆转化为圆,于是平行四边形OAPB 变为菱形OA P B ,由12AB k ≤得A B k ≤.根据菱形的对角线互相垂直,于是OP k ≥,因此1P x ≤.也就是说,1P P x x ≤ 于是22222231344P P P P Px x OP x y x133,4因此OP的取值范围是,.练习2(2012年海淀一模理)已知直线1l :1y kx m 与椭圆G :2212x y 交于A 、B 两点,直线2l :2y kx m (12m m )与椭圆G 交于C 、D 两点,且AB CD ,如图所示.⑴ 证明:120m m ;⑵ 求四边形ABCD 的面积S 的最大值.【解析】 考虑用仿射变换.⑴ ABCD 为椭圆内接平行四边形,作仿射变换后变为圆内接平行四边形,为矩形.因此对角线为直径,也就是说椭圆内接平行四边形的对角线互相平分于原点,于是120m m ;⑵ 圆内接矩形当且仅当矩形为正方形时面积最大,最大值为4,于是椭圆内接平行四边形面积.【备注】也可以看作相关直线问题⑴ 设直线y kx m 与椭圆交于两点A 、B ,则联立直线与方程,有22212102k x kmx m∴22AB k22k∴AB CD 等价于2212m m ,又12m m ,∴12m m ,即120m m⑵ 由①,AB 与CD 关于原点对称,四边形ABCD 为对称中心在原点的平行四边形.不妨设10m ,则4ABCD OABS S△21422k22211221412m k m k≤(当且仅当22112m k时取得等号). ∴四边形ABCD 的面积S 的最大值是例5Q【解析】 如图,将椭圆22182x y通过仿射变换2x x y y变成圆228x y ,则 2,2M 过M 作x 轴的垂线,垂足为H ,交圆228x y 于点N ,则易知 2,2N . ∵ 2,2N ,∴OM ON ,又OM A B ∥,∴ON A B 根据垂径定理,N 平分弧A B ,于是M N是A M B 的平分线.于是22MP M P M Q MQ k k k k ,又MH PQ ,∴MPQ △是等腰三角形,证毕.【备注】(2012年密云一模理)如图所示,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的3倍,且经过点 3,1M .平行于OM 的直线l 在y 轴上的截距为m (0m ),且交椭圆于A 、B 两不同点.⑴ 求椭圆的方程; ⑵ 求m 的取值范围;⑶ 求证:直线MA 、MB 与x 轴始终围成一个等腰三角形.【解析】 ⑴ 221182x y ;⑵ 设直线l :13y x m (0m ),则 2,00,2m ;⑶ 视为连线垂直问题的推广或用仿射变换均可解决.练习6(2011年四中高二期中考试)已知点 2,1M 是椭圆22182x y 上一点,直线102y x m m 与椭圆相交于A 、B 两点.求MAB 的内心的横坐标.【解析】 考虑到图形的特点与求解的问题,考虑使用仿射变换将椭圆转化为圆加以解决.在圆中,容易证明M Q 是B MA 的平分线;于是MQ 是BMA 的平分线.因此MAB 的内心的横坐标为M 的横坐标,也就是2.例6(201122x y【解析】 ⑴ 如图,作仿射变换x x y yC 变为圆C :223x y .∴32OP Q OPQ S S△△ 设O 到直线P Q 的距离为d ,则1322d ,解得d 于是P Q ,OP OQ ,因此2212x y ,2221x y 而222211223x y x y ,∴22221212x x x x 3,2222121223y y y y 2 .综合⑵设PQ 的斜率为k ,则OM 的斜率为23k,OM PQ OM P Q333 设2249k m k ,则43m ≥.3OM PQ 52≤.⑶∵ODE ODG OEG S S S△△△32OD E OD G OE G S S S △△△∴在圆C 中,D E 、D G 、E G 所对的圆心角均为90 因此,不存在满足题意的三角形.练习7(2013北京昌平二模理)如图,已知椭圆22221x y a b (0a b )的长轴为AB ,过点B 的直线l 与x 轴垂直,椭圆的离心率e,F 为椭圆的左焦点,且1AF BF . ⑴求此椭圆的方程;⑵设P 是此椭圆上异于A B ,的任意一点,PH x 轴,H 为垂足,延长HP 到点Q 使得HP PQ . 连接AQ 并延长交直线l 于点,M N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.【备注】设AQ 与椭圆交于点R ,则NR 与椭圆相切,此题与⑵均可以利用仿射变换解决.例7已知椭圆22143x y上的两点A 、点.设直线PB 与椭圆相交于D ,证明:直线利用仿射变换将问题转化为几何问题【解析】 将椭圆通过伸缩变换为圆,则需证明:若点A 、B 为关于圆的直径HG 对称的两点,HG 所在直线上的一点P 与B 点的连线交圆于D ,则AD 与PH 交于定点E .证明如下:如图,连结AG 、GD ,设PA 与圆交于C .HG PDBECA∵G 为弧CD 和弧AB 的中点,∴AG 、DH 分别是A 和BDG 的平分线 而DG DH ,∴DG 是EDP 的平分线.于是AE DE EGAP DP GP,因此2AE DE EG AP DP GP , 而AE DE EG EH (相交弦定理),AP DP AP CP PG PH (切割线定理) 于是EG EH EG EG PG PH PG PG ,即EG PGEH PH .∵PG PH 为定值(在本例中为13),∴EG EH 为定值,E 为定点(在本例中 1,0E ).练习8 设直线l :y kx m 与椭圆2212x y 相交于M 、N 两点,F 是椭圆的右焦点,直线FM 与直线FN 的斜率互为相反数.求证:直线l 过定点,并求该定点的坐标.【解析】 直线l 过定点 2,0.本质与例题相同.练习9(2010年江苏)如图,在平面直角坐标系xOy 中,已知椭圆22195x y 的左、右顶点为A 、B ,右焦点为F .设过点 9,T m 的直线,TA TB 与此椭圆分别交于点 11,M x y 、 22,N x y ,其中0m ,10y ,20y .设9t ,求证:直线MN 必过x 轴的一定点(其坐标与m 无关).【解析】 如下左图所示,利用坐标变换x xa y y b可以把椭圆22221x y a b 变换圆222x y a ,由于伸缩变换不改变共线以及线段长度的比,于是问题就转化为如下右图所示的:已知以AB 为直径圆O ,T 为与AB 垂直的圆外直线上任意一点,连结AT 、BT 与圆O 分别交于M 、N .求证MN 恒过定点D .x法1连结AN 、MB 并延长交于点T ,容易知道T 与T 在同一条垂直于AB 的直线上(B 为ATT △的垂心)CT'T对ABT △的割线MN ,根据梅涅劳斯定理有1AD BM T NDB MT NA ;而AM 、NB 、T T 交于一点,根据赛瓦定理有1BM T N ACMT NA CB;于是1AD CB DB AC,即AD ACDB BC 为定值,因此D 为定点. 法2CT NM A BOD 设4AC a ,TAC ,NAC ,则4cos aAT,2cos AM a ,2cos a BT ,2cos BN a ,AN AD ADN MDB AD AD DM AN AM MB MD AM DM DB MD DB MB BNADM NDB BN DB△∽△△∽△而AN AT ANT BMT BM BT △∽△,于是22824AD AT AM a DB BT BN a.法3PCD O BA M NT 设2MOC ,2NOC ,则OC 到OP 的角为 ,以O 为极点,OC 为极径,那么直线MN 的方程为 cos ,d O MN ,即 cos cos AB 于是ODcos cos AB cos cos sin sin cos cos sin sin AB1tan tan 1tan tan AB而12TAC MAB MOB ,12NAB NOB ,∴tan TC AC ,tan tan BCBTC TC因此11BC AC OD AB BC AC,于是点D 为定点.。
3 3专题叁中冲剑——双曲线的仿射与旋转x2 y2【例1】(2014•湖南)如图,O为坐标原点,椭圆C1:a2+b2= 1(a >b > 0)的左、右焦点分别为F1,F2,x2 y2离心率为e1;双曲线C2 :a2-b2= 1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2=2,且| F2F4|=-1.(1)求C1、C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.第二讲双曲线仿射后旋转45°形成反比例函数x2 y2【例2】(2014•福建)已知双曲线E:a2-b2=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2: y =-2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点( A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.x2 2【例3】(2010•上海)如图所示,直线x = 2与双曲线Γ : -y4= 1的渐近线交于E1,E2两点,记OE1=e1,OE2=e2,任取双曲线上的点P,若OP =ae1+be2,则a、b满足的一个等式是.APPB AP = PB图 5-3-9 图 5-3-10【例 4】(2010•重庆)已知以原点O 为中心, F ( 5,0)为右焦点的双曲线C 的离心率e =5.2(1)求双曲线C 的标准方程及其渐近线方程;(2)如图,已知过点M (x 1,y 1 )的直线l 1 : x 1 x + 4 y 1 y = 4与过点 N (x 2,y 2 )(其中 x 1 ≠ x 2)的直线 l 2 : x 2 x + 4 y 2 y = 4的交点 E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、 H 两点,求 △OGH 的面积.【例 5】(2017•武汉调考)在平面直角坐标系中,设 A 、B 、C 是曲线 y = 1x - 1上三个不同的点,且D 、E 、F 分别为 BC 、CA 、AB 的中点,则过 D 、E 、F 三点的圆一定经过定点.x 2y 2【例 6】(2018•成都模拟)已知双曲线 a 2 - b2 = 1(a >0,b > 0)右支上的一点 P ,经过点 P 的直线与双曲线C 的两条渐近线分别相交于 A , B 两点, 若点 A , B 分别位于第一, 四象限,O 为坐标原点, 当 = 1时,△ AOB 的面积为2b ,则双曲线C 的实轴长为( )2A .32 9B .16 9C . 89 D . 49【例 7】(2019•清江浦期末)已知双曲线 的方程为 x 2 - y 2= 1(a > 0, b > 0),离心率e =线的距离为2 5. 5(1)求双曲线C 的方程;Ca 2b 2,顶点到渐近 2(2)设 P 是双曲线C 上 F 点, A , B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,若 ,∈[1,2],求△ AOB 面积的取值范围. 3第三讲 对勾函数仿射为双曲线5【例8】(2020•调研卷)已知向量a, b满足| a |=| b |= 1,且a ,b的夹角为3,正实数x ,y满足xy =1=+yb++b ) | --+b ) |,c xa ,若| c (a | c (a 为定值,则非零实数的值为.【例9】(2018•上海模拟)已知等轴双曲线C的两个焦点F1、F2在直线y =x上,线段F1F2的中点是坐标原点,且双曲线经过点(33).2(1)若已知下列所给的三个方程中有一个是等轴双曲线C的方程① x2 -y2 =27;② xy = 9;③ xy =94 2.请确定哪个是等轴双曲线C的方程,并求出此双曲线的实轴长;(2)现要在等轴双曲线C上选一处P建一座码头,向A(3,3)、B(9 ,6)两地转运货物.经测算,从P到A、从P到B修建公路的费用都是每单位长度a万元,则码头应建在何处,才能使修建两条公路的总费用最低?(3)如图5-3-16,函数y =3x +1的图象也是双曲线,请尝试研究此双曲线的性质,你能得到哪些结3 x论?(本小题将按所得到的双曲线性质的数量和质量酌情给分)图5-3-16【例10】(2019•青浦区一模)(1)已知双曲线的中心在原点,焦点在x轴上,实轴长为4,渐近线方程为y =± 3x.求双曲线的标准方程;(2)过(1)中双曲线上一点P的直线分别交两条渐近于A(x1,y1),B(x2 ,y2 )两点,且P是线段AB的中点,求证:x1⋅x2为常数;(3)我们知道函数y =1的图象是由双曲线x2 -y2 = 2的图象逆时针旋转45︒得到的,函数y =x333x +23 x的图象也是双曲线,请尝试写出曲线y =3x +32的性质(不必证明).x,。
仿射变换与双曲线的标准方程22221x y a b 相比椭圆的标准方程22221x y a b在形式上极为接近圆的标准方程222x y r .在这一讲,我们着重讲述利用仿射变换将椭圆变换为圆,再利用圆的良好几何性质解决问题的方法.对椭圆的标准方程22221x y a b ,我们需要在y 轴进行伸缩变换x x b y y a得到方程22221x y a a .伸缩变换不会改变直线与圆锥曲线的交点个数、也不会改变共线线段长度的比例关系、平行和直线共点关系等等,但是伸缩变换会改变线段的长度,这需要引起充分的注意.【备注】仿射变换(Affine Transform )是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”(译注: straightness ,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:parallelness ,其实是指保二维图形间的相对位置关系不变,平行线还是平行线,而直线上点的位置顺序不变,另特别注意向量间夹角可能会发生变化.仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation )、缩放(Scale )、翻转(Flip )、旋转(Rotation )和错切(Shear ).【备注】在伸缩变换①下,椭圆方程2222:1x y E a b变为圆222:E x y a ,椭圆上的点 00,P x y 变为00,a P x y b,因此过圆E 上一点P 的圆的切线方程为:l 200a x x y y a b 该直线通过伸缩变换①就可以得到过椭圆E 上一点P 的椭圆的切线方程22002:a l x x y y a b即00221x x y ya b典型例题例1(2010年上海)已知椭圆22x y ⑴设直线l 【解析】 ⑴ 作仿射变换,椭圆方程变为222x y a ,则121k k∴C D O E ,根据垂径定理,E 是弦C D 的中点于是E 是CD 的中点.⑵如下图,求作点1P 、2P 的步骤为:1.以O 为圆心,椭圆的长轴长a 为半径作圆;2.过O 作射线,使Ox 轴正方向到该射线的角为 ,射线与圆交于Q ;3.过圆与y 轴正向的交点作y 轴的垂线,过圆与x 轴负向的交点作x 轴的垂线,两条垂线交于点P ;4.连结P Q ,取其中点N ;认识仿射变换5.连结ON ,过N 作与ON 垂直的直线,交圆于点1P 、2P ; 6.过点1P 、2P 作x 轴的垂线,交椭圆于点1P、2P 即为所求. 证明:这样作图相当于作了纵轴方向上的伸缩变换22b y y a,容易证明线段P Q 与12P P互相平分,而坐标轴方向上的伸缩变换不改变线段的比例,因此PQ 与12PP 互相平分.这样就有12121222PQ PN PP PP PP PP【备注】题⑴说明弦中点问题中由点差法得到的结论可以看做是椭圆的“垂径定理”;题⑵利用仿射变换完成纯几何...作图,注意椭圆的参数方程在仿射变换图形下获得了确切的几何意义.练习1(2012年湖北理)设A 是单位圆221x y 上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足DM m DA (0m ,且1m ).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求焦点坐标.【解析】 曲线C 的方程为2221y x m.当01m 时,曲线C 为焦点在x轴上的椭圆,焦点坐标为,0;当1m 时,曲线C 为焦点在y轴上的椭圆,焦点坐标为 0,.通过仿射变换可以将椭圆内接三角形变为圆内接三角形,它们之间存在固定的比例关系.而求解圆内接三角形的面积运算量要低很多.例2(2012年人大附开学考试)已知直线【解析】作仿射变换x x y,则直线l 是椭圆22334y x即2213944x y 的切线. 设O 到直线l 的距离为d ,23944d ≤(∵直线l 的斜率存在)12AOB A O B S d△△利用仿射变换处理面积问题等号当且仅当23 2d 时取得.因此AOB△.练习2(2010年朝阳一模文)已知椭圆22162x y中有一内接三角形ABC,其顶点C的坐标 1,AB.当ABC△的面积最大时,求直线AB的方程.B'A'O【解析】将椭圆通过仿射变换x xy y变成圆226x y,则A B C ABCS△△,1A Bk,C 坐标为,.∵直线OC ∥直线A B ,∴A B C OA BS S△△设直线A B 的方程为0x y m,则O到直线A B ,A B12OA BS△3≤∴当232m,即mOA BS△取得最大值3,此时直线A B 的方程为0xy.因此OABS△AB的方程为0x .练习3(2011年顺义二模)已知椭圆2214xy的左、右顶点分别记为A、B.过A斜率为1的直线交椭圆于另一点S,在椭圆C上的T满足:TSA△的面积为15.试确定点T的个数.【解析】将椭圆通过仿射变换12x xy y变成圆224x y,则225S AT SATS S△△.AS :22y x,即240x y∴圆心到直线ASAS∴T 到直线AS的距离为25142,∴在优弧上存在两个T 点2 T 点.综上,点T 的个数也即点T 的个数是2.练习4 (2010年宣武一模文)直线:220l x y 与椭圆2214y x 的交点为A 、B .求使PAB 的面积为12的点P 的个数;【解析】 2.练习5(2011年西城二模)设直线l 与椭圆2219x y 交于A 、B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求ABC △面积的最大值.【解析】 如图,将坐标系原点平移至C ,则椭圆方程变为22319x y 即22690x x y .设直线AB 的方程为x my a ,则联立直线方程与椭圆方程有22690x my x x y a ,即266910y m yx a x a而12121y y x x ,∴6910a ,35a ,因此35CD . 将椭圆通过变换3x x y y变为圆229x y ,则13ABC A B C S S △△O (O')B'A'D (D')C (C')∵35C D ,3O C ,∴3153435A B C O A B S C D S O D△△设O 到A B 的距离为d,1122O A B S A B d d △∴当且仅当29d 时,O A B S △取得最大值92于是13128ABC O A B S S △△≤,即ABC △面积的最大值为38.例3(2011年辽宁)如图,已知椭圆的短轴为MN ,且1C 、C 这四点按纵坐标从大到小依次为【解析】 ⑴ 设2MN a ,则椭圆1C :2222211e x y a a ;椭圆2C :2222211e x y a a ;231e 4BC AD.⑵对椭圆1C 作仿射变换x x y ,则1C :222x y a ;对椭圆2C 作仿射变换x x ,1y y ,则2C :222x y a .BO AN EO EN BO AN k k∥211e EO EN k k设点 cos ,sin E a a (0π ),则sin cos EO k,sin cos 1EN k利用仿射变换处理弦长问题∴设cos 1cos EO EN k y k,则cos 1cos y , 1cos 1,11y 因此 ,02,y BO AN ∥2121e,∴当0<e时,不存在;当e 时,存在.利用仿射变换可以将一些题目中“平凡”的条件转化为对解题很有利的“特殊”条件,比如:① 利用仿射变换可以改变斜率,从而可以使得某些与椭圆相关的平行四边形转化为矩形,从而简化问题;② 利用仿射变化可以将椭圆变为圆,从而可以使某些与椭圆相关的平行四边形转化为菱形,从而简化问题. 例422x y【解析】 作仿射变换,椭圆方程变为224x y ,且OM ON .(理科)四边形OM P N 为正方形,于是OP M N∴P 点的轨迹方程为圆228x y , 因此P 点的轨迹方程为228x,即22184x y .∴存在符合题意的点1F 、2F ,坐标为 2,0 .(即椭圆的两个焦点) (文科)四边形OM P N 为矩形,OP M N ∴P 点的轨迹方程为圆2220x y ,因此P 点的轨迹方程为2220x,即2212010x y .∴存在符合题意的点F ,坐标为,0.(即椭圆的右焦点). 练习1(2011年海淀一模)设直线:l y kx m (12k ≤)与椭圆22143x y 相交于A 、B 两点,以线利用仿射变换凸显隐藏几何条件段OA ,OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点.求OP 的取值范围.【解析】 用仿射变换椭圆转化为圆,于是平行四边形OAPB 变为菱形OA P B ,由12AB k ≤得A B k ≤.根据菱形的对角线互相垂直,于是OP k ≥,因此1P x ≤.也就是说,1P P x x ≤ 于是22222231344P P P P Px x OP x y x133,4因此OP的取值范围是,.练习2(2012年海淀一模理)已知直线1l :1y kx m 与椭圆G :2212x y 交于A 、B 两点,直线2l :2y kx m (12m m )与椭圆G 交于C 、D 两点,且AB CD ,如图所示.⑴ 证明:120m m ;⑵ 求四边形ABCD 的面积S 的最大值.【解析】 考虑用仿射变换.⑴ ABCD 为椭圆内接平行四边形,作仿射变换后变为圆内接平行四边形,为矩形.因此对角线为直径,也就是说椭圆内接平行四边形的对角线互相平分于原点,于是120m m ;⑵ 圆内接矩形当且仅当矩形为正方形时面积最大,最大值为4,于是椭圆内接平行四边形面积.【备注】也可以看作相关直线问题⑴ 设直线y kx m 与椭圆交于两点A 、B ,则联立直线与方程,有22212102k x kmx m∴22AB k22k∴AB CD 等价于2212m m ,又12m m ,∴12m m ,即120m m⑵ 由①,AB 与CD 关于原点对称,四边形ABCD 为对称中心在原点的平行四边形.不妨设10m ,则4ABCD OABS S△21422k22211221412m k m k≤(当且仅当22112m k时取得等号). ∴四边形ABCD 的面积S 的最大值是例5Q【解析】 如图,将椭圆22182x y通过仿射变换2x x y y变成圆228x y ,则 2,2M 过M 作x 轴的垂线,垂足为H ,交圆228x y 于点N ,则易知 2,2N . ∵ 2,2N ,∴OM ON ,又OM A B ∥,∴ON A B 根据垂径定理,N 平分弧A B ,于是M N是A M B 的平分线.于是22MP M P M Q MQ k k k k ,又MH PQ ,∴MPQ △是等腰三角形,证毕.【备注】(2012年密云一模理)如图所示,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的3倍,且经过点 3,1M .平行于OM 的直线l 在y 轴上的截距为m (0m ),且交椭圆于A 、B 两不同点.⑴ 求椭圆的方程; ⑵ 求m 的取值范围;⑶ 求证:直线MA 、MB 与x 轴始终围成一个等腰三角形.【解析】 ⑴ 221182x y ;⑵ 设直线l :13y x m (0m ),则 2,00,2m ;⑶ 视为连线垂直问题的推广或用仿射变换均可解决.练习6(2011年四中高二期中考试)已知点 2,1M 是椭圆22182x y 上一点,直线102y x m m 与椭圆相交于A 、B 两点.求MAB 的内心的横坐标.【解析】 考虑到图形的特点与求解的问题,考虑使用仿射变换将椭圆转化为圆加以解决.在圆中,容易证明M Q 是B MA 的平分线;于是MQ 是BMA 的平分线.因此MAB 的内心的横坐标为M 的横坐标,也就是2.例6(201122x y【解析】 ⑴ 如图,作仿射变换x x y yC 变为圆C :223x y .∴32OP Q OPQ S S△△ 设O 到直线P Q 的距离为d ,则1322d ,解得d 于是P Q ,OP OQ ,因此2212x y ,2221x y 而222211223x y x y ,∴22221212x x x x 3,2222121223y y y y 2 .综合⑵设PQ 的斜率为k ,则OM 的斜率为23k,OM PQ OM P Q333 设2249k m k ,则43m ≥.3OM PQ 52≤.⑶∵ODE ODG OEG S S S△△△32OD E OD G OE G S S S △△△∴在圆C 中,D E 、D G 、E G 所对的圆心角均为90 因此,不存在满足题意的三角形.练习7(2013北京昌平二模理)如图,已知椭圆22221x y a b (0a b )的长轴为AB ,过点B 的直线l 与x 轴垂直,椭圆的离心率e,F 为椭圆的左焦点,且1AF BF . ⑴求此椭圆的方程;⑵设P 是此椭圆上异于A B ,的任意一点,PH x 轴,H 为垂足,延长HP 到点Q 使得HP PQ . 连接AQ 并延长交直线l 于点,M N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.【备注】设AQ 与椭圆交于点R ,则NR 与椭圆相切,此题与⑵均可以利用仿射变换解决.例7已知椭圆22143x y上的两点A 、点.设直线PB 与椭圆相交于D ,证明:直线利用仿射变换将问题转化为几何问题【解析】 将椭圆通过伸缩变换为圆,则需证明:若点A 、B 为关于圆的直径HG 对称的两点,HG 所在直线上的一点P 与B 点的连线交圆于D ,则AD 与PH 交于定点E .证明如下:如图,连结AG 、GD ,设PA 与圆交于C .HG PDBECA∵G 为弧CD 和弧AB 的中点,∴AG 、DH 分别是A 和BDG 的平分线 而DG DH ,∴DG 是EDP 的平分线.于是AE DE EGAP DP GP,因此2AE DE EG AP DP GP , 而AE DE EG EH (相交弦定理),AP DP AP CP PG PH (切割线定理) 于是EG EH EG EG PG PH PG PG ,即EG PGEH PH .∵PG PH 为定值(在本例中为13),∴EG EH 为定值,E 为定点(在本例中 1,0E ).练习8 设直线l :y kx m 与椭圆2212x y 相交于M 、N 两点,F 是椭圆的右焦点,直线FM 与直线FN 的斜率互为相反数.求证:直线l 过定点,并求该定点的坐标.【解析】 直线l 过定点 2,0.本质与例题相同.练习9(2010年江苏)如图,在平面直角坐标系xOy 中,已知椭圆22195x y 的左、右顶点为A 、B ,右焦点为F .设过点 9,T m 的直线,TA TB 与此椭圆分别交于点 11,M x y 、 22,N x y ,其中0m ,10y ,20y .设9t ,求证:直线MN 必过x 轴的一定点(其坐标与m 无关).【解析】 如下左图所示,利用坐标变换x xa y y b可以把椭圆22221x y a b 变换圆222x y a ,由于伸缩变换不改变共线以及线段长度的比,于是问题就转化为如下右图所示的:已知以AB 为直径圆O ,T 为与AB 垂直的圆外直线上任意一点,连结AT 、BT 与圆O 分别交于M 、N .求证MN 恒过定点D .x法1连结AN 、MB 并延长交于点T ,容易知道T 与T 在同一条垂直于AB 的直线上(B 为ATT △的垂心)CT'T对ABT △的割线MN ,根据梅涅劳斯定理有1AD BM T NDB MT NA ;而AM 、NB 、T T 交于一点,根据赛瓦定理有1BM T N ACMT NA CB;于是1AD CB DB AC,即AD ACDB BC 为定值,因此D 为定点. 法2CT NM A BOD 设4AC a ,TAC ,NAC ,则4cos aAT,2cos AM a ,2cos a BT ,2cos BN a ,AN AD ADN MDB AD AD DM AN AM MB MD AM DM DB MD DB MB BNADM NDB BN DB△∽△△∽△而AN AT ANT BMT BM BT △∽△,于是22824AD AT AM a DB BT BN a.法3PCD O BA M NT 设2MOC ,2NOC ,则OC 到OP 的角为 ,以O 为极点,OC 为极径,那么直线MN 的方程为 cos ,d O MN ,即 cos cos AB 于是ODcos cos AB cos cos sin sin cos cos sin sin AB1tan tan 1tan tan AB而12TAC MAB MOB ,12NAB NOB ,∴tan TC AC ,tan tan BCBTC TC因此11BC AC OD AB BC AC,于是点D 为定点.。