紫外吸收和荧光光谱的计算
- 格式:doc
- 大小:1.07 MB
- 文档页数:8
物质的吸收光谱与荧光光谱测定方法为了了解物质的性质和结构,科学家们需要使用不同的方法进行分析和检测。
在生物化学研究中,吸收光谱和荧光光谱是两种常用的测定方法。
本文将介绍这两种方法及其在研究中的应用。
一、吸收光谱吸收光谱是指物质对入射光吸收的强度变化规律的记录。
物质吸收光谱与其分子中的某些基团有关,可以用来判断分子的化学结构。
吸收光谱通常在紫外或可见光范围内测量。
对于有色的溶液或溶液中含有吸收剂的物质,可通过吸光度法进行测定。
吸光度(A)是指单位厚度、单位物质的样品溶液对波长为λ的光线的吸收能力。
一般情况下,吸光度与浓度成正比,可以用于定量测定样品中物质的含量。
例如,在生命科学研究中,DNA和蛋白质等生物分子可以通过吸收光谱测定其浓度,同时还可以了解它们的结构和性质。
二、荧光光谱荧光是指物质在受到激发后,发出能量较低的光的现象。
荧光光谱是指荧光强度随受激波长变化的记录。
与吸收光谱相比,荧光光谱可以提供更多的关于分子的信息,例如其分子结构、化学成分、分子量、分子大小和分子内部的环境等。
荧光常常用于分析分子之间的相互作用。
通过测量荧光强度和发射波长的变化,可以研究分子之间的相互作用、结构变化和分子的运动。
例如,荧光蛋白是生物学中重要的工具,通过荧光光谱可以了解蛋白质结构和分子动力学信息。
三、应用举例1. 脂质分析脂质是生物体内重要的分子之一,涉及生物能量代谢和信号传递等多个领域。
吸收光谱和荧光光谱被广泛应用于脂质分析。
以近年来广受欢迎的脂质体为例,吸收光谱和荧光光谱可以用于研究其内部结构和性质。
通过测量荧光强度和发射波长的变化,可以了解脂质体内脂质分子的疏水性和结构变化;通过吸收光谱测量,可以了解脂质体中膜蛋白的含量和结构。
2. 蛋白质研究蛋白质是生命活动中不可或缺的分子,其结构和功能对人类健康具有重要意义。
吸收光谱和荧光光谱在蛋白质研究中也有广泛应用。
以光谱法测定蛋白质的稳定性为例,通过检测溶液中的吸收光谱和荧光光谱,可以判断蛋白质的结构变化和稳定性降解程度。
紫外可见吸收光谱及荧光光谱分析公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]1. 简述荧光光谱法与紫外-可见光吸收光谱法的原理及两种方法的异同点。
①荧光光谱法原理:原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂KBH4反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。
特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。
②紫外-可见光吸收光谱法的原理:紫外-可见吸收光谱法是利用某些物质的分子吸收190-750nm的辐射来进行分析测定的方法,是基于分子内电子跃迁产生的吸收光谱。
在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。
当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道而这种电子跃迁同内部的结构有密切的关系。
在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种跃迁类型所需要的能量依下列次序减小:σ→σ*>n→σ*>π→π*>n→π*。
当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。
这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发态:M(基态)+hv------M*(激发态)由于物质的能量是不连续的,即能量上一量子化的。
只有当入射光的能量(hv)与物质分子的激发态和基态的能量差相等时才能发生吸收:△E=E2-E1= hv=hc/λ而不同的物质分子因其结构的不同而具有不同的量子化能级,即△E 不同,故对光的吸收也不同。
实验报告化学测量与计算实验Ⅱ实验名称:紫外吸收和荧光光谱的计算学生姓名:学号:院(系):年级:级指导教师:实验日期:2017.03.27 交报告日期:2017.04.10一、实验目的1.掌握紫外吸收的基本原理;2.熟悉溶液中的计算方法;3.学会如何看MO 。
二、实验原理1. 溶剂效应的理论方法我们对溶剂效应的静态模拟,关心的是溶剂效应的两个方面:一是溶剂分子反应中心有键的作用,包括配位键和氢键等,这种作用属于短程作用,另一个是 极性溶剂的偶极距和溶质分子偶极距之间的静电相互作用,这个属于远程作用,当然溶剂和溶质之间的色散力作用也是重要的远程作用,特别是对于非极性溶剂而言,但是色散力的描述是量子化学模拟的一个难题。
高斯计算时,考虑溶剂效应,可以采用三种策略:① 超分子方法对于短程作用十分重要的体系,直接考虑溶剂分子和反应中心的作用。
② 连续介质模型对于没有短程作用的体系,把溶剂效应看成是溶质分子分布在具有均一性质 的连续介质当中,也称为反应场。
③ 超分子-连续介质方法短程作用的超分子方法和远程作用的连续介质模型结合起来的方法渐渐 为人们所青睐。
这种方法得到的结果更为可靠,因为它综合考虑的溶剂的短程作用和远程作用。
短程作用的模拟,很直观的直接采用 QM 的方法研究溶剂分子作用了的活性 中心,考虑这种成键对反应区域和反应过渡态结构和能量的影响。
远程作用 需要做一些物理上的近似处理(也就是一定的物理模型)。
连续介质模型有 很多,作为常用的是 PCM (极化连续介质模型)。
在连续的介质中腾出空穴以容纳溶 质,会导致体系能量升高,这部分的能量称为 cavity formation energy 。
空穴中的溶质和溶剂的作用,主要是德华力的作用 (不包括静电作用)。
这部分能量称为分散-排斥能,一般为负值 (能量降低)。
溶质分子的电荷分布会通过静电作用使连续介质(溶剂)产生极 化,而溶剂的极化作用反过来又会影响到溶质分子的电荷分布。
这就是静电 的相互作用,使体系能量降低。
三项能量的加和得到了溶剂化自由能前两项的能量与空穴表面积接近成正比关系,在 PCM 模型中,这两项能量由表面积结合一些与原子 特性相关的半经验参数计算而得。
2.溶剂化能溶剂化能是溶剂分子与溶解于其中的离子,在相互作用形成络合物的溶剂化作用过程中放出的能量。
该能量用于破坏电解质分子的晶格,使之在溶剂中能够自动溶解而成为自由离子。
(静电能) (氢键能) (孔穴能) (色散-排斥能) aQ V F 2)1(d 21 :2s s el εερϕ-==∆⎰溶剂化能)11)(21(Cl H s s a a +-=εε3.紫外吸收光谱许多有机分子中的价电子跃迁,须吸收波长在围的光,恰好落在紫外-可见光区域。
因此,紫外吸收光谱是由于分子中价电子的跃迁而产生的,也可以称它为电子光谱。
4.荧光光谱荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。
荧光发射光谱的形状与激发光的波长无关。
荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检测器上,亦即进行扫描,以荧光波长为横坐标,以荧光强度为纵坐标作图,即为荧光光谱,又称荧光发射光谱。
三、实验步骤1.打开电脑当中的G09W 软件,新建任务。
2.建设任务,进行计算方法(route section)、标题、分子所带电荷及自旋多重度、分子坐标的输入,然后保存为输入文件。
3.使用CHEMCRAFT软件将几何构型画出,使用此软件获得该分子的坐标。
4.选择RUN 并保存输出文件的位置。
5.等待计算完成后,打开输出文件,分析所得到的数据。
6.可以使用CHEMCRAFT软件读取OUT文件,获得相关数据。
四、实验容1.优化几何构型#p b3lyp/6-31G(d,p) opt freqscrf=(pcm,solvent=chloroform)2.用优化好的几何构型计算紫外光谱和输出MO#p b3lyp/6-31G(d,p) td(nstate=6) pop=full gfinput scrf=(pcm,solvent=chloroform)3.荧光光谱计算#p b3lyp/6-31G(d,p) td(nstate=3) opt scrf=(pcm,solvent=chloroform)五、实验结果1.乙烯分子 振动频率/cm-1振子强度 153.130.4146 148.610 132.550.0004 128.370 126.940 118.09紫外吸收光谱图: TD spectrumWavelength, nm175 170 165 160 155 150 145 140 135 130 125 120 115 110f0.50.480.460.440.420.40.380.360.340.320.30.280.260.240.220.20.180.160.140.120.10.080.060.040.02FMO 图:荧光光谱:Excited State 1: Singlet-B1U 5.9768 eV 207.44 nm f=0.3277<S**2>=0.0006 -> 14 -0.101338 -> 9 0.706428 <- 9 -0.122302.反式1-3丁二烯分子振动频率/cm-1振子强度213.72 0.7501172.59 0170.57 0.0004149.61 0148.29 0148.06 0.0003紫外吸收光谱:TD spectrumWavelength, nm240230220210200190180170160150140130120f0.90.850.80.750.70.650.60.550.50.450.40.350.30.250.20.150.10.05FMO图:荧光光谱:Excited State 1: Singlet-BU 4.7894 eV 258.87 nm f=0.8052<S**2>=0.00015 -> 16 0.7118815 <- 16 -0.120033.反式1,3,5-己三烯分子振动频率/cm-1振子强度268.96 1.161211.85 0180.82 0174.03 0173.87 0.0001169.3 0.0003紫外吸收光谱:TD spectrumWavelength, nm300290280270260250240230220210200190180170160150140130f1FMO图:荧光光谱:Excited State 1: Singlet-BU 3.8038 eV 325.95 nm f=1.2501 <S**2>=0.00022 -> 23 0.7143022 <- 23 -0.12243 4. 顺式-戊-3-烯-2-酮分子振动频率/cm-1振子强度340.01 0.0002220.27 0.3638177.85 0.0002172.27 0167.6 0.0018160.47 0.0454紫外吸收光谱:TD spectrumWavelength, nm340320300280260240220200180160f0.440.420.40.380.360.340.320.30.280.260.240.220.20.180.160.140.120.10.080.060.040.02Excited State 2: Singlet-A 5.6287 eV 220.27 nm f=0.3638 <S**2>=0.00022 -> 24 0.69864Excited State 6: Singlet-A 7.7265 eV 160.47 nm f=0.0454 <S**2>=0.00021 -> 24 0.64887FMO图:六、实验反思与总结1. 本次实验最后一个分子不需要进行荧光光谱的计算,因为G09W 软件计算运行得很慢,需要运行很长的时间,甚至有可能运算不出来结果。
2.本次实验的%mem值应至少大于600mb。