图像傅里叶变换
- 格式:ppt
- 大小:7.33 MB
- 文档页数:75
图像处理之傅⾥叶变换图像处理之傅⾥叶变换⼀、傅⾥叶变换傅⾥叶变换的作⽤:⾼频:变化剧烈的灰度分量,例如边界低频:变化缓慢的灰度分量,例如⼀⽚⼤海滤波:低通滤波器:只保留低频,会使得图像模糊⾼通滤波器:只保留⾼频,会使得图像细节增强OpenCV:opencv中主要就是cv2.dft()和cv2.idft(),输⼊图像需要先转换成np.float32 格式。
得到的结果中频率为0的部分会在左上⾓,通常要转换到中⼼位置,可以通过shift变换来实现。
cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展⽰(0,255)。
import numpy as npimport cv2from matplotlib import pyplot as pltimg = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)dft_shift = np.fft.fftshift(dft)# 得到灰度图能表⽰的形式magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])plt.show()import numpy as npimport cv2from matplotlib import pyplot as pltimg = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT) #时域转换到频域dft_shift = np.fft.fftshift(dft) #将低频部分拉到中⼼处rows, cols = img.shapecrow, ccol = int(rows/2) , int(cols/2) #确定掩膜的中⼼位置坐标# 低通滤波mask = np.zeros((rows, cols, 2), np.uint8)mask[crow-30:crow+30, ccol-30:ccol+30] = 1# IDFTfshift = dft_shift*mask #去掉⾼频部分,只显⽰低频部分f_ishift = np.fft.ifftshift(fshift) #将低频部分从中⼼点处还原img_back = cv2.idft(f_ishift) #从频域逆变换到时域img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1]) #该函数通过实部和虚部⽤来计算⼆维⽮量的幅值plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122),plt.imshow(img_back, cmap = 'gray')plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()img = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft)rows, cols = img.shapecrow, ccol = int(rows/2) , int(cols/2) # 中⼼位置# ⾼通滤波mask = np.ones((rows, cols, 2), np.uint8)mask[crow-30:crow+30, ccol-30:ccol+30] = 0# IDFTfshift = dft_shift*maskf_ishift = np.fft.ifftshift(fshift)img_back = cv2.idft(f_ishift)img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1]) plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122),plt.imshow(img_back, cmap = 'gray')plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()。
图像傅立叶变换(二维傅立叶变换fourier, 二维DFT, 2d-fft)的原理和物理意义图像傅立叶变换图像的傅立叶变换,原始图像由N行N列构成,N必须是基2的,把这个N*N个包含图像的点称为实部,另外还需要N*N个点称为虚部,因为FFT是基于复数的,如下图所示:计算图像傅立叶变换的过程很简单:首先对每一行做一维FFT,然后对每一列做一维FFT。
具体来说,先对第0行的N个点做FFT(实部有值,虚部为0),将FFT输出的实部放回原来第0行的实部,FFT输出的虚部放回第0行的虚部,这样计算完全部行之后,图像的实部和虚部包含的是中间数据,然后用相同的办法进行列方向上的FFT变换,这样N*N的图像经过FFT得到一个N*N的频谱。
下面展示了一副图像的二维FFT变换:频域中可以包含负值,图像中灰色表示0,黑色表示负值,白色表示正值。
可以看到4个角上的黑色更黑,白色更白,表示其幅度更大,其实4个角上的系数表示的是图像的低频组成部分,而中心则是图像的高频组成部分。
除此以外,FFT的系数显得杂乱无章,基本看不出什么。
将上述直角坐标转换为极坐标的形式,稍微比较容易理解一点,幅度中4个角上白色的区域表示幅度较大,而相位中高频和低频基本看不出什么区别来。
上述以一种不同的方法展示了图像频谱,它将低频部分平移到了频谱的中心。
这个其实很好理解,因为经2D-FFT的信号是离散图像,其2D-FFT的输出就是周期信号,也就是将前面一张图周期性平铺,取了一张以低频为中心的图。
将原点放在中心有很多好处,比如更加直观更符合周期性的原理,但在这节中还是以未平移之前的图来解释。
行N/2和列N/2将频域分成四块。
对实部和幅度来说,右上角和左下角成镜像关系,左上角和右下角也是镜像关系;对虚部和相位来说,也是类似的,只是符号要取反,这种对称性和1维傅立叶变换是类似的,你可以往前看看。
为简单起见,先考虑4*4的像素,右边是其灰度值,对这些灰度值进行2维fft变换。
【数字图像处理】傅⾥叶变换在图像处理中的应⽤1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换1.2⼆维离散傅⾥叶变换1.3⽤FFT计算⼆维离散傅⾥叶变换1.3图像傅⾥叶变换的物理意义2.⼆维傅⾥叶变换有哪些性质?2.1⼆维离散傅⾥叶变换的性质2.2⼆维离散傅⾥叶变换图像性质3.任给⼀幅图像,对其进⾏⼆维傅⾥叶变换和逆变换4.附录 94.1matlab代码4.2参考⽂献⽬录1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换⼆维Fourier变换:逆变换:1.2⼆维离散傅⾥叶变换⼀个图像尺⼨为M×N的函数的离散傅⾥叶变换由以下等式给出:其中和。
其中变量u和v⽤于确定它们的频率,频域系统是由所张成的坐标系,其中和⽤做(频率)变量。
空间域是由f(x,y)所张成的坐标系。
可以得到频谱系统在频谱图四⾓处沿和⽅向的频谱分量均为0。
离散傅⾥叶逆变换由下式给出:令R和I分别表⽰F的实部和需部,则傅⾥叶频谱,相位⾓,功率谱(幅度)定义如下:1.3⽤FFT计算⼆维离散傅⾥叶变换⼆维离散傅⾥叶变换的定义为:⼆维离散傅⾥叶变换可通过两次⼀维离散傅⾥叶变换来实现:1)作⼀维N点DFT(对每个m做⼀次,共M次)2)作M点的DFT(对每个k做⼀次,共N次)这两次离散傅⾥叶变换都可以⽤快速算法求得,若M和N都是2的幂,则可使⽤基⼆FFT算法,所需要乘法次数为⽽直接计算⼆维离散傅⾥叶变换所需的乘法次数为(M+N)MN,当M和N⽐较⼤时⽤⽤FFT运算,可节约很多运算量。
1.3图像傅⾥叶变换的物理意义图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平⾯空间上的梯度。
如:⼤⾯积的沙漠在图像中是⼀⽚灰度变化缓慢的区域,对应的频率值很低;⽽对于地表属性变换剧烈的边缘区域在图像中是⼀⽚灰度变化剧烈的区域,对应的频率值较⾼。
傅⾥叶变换在实际中有⾮常明显的物理意义,设f是⼀个能量有限的模拟信号,则其傅⾥叶变换就表⽰f的频谱。
从纯粹的数学意义上看,傅⾥叶变换是将⼀个函数转换为⼀系列周期函数来处理的。
图像处理与傅里叶变换1背景傅里叶变换是一个非常复杂的理论,我们在图像处理中集中关注于其傅里叶离散变换离散傅立叶变换(Discre t e Fourie r Transf o rm) 。
1.1离散傅立叶变换图象是由灰度(R GB )组成的二维离散数据矩阵,则对它进行傅立叶变换是离散的傅立叶变换。
对图像数据f (x,y)(x=0,1,… ,M-1; y=0,1,… ,N-1)。
则其离散傅立叶变换定义可表示为:式中,u=0,1,…, M-1;v= 0,1,…, N-1其逆变换为式中,x=0,1,…, M-1;y= 0,1,…, N-1在图象处理中,一般总是选择方形数据,即M=N影像f(x,y)的振幅谱或傅立叶频谱: 相位谱: 能量谱(功率谱) )1(2exp ),(1),(1010∑∑-=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=M x N y N vy M ux i y x f MN v u F π)2(2exp ),(1),(1010∑∑-=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=M u N v N vy M ux i v u F MN y x f π),(),(),(22v u I v u R v u F +=[]),(/),(),(v u R v u I arctg v u =ϕ),(),(),(),(222v u I v u R v u F v u E +==1.2快速傅里叶变化可分离性的优点是二维的傅立叶变换或逆变换由两个连续的一维傅立叶变换变换来实现,对于一个影像f (x,y),可以先沿着其每一列求一维傅立叶变换,再对其每一行再求一维变换正变化逆变换 由于二维的傅立叶变换具有可分离性,故只讨论一维快速傅立叶变换。
正变换逆变换由于计算机进行运算的时间主要取决于所用的乘法的次数。
按照上式进行一维离散由空间域向频率域傅立叶变换时,对于N 个F ∑∑∑∑-=-=-=-=⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+=10101010)(2exp ),(1)(2exp ),(1)(2exp ),(1),(N v N u N u N v N vy i v u F N N ux i v u F N N vy ux i v u F NN y x f πππ∑-=⎥⎦⎤⎢⎣⎡-=102exp )(1)(N x N ux i x f N u F π∑∑∑∑-=-=-=-=⎥⎦⎤⎢⎣⎡-⨯⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=10101010)(2exp ),(1)(2exp ),(1)(2exp ),(1),(N y N x N x N y N vy i y x f N N ux i y x f NN vy ux i y x f NN v u F πππ∑-=⎥⎦⎤⎢⎣⎡=102exp )(1)(N u N ux i u F N x f π(u)值,中的每一个都要进行N 次运算,运算时间与N 2成正比。
图像的傅里叶变换
图像的傅里叶变换是将图像的像素用时间或频率的形式表示的一种变换方式。
一般来说,图像的每个像素点都可以用其周围的邻居来描述,而傅里叶变换可以对图像中所有的邻居进行变换,有效地减少图像的深度和宽度,使图像更轻巧。
傅里叶变换的一个重要用途便是图像分析和处理,它可以将复杂的信息减缩到更小的空间中,从而使图像变得更容易理解。
比如,使用傅里叶变换可以有效地抽取图像中最重要的特征,例如颜色、对比度、形状等。
此外,傅里叶变换还可以用于图像压缩,通过傅里叶变换可以把复杂的信息转换为高频信号和低频信号,通过减少低频信号可以压缩图像的体积,但这样做不会影响图像的整体清晰度,而是减少了细节的某些程度上。
总而言之,傅里叶变换是一种对图像进行分析和处理的非常有效的方法,可以有效地提取图像中最重要的特征,可以大大减少图像的深度和宽度,并且可以用于图像压缩以及图像处理等任务中,从而大大改善图像的处理效果。
halcon学习笔记——傅⾥叶变换与极坐标变换⼀、傅⾥叶变换图像的傅⾥叶变换◆傅⾥叶变换定义:傅⾥叶变换是时域到频域的变换⽅法,通俗讲是将现在的空间变换到⼀个能够反映某些事物出现频率的空间。
◆图像傅⾥叶变换:◆⽤途:⼀般⽤于对出现频率⾼的像素点的分析以及噪声的去除。
◆频率图特点:图像中⼼为频率为 0 的原点,由内到外频率越来越⾼。
其中灰度变换激烈的地⽅对应⾼频成分,如边缘;灰度变换不⼤的地⽅对应低频。
*傅⾥叶变换fft_image (GrayImage, ImageFFT)area_center (ImageFFT, Area, Row, Column)gen_circle (Circle, Row, Column, 200)gen_circle (Circle1, Row, Column, 1000)difference (Circle1, Circle, RegionDifference)paint_region (RegionDifference, ImageFFT, ImageResult, 0, 'fill')fft_image_inv (ImageResult, ImageFFTInv)⼆、极坐标变换◆极坐标系的定义:在平⾯内取⼀个定点 O,叫极点,引⼀条射线,叫做极轴,再选定⼀个长度位和⾓度的正⽅向。
对于平⾯内任何⼀点,⽤ r 表⽰线段的长度,a 表⽰⾓度,r 叫做点的极径,a 叫做点的极⾓,有序数对 (r,a)就叫点的极坐标,这样建⽴的坐标系叫做极坐标系。
◆极坐标系的变换:选取极坐标原点,并将原坐标系变换为极坐标系的过程称为极坐标系的变换。
关键点在于极坐标系原点的选取以及起始⾓度的设置 (可以将环形拉直,直⾏变圆)read_image (Image, Selection)draw_circle (WindowHandle, Row, Column, Radius)gen_circle (Circle, Row, Column, Radius)reduce_domain (Image, Circle, ImageReduced)*极坐标变换polar_trans_image_ext (ImageReduced, PolarTransImage, Row, Column, 0, 6.28319, 0.5*Radius, Radius, 6.28319*Radius, 800, 'nearest_neighbor') *极坐标逆变换polar_trans_image_inv (PolarTransImage, XYTransImage, Row, Column, 0, 6.28319, 0.5*Radius, Radius, 6.28319*Radius, 800, 'nearest_neighbor')。
图像处理与傅里叶变换1背景傅里叶变换是一个非常复杂的理论,我们在图像处理中集中关注于其傅里叶离散变换离散傅立叶变换(Discrete Fourier Transform) 。
1.1离散傅立叶变换图象是由灰度(RGB )组成的二维离散数据矩阵,则对它进行傅立叶变换是离散的傅立叶变换。
对图像数据f(x,y)(x=0,1,… ,M-1; y=0,1,… ,N-1)。
则其离散傅立叶变换定义可表示为:式中,u=0,1,…, M-1;v= 0,1,…, N-1 其逆变换为式中,x=0,1,…, M-1;y= 0,1,…, N-1在图象处理中,一般总是选择方形数据,即M=N影像f(x,y)的振幅谱或傅立叶频谱: 相位谱:能量谱(功率谱) )1(2exp ),(1),(101∑∑-=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=M x N y N vy M uxi y x f MNv u F π)2(2exp ),(1),(101∑∑-=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=M u N v N vy M uxi v u F MNy x f π),(),(),(22v u I v u R v u F +=[]),(/),(),(v u R v u I arctg v u =ϕ),(),(),(),(222v u I v u R v u F v u E +==1.2快速傅里叶变化可分离性的优点是二维的傅立叶变换或逆变换由两个连续的一维傅立叶变换变换来实现,对于一个影像f(x,y),可以先沿着其每一列求一维傅立叶变换,再对其每一行再求一维变换正变化逆变换由于二维的傅立叶变换具有可分离性,故只讨论一维快速傅立叶变换。
正变换 逆变换由于计算机进行运算的时间主要取决于所用的乘法的次数。
按照上式进行一维离散由空间域向频率域傅立叶变换时,对于N 个F∑∑∑∑-=-=-=-=⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+=110101)(2exp ),(1)(2exp ),(1)(2exp ),(1),(N v N u N u N v N vy i v u F NN ux i v u F N N vy ux i v u F NNy x f πππ∑-=⎥⎦⎤⎢⎣⎡-=12exp )(1)(N x N ux i x f Nu F π∑∑∑∑-=-=-=-=⎥⎦⎤⎢⎣⎡-⨯⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=11101)(2exp ),(1)(2exp ),(1)(2exp ),(1),(N y N x N x N y N vy i y x f NN ux i y x f NN vy ux i y x f NNv u F πππ∑-=⎥⎦⎤⎢⎣⎡=12exp )(1)(N u N ux i u F Nx f π(u)值,中的每一个都要进行N 次运算,运算时间与N 2成正比。
计算机科学与技术系实验报告专业名称计算机科学与技术课程名称数字图像处理项目名称Matlab语言、图像得傅里叶变换班级14计科2班学号1404011023姓名卢爱胜同组人员张佳佳、王世兜、张跃文实验日期2016、11、30一、实验目得与要求:(简述本次实验要求达到得目得,涉及到得相关知识点,实验得具体要求。
)实验目得:1了解图像变换得意义与手段;2熟悉傅立叶变换得基本性质;3熟练掌握FFT变换方法及应用;4通过实验了解二维频谱得分布特点;5通过本实验掌握利用MATLAB编程实现数字图像得傅立叶变换。
6评价人眼对图像幅频特性与相频特性得敏感度。
实验要求:应用傅立叶变换进行图像处理傅里叶变换就是线性系统分析得一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音与显示点等得作用。
通过实验培养这项技能,将有助于解决大多数图像处理问题.对任何想在工作中有效应用数字图像处理技术得人来说,把时间用在学习与掌握博里叶变换上就是很有必要得。
二、实验内容(根据本次实验项目得具体任务与要求,完成相关内容,可包括:实验目得、算法原理、实验仪器、设备选型及连线图、算法描述或流程图、源代码、实验运行步骤、关键技术分析、测试数据与实验结果、其她)1、傅立叶(Fourier)变换得定义对于二维信号,二维Fourier变换定义为:逆变换:二维离散傅立叶变换为:逆变换:图像得傅立叶变换与一维信号得傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换得快速算法得程序不难找到。
实际上,现在有实现傅立叶变换得芯片,可以实时实现傅立叶变换。
2、利用MATLAB软件实现数字图像傅立叶变换得程序:I=imread(‘原图像名、gif’);%读入原图像文件imshow(I); %显示原图像fftI=fft2(I);%二维离散傅立叶变换sfftI=fftshift(fftI);%直流分量移到频谱中心RR=real(sfftI); %取傅立叶变换得实部II=imag(sfftI); %取傅立叶变换得虚部A=sqrt(RR、^2+II、^2);%计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225 %归一化figure;%设定窗口imshow(A); %显示原图像得频谱四、源代码clc;clearallI=imread('Fig0707(a)(Original)、tif、tif');%读入原图像文件imshow(I); %显示原图像title(’原始图像’)fftI=fft2(I);%二维离散傅立叶变换sfftI=fftshift(fftI); %直流分量移到频谱中心RR=real(sfftI);%取傅立叶变换得实部II=imag(sfftI); %取傅立叶变换得虚部A=sqrt(RR、^2+II、^2); %计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化figure; %设定窗口imshow(A); %显示原图像得频谱title('原始图像得频谱’)f1=ifft2(A); %用Fourier系数得幅度进行Fourier反变换f2=ifft2(angle(fftI)); %用Fourier系数得相位进行Fourier 反变换;figuresubplot 121;imshow(f1,[])title('幅度进行Fourier反变换’)subplot 122;imshow(f2,[])title(’相位进行Fourier反变换’)五、实验结果及分析原始图像原始图像的频谱幅度进行Fourier反变换相位进行Fourier反变换实验分析:本次试验研究了有关傅里叶算法方面得知识,将傅里叶变换应用在图像得处理上,让我学习到了傅里叶算法方面得知识,实践才就是成长得好道路。
数字图像处理及MATLAB实现实验四——图像变换1.图像的傅⾥叶变换⼀(平移性质)傅⾥叶变换的平移性质表明了函数与⼀个指数项相乘等于将变换后的空域中⼼移到新的位置,并且平移不改变频谱的幅值。
I=imread('1.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('2.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('3.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));实验结果符合傅⾥叶变换平移性质2.图像的傅⾥叶变换⼆(旋转性质)%构造原始图像I=zeros(256,256);I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐imshow(I)%求原始图像的傅⾥叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figureimshow(J1,[550])%对原始图像进⾏旋转J=imrotate(I,90,'bilinear','crop');figureimshow(J)%求旋转后图像的傅⾥叶频谱J=fft2(I);F=abs(J);J2=fftshift(F);figureimshow(J2,[550])3.图像的离散余弦变换⼀%对cameraman.tif⽂件计算⼆维DCT变换RGB=imread('cameraman.tif');figure(1)imshow(RGB)I=rgb2gray(RGB);%真彩⾊图像转换成灰度图像J=dct2(I);%计算⼆维DCT变换figure(2)imshow(log(abs(J)),[])%图像⼤部分能量集中在左上⾓处figure(3);J(abs(J)<10)=0;%把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像K=idct2(J)/255;imshow(K)4.图像的离散余弦变换⼆% I=imread('1.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('2.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('3.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% %构造原始图像% I=zeros(256,256);% I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐% imshow(I)% %求原始图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J1=fftshift(F);figure% imshow(J1,[550])% %对原始图像进⾏旋转% J=imrotate(I,90,'bilinear','crop');% figure% imshow(J)% %求旋转后图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J2=fftshift(F);figure% imshow(J2,[550])% %对cameraman.tif⽂件计算⼆维DCT变换% RGB=imread('cameraman.tif');% figure(1)% imshow(RGB)% I=rgb2gray(RGB);% %真彩⾊图像转换成灰度图像% J=dct2(I);% %计算⼆维DCT变换% figure(2)% imshow(log(abs(J)),[])% %图像⼤部分能量集中在左上⾓处% figure(3);% J(abs(J)<10)=0;% %把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像% K=idct2(J)/255;% imshow(K)RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000110000001000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000100000000000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);5.图像的哈达玛变换cr=0.5;I=imread('cameraman.tif');I=im2double(I)/255; %将读⼊的unit8类型的RGB图像I转换为double类型的数据figure(1),imshow(I);%显⽰%求图像⼤⼩[m_I,n_I]=size(I); %提取矩阵I的⾏列数,m_I为I的⾏数,n_I为I的列数sizi=8;snum=64;%分块处理t=hadamard(sizi) %⽣成8*8的哈达码矩阵hdcoe=blkproc(I,[sizi sizi],'P1*x*P2',t,t');%将图⽚分成8*8像素块进⾏哈达码变换%重新排列系数CE=im2col(hdcoe,[sizi,sizi],'distinct');%将矩阵hdcode分为8*8互不重叠的⼦矩阵,再将每个⼦矩阵作为CE的⼀列[Y Ind]=sort(CE); %对CE进⾏升序排序%舍去⽅差较⼩的系数,保留原系数的⼆分之⼀,即32个系数[m,n]=size(CE);%提取矩阵CE的⾏列数,m为CE的⾏数,n为CE的列数snum=snum-snum*cr;for i=1:nCE(Ind(1:snum),i)=0;end%重建图像re_hdcoe=col2im(CE,[sizi,sizi],[m_I,n_I],'distinct');%将矩阵的列重新组织到块中re_I=blkproc(re_hdcoe,[sizi sizi],'P1*x*P2',t',t);%进⾏反哈达码变换,得到压缩后的图像re_I=double(re_I)/64; %转换为double类型的数据figure(2);imshow(re_I);%计算原始图像和压缩后图像的误差error=I.^2-re_I.^2;MSE=sum(error(:))/prod(size(re_I));。
傅里叶变换在医学影像处理中的应用进展傅里叶变换是一种重要的数学工具,被广泛应用于信号处理、图像处理和医学影像处理等领域。
在医学影像处理中,傅里叶变换的应用正在不断地得到进展和拓展。
本文将探讨傅里叶变换在医学影像处理中的应用进展,并介绍其中一些具体的应用案例。
一、医学影像处理中的傅里叶变换原理傅里叶变换是将一个信号或图像分解成一系列基础频率的正弦和余弦函数的过程。
通过对图像进行傅里叶变换,可以将图像转换到频域,从而更好地分析和处理图像。
医学影像处理中的傅里叶变换原理与一般图像处理类似,但应用的重点在于对医学影像中的各种结构、组织和异常情况进行分析和研究。
二、傅里叶变换在医学影像处理中的应用进展1. 图像增强与去噪傅里叶变换可以用于医学影像中的图像增强和去噪。
通过对图像进行傅里叶变换,可以将图像转换到频域,然后通过滤波等方法去除低频噪声和高频噪声,从而获得更清晰、更准确的图像信息。
此外,傅里叶变换还可以用于图像的锐化和边缘增强,提高图像的视觉效果。
2. 影像分割与提取傅里叶变换在医学影像处理中还可用于影像分割与特征提取。
医学影像中常常存在不同的结构和组织,通过对医学影像进行傅里叶变换,可以将不同的结构和组织在频域上进行分离,从而实现影像的分割和特征提取。
傅里叶变换还可以用于检测和测量病变区域的大小、形状和密度等特征,为医生提供更有效的诊断和治疗依据。
3. 异常检测与分类傅里叶变换在医学影像处理中还可用于异常检测与分类。
通过对医学影像进行傅里叶变换,可以得到病灶区域的频谱特征,进而通过特征提取和分类算法,实现对异常区域的检测和分类。
医学影像中的异常区域可能是肿瘤、囊肿等疾病的表现,通过傅里叶变换等方法对异常区域进行分析和研究,可以更早地发现病变并进行治疗。
4. 功能性影像分析傅里叶变换在医学影像处理中还可用于功能性影像分析。
功能性影像是一种通过记录和观察人体在不同功能状态下的代谢和血流等信息的影像。
通过对功能性影像进行傅里叶变换,可以将数据转换到频域,并通过频率分析等方法来研究人体的功能状态和生理变化。
二、图像数据的傅立叶变换图像变换在图像处理和分析中起着重要的作用。
为了有效和快速地对图像进行处理和分析,常常需要将原定义在图像空间的图像以某种形式转换到另外一些空间中,并利用这些空间的特有性质方便地进行一定的加工,最后在转换回图像空间以得到所需的处理效果。
这些转换方法就是本节要介绍和讨论的图像频域变换技术。
图像变换通常是一种二维正交变换。
一般要求:①正交变换必须是可逆的;②正变换和反变换的算法不能太复杂;③在变换域中图像能量集中分布在低频率的成分上,边缘、现状信息反映在高频率成分上,以有利于图像处理。
因此正交变换广泛应用在图像增强、图像恢复、特征提取、图像压缩编码和形状分析等方面。
在此首先讨论常用的傅立叶变换。
图像的傅立叶变换将图像空间变换到频域空间,从而可利用傅立叶频谱特性进行图像处理。
傅立叶变换是一种可分离和对称变换,下面先介绍这两个基本特性,然后再给出2-D 傅立叶的变换定义和定理,以及变换实例(章毓晋,2009)。
(一)可分离和对称变换图像至少是2-D的,2-D图像的正变换(简称变换)和反变换可分别表示为:(2.22)(2.23)其中为的变换,是正向变换核;为反变换,是反向变换核。
这两个核均依赖于,而与或的值无关。
可分离变换是图像变换的一种,它的变换核是可分离的;另外,图像变换中有一类是对称变换,对称变换的核是对称的。
下面以正向变换核为例进行介绍。
首先,如果下式成立:(2.24)则称正向变换核实可分离的。
进一步,如果和的函数形式一样,则称正向变换核是对称的,此时式(2.24)可写成:(2.25)具有可分离变换核的2-D变换可分成两个步骤来计算,每个步骤使用一个1-D变换。
具体实现时可如下考虑:将式(2.24)代入式(2.22),首先沿着的每一列进行1-D变换得到:(2.26)然后沿的每一行进行1-D变换得到(2.27)如果变换核是可分离的和对称的函数时,变换可用矩阵形式表示。
以正变换为例,有(2.28)其中F是NxN图像矩阵,A是NxN对称变换矩阵,其元素为,T是输出的NxN变换结果,为了得到反变换,对式两边各乘一个反变换矩阵B(2.29)如果,则(2.30)这表明图像F可完全恢复,如果B不等于,则可由式得F的一个近似:(2.31)利用矩阵形式的变换表示的一个优点是,所得到的变换矩阵分解成刻分解成若干个具有较少非零元素的乘积,这样可减少冗余并减少操作次数。
图像傅⾥叶变换1. 通俗理解傅⾥叶变换可参考:[1](图⽚摘⾃)2. 通俗理解数字图像傅⾥叶变换傅⾥叶定理指出,任何信号都可以表⽰成⼀系列正弦信号的叠加。
在⼀维领域,信号是⼀维正弦波的叠加,那么在⼆维领域,就是⽆数⼆维平⾯波的叠加。
⽐如⼀帧图像,不同点处的灰度值⾼低起伏变化,傅⾥叶变换就是⽤⽆数⼆维正弦波来拟合这种灰度值的起伏变化,灰度值的起伏变化平缓的地⽅,很低频的⼆维正弦波即可拟合,灰度值的起伏变化很⼤的地⽅(⽐如图像边缘、噪点等),则需要⾼频⼆维正弦波才能拟合。
刻画⼀维正弦波只需要⼀个频率值u,刻画⼆维正弦波则需要两个频率值(u,v)。
例如:数字图像傅⾥叶变换可参考:[1] MOOC课程[2] 数字图像处理,冈萨雷斯,第⼆版,第四章[3][4]下图摘⾃[1],在FFT功率谱图中,⾼亮度表明该频率特征明显。
3. 从数学公式的⾓度理解傅⾥叶变换本节的公式摘⾃冈萨雷斯的《数字图像处理》第四章3.1 1-Dimensional Fourier transform1-D Fourier transform and inverse Fourier transfrom:Using Euler's formula, Fourier transform can be expressed as所以,当我们看到傅⾥叶变换公式中的e−j2πµt时,我们应该想到的是⼀系列不同频率的正弦波。
傅⾥叶变换公式可这样理解:所谓傅⾥叶变换在其数学本质上⽆⾮是信号与正弦函数在时间轴上的卷积操作。
根据⼀般的惯例,我们将信号与之作卷积操作的部分称之为卷积核或核函数,因此我们可以从频率分解以外的视⾓来审视傅⾥叶变换,可以将其认为是信号与⼀个参数可变的核函数的卷积操作,其可变的核函数的参数就是频率。
(这段话摘⾃)1-D discrete Fourier transform:x is integers, M is the number of samples of µ.1-D inverse discrete Fourier transform:3.2 2-Dimensional Fourier transform2-D Fourier transform and inverse Fourier transfrom:2-D discrete Fourier transform:4. ⽤matlab实现傅⾥叶变换傅⾥叶变换函数:function F = FT_peng(I)[m,n] = size(I);F = zeros(m,n);for u = 1:mfor v = 1:nfor x = 1:mfor y = 1:nF(u,v) = F(u,v) + double(I(x,y)) * exp(-2*pi*1i*(u*x/m+v*y/n)); endendendendend傅⾥叶逆变换函数:function f = IFT_peng(I)[m,n] = size(I);f = zeros(m,n);for x = 1:mfor y = 1:nfor u = 1:mfor v = 1:nf(x,y) = f(x,y) + double(I(u,v)) * exp(2*pi*1i*(u*x/m+v*y/n)); endendendendf = f/(m*n);end主程序代码:clear;I = imread('test_img.png');I = imresize(I, [100,100]);I = rgb2gray(I);% using fft2 directlyI_fft2 = fft2(I);I_fft2 = abs(I_fft2); % abs将负实数和虚数部分调整为正实数I_fft2shift = fftshift(I_fft2); % 把四个⾓的⾼频信息移动到最中间I_fft2shift = uint8(I_fft2shift/256); % 除以256是为了缩⼩数值,能更好的显⽰% using function defined by usI_FT = FT_peng(I);I_FT2 = abs(I_FT);I_FTshift = fftshift(I_FT2);I_FTshift = uint8(I_FTshift/256);% recover the image by inverse Fourier function defined by usI_inv = IFT_peng(I_FT);I_inv = uint8(I_inv);% plotsubplot(221);imshow(I); title('Original image');subplot(222);imshow(I_fft2shift); title('fft2 frequency image');subplot(223);imshow(I_FTshift); title('FT frequency image');subplot(224);imshow(I_inv); title('Recovered image');运⾏结果:注:程序参考了博客Processing math: 100%。
图像傅里叶变换图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。
如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。
傅里叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅里叶变换就表示f的谱。
从纯粹的数学意义上看,傅里叶变换是将一个函数转换为一系列周期函数来处理的。
从物理效果看,傅里叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。
换句话说,傅里叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅里叶逆变换是将图像的频率分布函数变换为灰度分布函数。
傅里叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。
由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。
为什么要提梯度?因为实际上对图像进行二维傅里叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。
傅里叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。
一般来讲,梯度大则该点的亮度强,否则该点亮度弱。
这样通过观察傅里叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。
对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。
图像傅里叶变换的作用
图像傅里叶变换(IFFT)是一种分析和处理图像信号的工具,主
要用于图像分割、信号处理、图像降噪等。
它是一种原始信号的变换,能够将某个图像的空间域表示进行转换,从而获得一种特定的频域表示。
几乎所有的图像处理都基于一种不同的傅立叶变换。
它能解释图
像中不同频率分量之间的相互关系,并据此对图像进行相应处理。
此外,图像傅里叶变换也可以用于图像识别和检测,以确定图像中所包
含的特征。
另外,图像傅里叶变换也可以用于图像滤波和降噪。
滤波在图像
处理中起着重要作用,能有效地减少图像中的噪声,改善图像的质量。
傅立叶变换能根据噪声的频率来确定噪声的位置,从而将其从图像中
去除。
图像傅里叶变换不仅用于图像处理,而且也可以应用于图像识别、视觉检测、图像场景理解等任务中。
它对于大规模的图像特征机器学
习任务具有重要作用,在深度学习中也可以被成功应用。
总之,图像傅里叶变换可以通过能够表征图像特征的频域特征,
来发现图像内容,从而实现图像处理,图像识别,图像场景理解等任务,也可以用于滤波和降噪,从而改善图像质量。