《概率论》第1章§1随机试验、样本空间、随机事
- 格式:ppt
- 大小:1.04 MB
- 文档页数:15
第一章 概率论的基本概念一、随机事件其运算1.随机试验、样本点和样本空间(1)随机试验随机试验具有如下特点的试验.1、在相同的条件下,试验可以重复进行.2、试验的所有可能结果是预先知道的,并且不止一个.3、每一次试验出现那一个结果事先不能确定. (2)样本点和样本空间随机试验的每一个可能的(不可分解的)结果,称为这个随机试验的一个样本点,记为ω.随机试验的所有样本点组成的集合,称为这个随机试验的样本空间,记为. Ω2.随机事件、基本事件、必然事件和不可能事件在随机试验中,可能发生也可能不发生的事情称为该试验的随机事件,记为A ,B 等. 随机试验的随机事件可以表示为它的一些样本点组成的集合.在一次试验中,若试验结果是随机事件A 中的一个样本点,则称在一次试验中事件A 发生. 只包含一个样本点的事件称为基本事件. 在任何一次试验中都发生的事件,称为必然事件,它就是Ω所表示的事件,因而用Ω表示必然事件.在任何一次试验中都不发生的事件,称为不可能事件,它就是由φ所表示的事件,因而用φ表示不可能事件.3.事件之间的关系和运算 (1)包含关系设A ,B 为二事件,若A 发生必导致B 发生,则称事件A 包含于事件B ,或事件B 包含事件A ,记为B A ⊂.B A ⊂⇔A ∈∀ω必有B ∈ω,见图1—1. (2)相等关系设A ,B 为二事件,若B A ⊂并且A B ⊂,则称A 与B 相等,记为B A =,见图1—2.(3)事件的并设A ,B 为二事件,称事件“A ,B 至少一个发生(A 发生或B 发生)”为A ,B 的并(或和),记为.B A ∪B A ∪}|{B A ∈∈=ωωω或.见图1—3.(4)事件的交设A ,B 为二事件,称事件“A ,B 同时发生(A 发生且B 发生)”为A ,B 的交(或积).记为或B A ∩AB .AB }|{B A ∈∈=ωωω且.见图1—4. (5)事件的差设A ,B 为二事件,称事件“A 发生且B 不发生”为A 减去B 的差,记为B A −.B A − }|{B A ∉∈=ωωω且.见图1—5.(6)互不相容关系设A ,B 为二事件,若A ,B 不能同时发生,称A ,B 互不相容或互斥,记为AB φ=. A ,B 互不相容⇔AB φ=,见图1—6. (7)对立事件设A 为一事件,称事件“A 不发生”为A 的余事件或A 的对立事件,记为A .A =A −Ω,即φ=Ω=+A A A A ,,见图1—7.(8)完备事件组 构成完备事件组,若,,,,21n H H H )( 21j i H H H H H j i n ≠=Ω=++++φ, .换句话说,如果有限个或可数个事件两两不相容,并且“所有事件的和”是必然事件,则称它们构成完备事件组. ,,,,21n H H H 4.事件的运算法则对于任意事件,,有C B A ,, ,,,,21n A A A (1) 交换律 A B B A A B B A ∩∩∪∪==,.(2) 结合律 C B A C B A ∪∪∪∪)()(=;C B A C B A ∩∩∩∩)()(=.(3) 分配律 ;)()()(C A B A C B A ∩∪∩∪∩=)()()(C A B A C B A ∪∩∪∩∪=.() ∪∩∪ ∪∩ ∪∪ ∪∩)()(11n n A A A A A A A =. (4) 对偶律 ,;B A B A B A B A ∪∩∩∪==∩∩ ∩ ∪∪ ∪n n A A 11=; ∪∪ ∪ ∩∩ ∩n n A A 11=.下列关系和运算要熟记:Ω⊂⊂A φ;;B A B A B A ∪∩⊂⊂)(或B B A A B A B A ==⇒⊂∪∩且;A B A ⊂−;φ=−⇒⊂B A B A ;φφ=A ∩;A A =∪φ;φ=Ω;Ω=φ;A B B A ⊂⇒⊂;AB A B A B A −==−∩;)(A B A B A ∪∪=.【例1】写出下列随机试验的样本空间: (1)从袋中任取3个球,记录取球的结果.(2)从袋中不放回地接连取出3个球,记录取球的结果. (3)从袋中有放回地接连取出3个球,记录取球的结果.(4)从袋中不放回地一个一个地取球,直到取得白球为止录取球的结果.【例2】今有3个球、4个盒子.写出下列随机试验的样本空间:(1)将3个球任意地放入4个盒子中去、每个盒子放入的球数不限,记录放球的结果. (2)将3个球放入4个盒子中去,每个盒子至多放入1个球,记录放球的结果.【例3】写出下列随机试验的样本空间: (1)在上任取一点,记录其坐标. )1,0((2)将一尺之捶折成三段,记录三段的长度 (3)在上任取三点,记录三点的坐标.)1,0(【例4】写出下列随机试验的样本空间,用样本点的集合表示所述事件,并讨论它们之间的相互关系.(1)袋中有3个白球和2个黑球,从其中任取2个球,令A 表示 “取出的全是白球”,B 表示“取出的全是黑球”,表示“取出的球颜色相同”, (C i A 2,1=i )表示“取出的2个球中恰有i 个白球”,表示“取出的2个球中至少有1个白球”. D (2)袋中有2个正品和2个次品,从袋中有放回地接连抽取产品3次,每次任取1件,令 ()表示“第次取出的是正品”,i A 3,2,1=i i B 表示“3次都取得正品”. (3)从l,2,3,4这4个数字中,任取—数,取后放回,然后再任取一数.先后取了3次,令A 表示“3次取出的数不超过3”,B 表示“3次取出的数不超过2”,表示“3次取出的数的最大者为3”.C (4)将3个球任意地放入4个盒子中去,令A 表示“恰有3个盒子中各有1球”,B 表示“至少有2个球放入同1个盒子中”.【例5】设为3事件,试用表示下列事件: C B A ,,C B A ,,(1)至少有1个发生. C B A ,, (2)都不发生.C B A ,,(3)不都发生.C B A ,,(4)不多于1个发生. C B A ,,【例6】什么样的事件X 满足下列等式: (1)B A X A X =)()(∪∪∪. (2).B A X A ∪∪=(3). )()(C B C A X AB ∪∩∪∪=二、事件的概率及其性质1.事件概率的定义(1)古典概型满足下列条件的随机试验,称为古典概型.10 有限性:样本点的总数是有限的;20等可能性:所有基本事件是等可能的;①概率的定义:设随机试验为古典概型,样本空间为},,{1n ωω =Ω,A 是一个事件.},,{1r i i A ωω =,则事件的概率为含样本点的个数含样本点的个数Ω==A n r A P )(. ②概率的性质:对于古典概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30有限可加性:若两两互不相容,则n A A A ,,,21 ∑===ni i n i i A P A P 11)()(∪.(2)几何概型满足下列条件的随机试验,称为几何概型.10有限性:样本空间是直线、二维或三维空间中度量(长度、面积或体积)有限的区间或区域.20均匀性:样本点在样本空间上是均匀分布的(可通俗地称为是等可能的) .①概率的定义:在几何概型中,Ω为样本空间,A 是一个事件,定义事件A 的概率)()()(Ω=L A L A P . 其中,分别是)(A L )(ΩL A ,的度量.Ω②概率的性质:对于几何概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30若两两互不相容,则,,,,21n A A A ∑∞=∞==11)()(i i i i A P A P ∪.(3)事件的频率和性质以及概率的统计定义①事件的频率:将试验重复独立地进行次,若其中事件n A 发生了次,则称为A n A n A 在这n 次试验中出现的频数,称比值为n n A /A 在这次试验中出现的频率,记为,即.n )(A f n =)(A n f n n A /②频率的性质:事件的频率有如下性质: 101)(0≤≤A f n . 20.1)(=ΩP 30 若两两互不相容,则m A A A ,,,21 ∑===mi i n m i i n A f A f 11)()(∪.2.概率的公理化定义及性质(1)概率的公理化定义设随机试验E 的样本空间为,以ΩE 的所有随机事件组成的集合(即的一些子集组成的集合)为定义域,定义一个函数(Ω)(A P A 为任意随机事件),即任意一个随机事件A 与一个实数,且满足:)(A P 10.0)(≥A P 20.1)(=ΩP 30 可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)()(i i i i A P A P ∪.(2)概率的性质 100)(=φP .20 有限可加性:若两两互不相容,则.n A A A ,,,21 ∑===ni in i iA P A P 11)()(∪30可减性:如果B A ⊂,则)()()(A P B P A B P −=−,)()(B P A P ≤⇒. (无条件等式)()()(AB P B P A B P −=−) 40对于任意事件A ,有1)(≤A P . 50一般加法公式:==)(1∪n i i A P ∑=ni i A P 1)(∑≤<≤−nj i j i A A P 1)( ++∑≤<<≤nk j i k j i A A A P 1)()()1(211n n A A A P −−+【例7】袋中有3个白球及5个黑球,(1)从袋中任取4个球,求取得2个白球及2个黑球的概率.(2)从袋中不放回地接连取出4个球,求取得2个白球及2个黑球的概率. (3)从袋中有放回地接连取出 4个球,求取得2个白球及2个黑球的概率.【例8】设有个人,每个人都等可能地被分配到个房间中的任一间(),求下列事件的概率:n N N n < 事件:某指定的间房中各有1个人. 1A n 事件:恰有间房各有1个人. 2A n 韦件:某指定的房间中有个人.3A k 事件:当4A N n =时,恰有一间房空着.【例9】编号为1,2,3,4,5,6,7,8,9的车皮随机地发往三个地区,和的各2,3和4节,求发往同一地区的车皮编号相邻的概率. 1E 2E 3E【例10】从0,1,2,…,9这10个数字中任取1个,取后放回,先后取了6个数字,求下列事件的概率:事件:6个数字全不相同. 1A 事件:不含0与9. 2A 事件:0恰好出现2次. 3A 事件:至少出现2个0.4A 事件:6个数字中最大的是6. 5A 事件:6个数字的总和是20.6A【例11】有5名插班生,其中有3名男生、2名女生.现将他们按每班1人任意地分配到编号为1—5的5个班中去,求下列事件的概率:事件:3名男生被分到班号相连的3个班中.1A 事件:至少有2个男生被分到的班号或2个女生被分到的班号相连. 2A【例12】从n 双尺码不同的鞋子中任取r 2 (n r ≤2)只,求下列事件的概率: 事件:所取1A r 2只鞋子中只有2只成双 事件:所取2A r 2只鞋子中至少有2只成双.事件:所取3A r 2只鞍子恰成r 双.【例13】在线段AB 上任取一点,该点将AB 分成两段,求下列事件的概率: 事件:其中一段大于另一段的倍. 1A m 事件:其中每一段都小于另一段的倍.2A m【例14】设只1个泊位的码头有甲、乙两艘船停靠,2船各自可能在1昼夜的任何时刻到达.设两艘船停靠的时间分别为1小时和2小时,求下列事件的概率: 事件:码头空闲超过2小时.1A 事件:一艘船要停靠必须等待一段时间. 2A【例15】在线段上任取3个点,求下列事件的概率: AC 321,,A A A 事件:位于与之间.1B 2A 1A 1A 事件:能构成1个三角形. 2B 321,,AA AA AA【例16】若,5.0)(=A P 4.0)(=B P ,3.0)(=−B A P ,求和)(B A P ∪)(B A P ∪.【例17】对于任意两个互不相容的事件A 与B ,以下等式中只有一个不正确,它是: (A) ;)()(A P B A P =−(B) )()(A P B A P =−1)(−+B A P ∪; (C) )()()(B P A P B A P −=−; (D) ; (E) )())()((A P B A B A P =−∩∪)()()(B A P A P B A P ∪−=−.三、条件概率和乘法公式1.条件概率的定义及性质(1)条件概率的定义设为两个事件,,则称B A ,0)(>B P )()()|(B P AB P B A P =为B 发生的条件下A 的条件概率.(2)条件概率的性质 条件概率满足: 10. 0)|(≥B A P 20.1)|(=ΩB P 30可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)|()|(i i i i B A P B A P ∪.2.关于条件概率的三个定理(1)乘法公式若,则0)(>A P )()()(A B P A P AB P =. 推广 若,则0)(21>n A A A P )()()()(12112121−=n n n A A A A P A A P A P A A A P .(2)全概率公式设是样本空间的一个划分(或称为完备事件组),即两两不交:n B B B ,,,21 Ωn B B B ,,,21 j i B B j i ≠=,φ,且Ω=n B B B ∪ ∪∪21.则∑==ni i i B P B A P A P 1)()|()(.(3)贝叶斯公式设是样本空间Ω的一个划分,若事件n B B B ,,,21 A 满足:,则有0)(>A P n i B P BA PB P B A P A B P nj j ji i i ,,2,1,)()|()()|()|(1==∑=.)(i B P (),通常叫先验概率.,(n i ,,2,1 =)|(A B P i n i ,,2,1 =),通常称为后验概率.如果我们把A 当作观察的“结果”,而理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断.n B B B ,,,21【例18】在3重努利试验中,设5.0)(=A P ,若已知A 至少出现1次,求A 至少出现1次的概率.【例19】口袋个装有个白球、个黑球,一次取出球,发现都是同一颜色的球,求它们都是黑球的概率. 12−n n 2n【例20】假设一个人在一年内患感冒的次数X 服从参数为5的泊松分布;正在销售的一种药品A 对于75%的人可以将患感冒的次数平均降低到3次,而对于25%的人无效.现在有某人试用此药一年,结果在试用期患感冒两次,试求此药有效的概率α.【例21】对产品作抽样检验时,每100件为一批,逐批进行.对每批检验时,从其中任取1件作检查,如果是次品,就认为这批产品不合格;如果是合格品,则再检查下件.检验过的产品不放回.如此连续检查5件.如果检查5件产品都是合格品,则认为这批产品合格而被接受.假定一批产中有5%是次品,求这批产品被接受的概率.【例22】加工零件需要经过两道工序,第—道工序出现合格品的概率为0.9,出现次品的概今为0.1第一道工序加工出来的合格的,在第二道工序中出现合格品的概率为0.8,出现次品的概率为0.2;第一道工序加工出来的次品,在第二道工序出现次品或出现废品的概率都是0.5.分别求经过两道工序加工出来的零件是合格品、次品、废品的概率.【例23】在某工厂中有甲、乙、丙3台机器生产同样的产品,它们的产量各占25%,35%,40%,并且在各自的产品中.废品各占5%,4%,2%,从产品中任取1件,求它是废品的概率.若取出的是废品,分别求它是甲、乙、丙机器生产的概率.【例24】乒乓球盒内有12个球,其中9个是新球.第一次比赛时任取3个使用,用后放回.第二次比赛时再任取3个球,求此3个球全是新球的概率.若第二次取出的3个球全是新球,求第一次取出使用的3个球也是新球的概率.【例25】袋中装有5个白球和2个黑球,从中任取5个放入一个空袋中.再从这个袋的5个球做任取3个球放入另一个空袋个.最后从第三个袋中任取1球,求从第三个袋中取出白球的概率.若从第三个袋取出的是白球,分别求从第一个袋中取出放入第二个袋的5个球全是白球的概率、从第二个袋中取出放入第三个袋的3个球全是白球的概率.四、事件的独立性1.二事件的独立性定义 设为二事件,若B A ,)()()(B P A P AB P =,则称相互独立. B A , 性质 若,则相互独立的充要条件是)0(>A P B A ,)()|(B P A B P =. 定理 若相互独立,则B A ,A 与B ,A 与B ,A 与B 均独立. 2.三个或三个以上事件的独立性(1)三个事件相互独立 设为三个事件,若满足: C B A ,,)()()(B P A P AB P =; )()()(C P A P AC P =;)()()(C P B P BC P =;)()()()(C P B P A P ABC P =,则称相互独立,简称独立.C B A ,,C B A ,,若只满足上面的前三个式子,称两两独立.两两独立,未必相互独立. C B A ,,C B A ,,(2)个事件相互独立 如果n 个事件满足:n n A A A ,,,21 )()()(j i j i A P A P A A P =, n j i ≤<≤1, 共个等式; 2nC )()()()(k j i k j i A P A P A P A A A P =, n k j i ≤<<≤1 共个等式; 3nC … … … … … … … … … … … … … … … … … …)()()()(2121n n A P A P A P A A A P = 共个等式 nn C 这等式成立,则称相互独立,简称独立.1232−−=+++n C C C n nn n n n A A A ,,,21 n A A A ,,,21 若相互独立,是中的个事件,则相互独立.n A A A ,,,21 k i i i A A A ,,,21 n A A A ,,,21 k k i i i A A A ,,,21若相互独立,将任意n A A A ,,,21 m )1(n m ≤≤个事件换成它的对立事件后,所得个事件仍独立.n 若相互独立,则.n A A A ,,,21 ∏==−−=ni in i iA P A P 11))(1(1)(∪3.独立试验序列概型贝努利试验 对一个试验E ,如果只考虑两个结果A 和A ,且,p A P =)(q p A P =−=1)(,则称E 为贝努利试验.n 重贝努利试验 将贝努利试验E 重复独立地做次,称为n 重贝努利试验.n 二项概率公式 在n 重贝努利试验中,若用表示在n 次试验中k n A ,A 出现次,则k kn k k n k n q p C A P −=)(,,,n k ,,1,0 =p q −=1.【例26】设有两门高射炮,每—门击中飞机的概率都是0.6,求同时射击一发炮弹能击中飞机的概率.若欲以99%的概率击中飞机,求至少需要多少门高射炮同时射击.【例27】今有甲、乙两名射手轮流对同一目标进行射击,甲命中的概率为,乙命中的概率为,甲先射,谁先命中谁得胜,分别求甲、乙获胜的概率. 1p 2p【例28】甲、乙二人进行下棋比赛,假设每局甲胜的概率为α,乙胜的概率为β,且1=+βα,在每局比赛中谁获胜谁得1分.如果谁的积分多于对方2分,谁就获得全场的胜利,分别求甲、乙二人获得全场胜利的概率.【例29】检查产品质量时,从其中连续抽查若干件,如果废品不超过2件,则认为这批产品合格而被接收.现有一大批产品,其废品率为0.1. (1)若连续抽查10件.求这批产品被接收的概率.(2)为使这批产品被接收的概率不超过0.9.应至少抽查多少件产品.【例30】保险公司为某年龄段的人设计一项人寿保险,投保人在1月1日向保险公司交纳保险费10元,1年内若投保人死亡,家属可向保险公司领取5000元,已知在1年内该年龄段的人的死亡率为0.0005,(1)若有10000人投保,水保险公司获利不少于50000元的概率. (2)若有7000人投保,求保险公司亏损的概率.。
引言一、为什么要学习概率论与数理统计?学习概率论与数理统计的意义!二、概率论研究的是什么?在日常生活中,有很多事,他们的发生与否是确定的,比如上抛硬币必然下落等。
然而,还有许多事的发生与否或发生的结果是不确定的,这类事件就是不确定事件。
这类事件在“大数试验”下是有规律的。
比如:生男生女,抛硬币等。
概率论的任务就在于揭露与研究随机事件的规律性。
第一章概率论的基本概念§1随机试验首先,看几个试验:E1:抛币观察正、反面。
{正、反}E2:掷一骰子,观察点数。
{1、2、3、4、5、6}E3:顶点投篮,投中为止,记录投篮次数。
{1,2,3,……}以上三试验具有以下特征:ⅰ)在相同条件下可重复进行。
ⅱ)试验的可能出现的结果不唯一,但知道所有可能出现的结果。
ⅲ)再试验前不能预知哪一种结果出现。
我们将具有这三个特征的试验称为随机试验 E 。
以后我们说的试验都是随机试验。
注:如果一个随机试验E由几个随机试验E1×E2×……×E n复合而成,则称E为复合试验。
E=E1×E2×……×E n如:抛三枚硬币E ,第一次E1,第二次E2,第三次E3。
§2 样本空间随机事件1、定义:定义1、随机试验E的每一个可能出现的结果称为样本点e 。
定义2、随机试验E中所有可能发生的试验结果组成的集合叫样本空间S。
定义3、随机试验E的样本空间S的子集称为E的随机事件。
一般用A,B,C,D,……表示注:A,B,C,D,……为基本空间的一个子集。
A随机事件AA⇔⇔。
试验结果属于中的样本点出现发生2、下面介绍几个特殊的随机事件。
1)基本事件:仅含有单个样本点的事件。
2)必然事件S:样本空间S是自身的子集,包含所有的样本点,每次试验中S总是发生,故称为必然事件。
3) 不可能事件φ:φ是S的子集。
φ中不含任何样本点。
每次试验中φ必不发生。
故称为不可能事件。
例1:掷一枚骰子,观察点数。
第一章 概率论的基本理论前苏联数学家柯尔莫哥洛夫,1933年创立概率公理化体系。
⎧⎨⎩确定现象随机现象§1. 随机试验例:1E :抛一枚硬币,观察正反面出现情况; {}1,H T Ω=2E :将一枚硬币抛三次,观察正反面出现情况;{}2,,,,,,,HHH HHT HTH THH HTT THT TTH TTT Ω=3E :抛两颗色子,观察出现点数和; {}32,3,4,,12Ω=4E :在一批灯管中任取一只,测试它的寿命; {}40t t Ω=≥ 5E :将一尺之棰折成三段,观察各段长度;(){}5,,0,0,0,1x y z x y z x y z Ω=>>>++=特点:()()()123⎧⎪⎨⎪⎩试验可以在相同条件下重复进行;试验结果具有多种可能性,但能事先知道所有可能结果;进行试验前不能确定哪一结果出现。
满足上述特点的试验称之为随机试验,通过随机试验来研究随机现象。
§2. 样本空间 随机事件一、 样本空间随机试验E 的所有可能结果组成的集合,称为E 的样本空间。
样本空间通常用S 或Ω来表示。
(见上节)样本空间的元素——样本点。
二、 随机事件样本空间S 的子集——随机事件(事件),用,,A B C 表示;基本事件,必然事件,不可能事件。
事件A 发生⇔A 中有一样本点出现。
例1、 2E 2S1A :第一次出现H {}1,,,A H H H H H T H T H HT T = 2A :三个均出现T {}2A T T T =三、 事件间关系与事件的运算E S ,A B k A S ⊂1. A B ⊂ 事件B 包含事件A A 发生导致B 发生 A B =⇔A ⊂B 且B A ⊂。
2. A B ⋃1nk k A =1k k A ∞=3. A B A B ⋂1nk k A =1k k A ∞=4. A B A B -=5. A B ⋂=∅ ,A B 不相容,互斥6. A B S ⋃=且A B ⋂=∅——,A B 互逆,或对立事件 A B = A S A =- 算律同集合论例 设,,A B C 表示三个随机事件:○1 A 出现,,B C 都不出现 ABC ○2 ,A B 都出现,C 不出现 ABC ○3 三个事件均出现 ABC ○4 三个事件至少有一个出现 A B C ⋃⋃ ○5 三个事件均不出现 A B C ○6 不多于一个事件出现 ABC ABC ABC ABC 或AB BC AC○7 不多于两个事件出现 ABC ABC ABC ABC ABC ABC ABC or ABC ○8 三个事件至少有两个出现 ABC ABCABCABC○9 ,A B 至少有一个出现,C 不出现 ()A B C +⋅ ○10 ,,A B C 中恰好有两个出现 ABC ABC ABC§3. 频率与概率一、 排列、组合复习1. 不可重复排列(不放回) ()()()()!121!rn n A n n n n r n r =---+=-2. 可重复排列 (放回)n 个不同元素取r 个(未必不同)组成的排列种数 rn 3. 不可重复组合rnC n r ⎛⎫ ⎪⎝⎭4. 乘法原理、加法原理二、 频率1、E, n 次,A, A n()An n f A n=2、性质11121.0()12()13()()()()n n k n k n n n k f A f S A A f A A f A f A f A ≤≤⎧⎪=⎨⎪⎩=++……、、均不相容………… 例1, P8 例2, P9可见,n 逐渐增大-------()n f A 逐渐趋于一个常数-------------------频率稳定性-------- 统计规律性------- 概率(事件发生可能性的) -----------------概率定义三、 概率 Probability1. 定义: E S A E ⊂ 实数()P A 满足:()()()()()()()1210213,,,,,n i j P A P S A A A i j A A ⎧≥⎪⎪=⎨⎪≠⋅=∅⎪⎩非负性规范性设两两互不相容,即:时则()()()()1212nn P A A A P A P A P A =++++(可列可加性)则称P 为概率,()P A 为事件A 的概率。
概率论第一章知识点总结
概率论第一章主要介绍了以下几个知识点:
1. 随机试验:指具有以下三个特征的试验:可以进行多次独立重复;每次试验只有两个可能结果中的一个发生;每次试验发生的概率相同。
2. 样本空间:随机试验的所有可能结果构成的集合称为样本空间,通常用S表示。
3. 事件:样本空间的任意子集称为事件,通常用A、B等大写字母表示。
4. 概率:事件A发生的概率定义为P(A)=n(A)/n(S),其中n(A)表示事件A中元素的个数,n(S)表示样本空间中元素的个数。
5. 概率的性质:对于任意事件A和B,有以下性质:
(1) 0 ≤ P(A) ≤ 1
(2) P(S) = 1
(3) P(A∪B) = P(A) + P(B) - P(A∩B)
(4) 若A和B互不相容(即A∩B=),则P(A∪B) = P(A) + P(B) 6. 条件概率:事件B在事件A发生的条件下发生的概率称为条件概率,记为P(B|A),计算公式为P(B|A) = P(A∩B) / P(A)。
7. 乘法公式:对于任意事件A1,A2,…,An,有P(A1∩A2∩…∩An) = P(A1)P(A2|A1)P(A3|A1∩A2)…P(An|A1∩A2∩…∩An-1)。
8. 全概率公式和贝叶斯公式:全概率公式和贝叶斯公式是基于条件概率的重要公式,用于计算复杂事件的概率。
其中全概率公式为:
P(B) = Σi=1,2,…,nP(Ai)P(B|Ai),贝叶斯公式为:P(Aj|B) = P(Aj)P(B|Aj)/Σi=1,2,…,nP(Ai)P(B|Ai)。
§1.1 随机事件与样本空间随机事件与样本空间是概率论中的两个最基本的概念。
一、 基本事件与样本空间对于随机试验来说,我们感兴趣的往往是随机试验的所有可能结果。
例如掷一枚硬币,我们关心的是出现正面还是出现反面这两个可能结果。
若我们观察的是掷两枚硬币的试验,则可能出现的结果有(正、正)、(正、反)、(反、正)、(反、反)四种,如果掷三枚硬币,其结果还要复杂,但还是可以将它们描述出来的,总之为了研究随机试验,必须知道随机试验的所有可能结果。
1、 基本事件通常,据我们研究的目的,将随机试验的每一个可能的结果,称为基本事件。
因为随机事件的所有可能结果是明确的,从而所有的基本事件也是明确的,例如:在抛掷硬币的试验中“出现反面”,“出现正面”是两个基本事件,又如在掷骰子试验中“出现一点”,“出现两点”,“出现三点”,……,“出现六点”这些都是基本事件。
2、 样本空间基本事件的全体,称为样本空间。
也就是试验所有可能结果的全体是样本空间,样本空间通常用大写的希腊字母Ω表示,Ω中的点即是基本事件,也称为样本点,常用ω表示,有时也用A,B,C 等表示。
在具体问题中,给定样本空间是研究随机现象的第一步。
例1、 一盒中有十个完全相同的球,分别有号码1、2、3……10,从中任取一球,观察其标号,令=i {取得球的标号为i },=i 1,2,3,…,10. 则Ω={1,2,3,…,10},=i ω{标号为i },=i 1,2,3,…,101ω,2ω,…, 10ω为基本事件(样本点)例2 在研究英文字母使用状况时,通常选用这样的样本空间: Ω={空格,A,B,C,…,X,Y,Z}例 1,例 2讨论的样本空间只有有限个样本点,是比较简单的样本空间。
例3讨论某寻呼台在单位时间内收到的呼叫次数,可能结果一定是非负整数而且很难制定一个数为它的上界,这样,可以把样本空间取为Ω={0,1,2,3,…}这样的样本空间含有无穷个样本点,但这些样本点可以依照某种顺序排列起来,称它为可列样本空间。
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。