卡尔曼滤波算法C语言实现
- 格式:pdf
- 大小:419.62 KB
- 文档页数:7
/***************************************** ****** 卡尔曼滤波器算法实现 ********* ****** c语言实现 *********** ****** ****** ******实现函数:int klman(n,m,k,f,q,r,h,y,x,p,g ****** ******详细意义见算法说明 ****** ******如果要编制matlab 实现程序,可以参考kalman_matlab.m ********************************************/ #include "stdlib.h" intklman(n,m,k,f,q,r,h,y,x,p,g int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { inti,j,kk,ii,l,jj,js; double *e,*a,*b; extern int brinv(; e=malloc(m*m*sizeof(double; l=m; if (l a=malloc(l*l*sizeof(double; b=malloc(l*l*sizeof(double; for (i=0; i<=n-1; i++ for (j=0;j<=n-1; j++ { ii=i*l+j; a[ii]=0.0; for (kk=0; kk<=n-1; kk++a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++ for (j=0; j<=n-1; j++ { ii=i*n+j; p[ii]=q[ii]; for (kk=0; kk<=n-1; kk++ p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j]; } for (ii=2; ii<=k; ii++ { for (i=0; i<=n-1; i++ for (j=0; j<=m-1; j++ { jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=n-1; kk++ a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk]; } for (i=0; i<=m-1; i++ for (j=0; j<=m-1; j++ { jj=i*m+j; e[jj]=r[jj]; for (kk=0; kk<=n-1; kk++ e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j]; }js=brinv(e,m; if (js==0 { free(e; free(a; free(b; return(js;} for (i=0; i<=n-1; i++ for (j=0;j<=m-1; j++ { jj=i*m+j; g[jj]=0.0; for (kk=0; kk<=m-1; kk++g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk]; } for (i=0; i<=n-1; i++ { jj=(ii-1*n+i; x[jj]=0.0; for (j=0; j<=n-1; j++ x[jj]=x[jj]+f[i*n+j]*x[(ii-2*n+j]; } for (i=0; i<=m-1; i++ { jj=i*l; b[jj]=y[(ii-1*m+i]; for (j=0; j<=n-1; j++ b[jj]=b[jj]-h[i*n+j]*x[(ii-1*n+j]; } for (i=0; i<=n-1; i++ { jj=(ii-1*n+i; for (j=0; j<=m-1; j++ x[jj]=x[jj]+g[i*m+j]*b[j*l]; } if (ii { for (i=0; i<=n-1; i++ for (j=0; j<=n-1; j++ { jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=m-1; kk++ a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j]; if (i==j a[jj]=1.0+a[jj]; } for (i=0; i<=n-1; i++ for (j=0; j<=n-1;j++ { jj=i*l+j; b[jj]=0.0; for (kk=0; kk<=n-1; kk++ b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j]; } for (i=0; i<=n-1; i++ for (j=0; j<=n-1; j++ { jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=n-1; kk++a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++ for (j=0; j<=n-1; j++ { jj=i*n+j;p[jj]=q[jj]; for (kk=0; kk<=n-1; kk++ p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk]; } } } free(e; free(a; free(b; return(js; } ...。
卡尔曼滤波c语言实现
卡尔曼滤波(Kalman filter)是一种著名的非线性估计方法,它由美国工程师R.E.KALMAN于1960年提出。
卡尔曼滤波基本思想是将系统状态采用隐马尔可夫模型来描述,将系统状态的不确定性表示为有限的概率分布,由此建立一个状态估计问题。
c语言实现卡尔曼滤波的步骤如下:
1、初始化:设置初始条件,包括状态变量x的初始值和协方差矩阵P的初始值。
2、预测:根据当前的状态变量x估计下一时刻的状态变量x_prediction。
3、更新:根据观测值z和预测状态变量
x_prediction更新当前状态变量x_update。
4、循环:重复以上步骤,直到达到目标精度或者停止条件。
自适应卡尔曼滤波c语言实现什么是自适应卡尔曼滤波?自适应卡尔曼滤波是一种用于估计系统状态的算法,它结合了传统的卡尔曼滤波和自适应技术。
卡尔曼滤波器是一种用于优化系统状态估计的线性滤波器,常用于控制系统和信号处理领域。
而自适应技术可以根据系统的特点动态调整滤波器的参数,以适应不同的系统动态。
自适应卡尔曼滤波器的主要思想是通过监测系统的输出和测量值之间的误差来调整滤波器的参数,从而提高状态估计的准确性。
它使用递归方式来更新状态估计,并根据估计误差和测量噪声的大小自适应地调整滤波器的增益矩阵。
自适应卡尔曼滤波的C语言实现步骤如下:1. 初始化滤波器的状态估计和协方差矩阵。
状态估计是系统状态的估计值,协方差矩阵描述了状态估计的不确定性。
2. 根据系统的动态模型,使用预测方程来预测下一时刻的状态估计和协方差矩阵。
预测方程基于系统的状态转移矩阵、状态估计和过程噪声的协方差矩阵。
3. 根据系统的观测模型和测量值,使用更新方程来更新状态估计和协方差矩阵。
更新方程基于系统的观测矩阵、测量噪声的协方差矩阵和测量值与预测值之间的残差。
4. 根据估计误差和测量噪声的大小,调整滤波器的增益矩阵。
增益矩阵用于控制预测值和测量值之间的权重,从而平衡系统模型和观测值的相对重要性。
5. 重复步骤2至步骤4,直到达到滤波器的收敛条件。
收敛条件可以根据系统的动态特性和应用需求来确定。
在实际应用中,自适应卡尔曼滤波可以用于估计动态系统的状态,并根据实时测量值对状态估计进行修正。
它在控制系统、信号处理和导航等领域具有广泛的应用,能够提高系统的性能和鲁棒性。
总结起来,自适应卡尔曼滤波是一种结合了传统的卡尔曼滤波和自适应技术的状态估计算法。
通过动态调整滤波器的参数,它能够适应不同的系统动态,并提高状态估计的准确性。
自适应卡尔曼滤波的C语言实现包括初始化滤波器、用预测方程预测状态估计、用更新方程更新状态估计和调整增益矩阵。
在实际应用中,它可以用于估计动态系统的状态,并根据实时测量值进行修正,从而提高系统的性能和鲁棒性。
ekf卡尔曼滤波 c语言卡尔曼滤波(Kalman Filter)是一种用于估计动态系统状态的算法,它在信号处理、控制工程和计算机视觉等领域有广泛的应用。
以下是一个简单的 EKF(Extended Kalman Filter,扩展卡尔曼滤波)卡尔曼滤波的 C 语言示例代码:```c#include <stdio.h>#include <math.h>// 定义状态向量结构体typedef struct {double x;double y;} StateVector;// 定义观测向量结构体typedef struct {double z;} ObservationVector;// 初始化卡尔曼滤波器void kalmanFilterInit(StateVector *state, double x0, double y0, double S0, double R0) {state->x = x0;state->y = y0;state->S = S0;state->R = R0;}// 预测状态void kalmanFilterPredict(StateVector *state, double u, double S) {state->x = state->x + u;state->y = state->y + u;state->S = S + S;}// 观测更新void kalmanFilterCorrect(StateVector *state, ObservationVector *observation, double H, double R) {double S = state->S + H * H;double K = state->S / S;state->x = state->x + K * (observation->z - H * state->x);state->y = state->y + K * (observation->z - H * state->y);state->S = S - K * H;}int main() {// 状态向量StateVector state;// 观测向量ObservationVector observation;// 初始状态double x0 = 0.0, y0 = 0.0, S0 = 1.0, R0 = 0.1;// 过程噪声double u = 0.1, S = 0.2;// 观测噪声double H = 1.0, R = 0.2;kalmanFilterInit(&state, x0, y0, S0, R0);for (int i = 0; i < 10; i++) {kalmanFilterPredict(&state, u, S);observation.z = H * state.x + R * (double)rand() / RAND_MAX;kalmanFilterCorrect(&state, &observation, H, R);printf("x = %f, y = %f\n", state.x, state.y);}return 0;}```这个示例代码实现了一个简单的 EKF 卡尔曼滤波。
自适应卡尔曼滤波C语言实现1. 什么是卡尔曼滤波?卡尔曼滤波是一种用于估计系统状态的算法,它基于线性动态系统模型和高斯噪声假设。
卡尔曼滤波器通过不断地更新状态估计值,将测量结果和系统动态进行融合,提供更准确的状态估计。
在实际应用中,传感器测量值常常包含噪声或者不完全准确。
卡尔曼滤波通过对测量值进行加权平均,同时考虑系统的动态模型和测量噪声的特性,可以有效地抑制噪声并提高状态估计的精度。
2. 卡尔曼滤波的基本原理卡尔曼滤波器由两个步骤组成:预测步骤和更新步骤。
预测步骤预测步骤用于根据当前时刻的状态估计值和系统动态模型,预测下一时刻的状态估计值。
假设我们有一个状态向量x表示系统的状态,在每个时刻t,我们可以使用状态转移矩阵A将当前时刻的状态向量x(t)预测到下一时刻的状态向量x(t+1):x(t+1) = A * x(t)同时,我们还需要考虑过程噪声的影响。
假设过程噪声服从均值为0、协方差矩阵为Q的高斯分布,我们可以使用协方差矩阵Q来描述过程噪声的特性。
预测步骤可以表示为:P(t+1|t) = A * P(t|t) * A' + Q其中,P(t|t)表示当前时刻的状态估计误差协方差矩阵,P(t+1|t)表示预测步骤中的状态估计误差协方差矩阵。
更新步骤更新步骤用于根据当前时刻的测量值和预测步骤得到的状态估计值,更新系统状态的估计。
假设我们有一个观测向量z表示系统的观测值,在每个时刻t,我们可以使用观测模型C将当前时刻的状态向量x(t)映射到观测空间中:z(t) = C * x(t)同时,我们还需要考虑观测噪声的影响。
假设观测噪声服从均值为0、协方差矩阵为R的高斯分布,我们可以使用协方差矩阵R来描述观测噪声的特性。
更新步骤可以表示为:K(t+1) = P(t+1|t) * C' * (C * P(t+1|t) * C' + R)^(-1)x(t+1|t+1) = x(t+1|t) + K(t+1) * (z(t+1) - C * x(t+1|t))P(t+1|t+1) = (I - K(t+1) * C) * P(t+1|t)其中,K(t+1)表示卡尔曼增益,x(t+1|t+1)表示更新步骤中的状态估计值,P(t+1|t+1)表示更新步骤中的状态估计误差协方差矩阵。
卡尔曼滤波算法实现代码C++实现代码如下:============================kalman.h=================//kalman.h:interfaceforthekalmanclass.////////////////////////////////////////////////////////////////////////#if!defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)#defineAFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_#if_MSC_VER>1000#pragmaonce#endif//_MSC_VER>1000#include<math.h>#include"cv.h"classkalman{public:voidinit_kalman(intx,intxv,inty,intyv);CvKalman*cvkalman;CvMat*state;CvMat*process_noise;CvMat*measurement;constCvMat*prediction;CvPoint2D32fget_predict(floatx,floaty);kalman(intx=0,intxv=0,inty=0,intyv=0);//virtual~kalman(););#endif//!defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp===============#include"kalman.h"#include<stdio.h>/*testerdeprintertouteslesvaleursdesvecteurs「*//*testerdechangerlesmatricesdunoises*//*replacestatebycvkalman->state_post???*/CvRandStaterng;constdoubleT=0.1;kalman::kalman(intx,intxv,inty,intyv)(cvkalman=cvCreateKalman(4,4,0);state=cvCreateMat(4,1,CV_32FC1);process_noise=cvCreateMat(4,1,CV_32FC1);measurement=cvCreateMat(4,1,CV_32FC1);intcode=-1;/*creatematrixdata*/constfloatA[]={ 1,T,0,0,0,1,0,0,0,0,1,T,0,0,0,1};constfloatH口={1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0};constfloatP[]={pow(320,2),pow(320,2)/T,0,0,pow(320,2)/T,pow(320,2)/pow(T,2),0,0, 0,0,pow(240,2),pow(240,2)/T,0,0,pow(240,2)/T,pow(240,2)/pow(T,2) };constfloatQ口={pow(T,3)/3,pow(T,2)/2,0,0,pow(T,2)/2,T,0,0,0,0,pow(T,3)/3,pow(T,2)/2,0,0,pow(T,2)/2,T};constfloatR[]={1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0);cvRandInit(&rng,0,1,-1,CV_RAND_UNI); cvZero(measurement); cvRandSetRange(&rng,0,0.1,0);rng.disttype=CV_RAND_NORMAL;cvRand(&rng,state);memcpy(cvkalman->transition_matrix->data.fl,A,sizeof(A));memcpy(cvkalman->measurement_matrix->data.fl,H,sizeof(H)); memcpy(cvkalman->process_noise_cov->data.fl,Q,sizeof(Q)); memcpy(cvkalman->error_cov_post->data.fl,P,sizeof(P));memcpy(cvkalman->measurement_noise_cov->data.fl,R,sizeof(R));//cvSetIdentity(cvkalman->process_noise_cov,cvRealScalar(1e-5));//cvSetIdentity(cvkalman->error_cov_post,cvRealScalar(1));//cvSetIdentity(cvkalman->measurement_noise_cov,cvRealScalar(1e-1));/*chooseinitialstate*/state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange(&rng,0,sqrt(cvkalman->process_noise_cov->data.fl[0]),0);cvRand(&rng,process_noise);}CvPoint2D32fkalman::get_predict(floatx,floaty){/*updatestatewithcurrentposition*/state->data.fl[0]=x;state->data.fl[2]=y;/*predictpointposition*//*x'k=A敏k+B敏kP'k=A敏k-1*AT+Q*/cvRandSetRange(&rng,0,sqrt(cvkalman->measurement_noise_cov->data.fl[0]),0);cvRand(&rng,measurement);/*xk=A?xk-1+B?uk+wk*/cvMatMulAdd(cvkalman->transition_matrix,state,process_noise,cvkalman->state_post);/*zk=H?xk+vk*/cvMatMulAdd(cvkalman->measurement_matrix,cvkalman->state_post,measurement,measurement);cvKalmanCorrect(cvkalman,measurement);floatmeasured_value_x=measurement->data.fl[0];floatmeasured_value_y=measurement->data.fl[2];constCvMat*prediction=cvKalmanPredict(cvkalman,0);floatpredict_value_x=prediction->data.fl[0];floatpredict_value_y=prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));)voidkalman::init_kalman(intx,intxv,inty,intyv)(state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;)c语言实现代码如下#include"stdlib.h"#include"rinv.c"intlman(n,m,k,f,q,r,h,y,x,p,g)intn,m,k;doublef[],q口,r[],h[],y口刈,p[],g口;日日{inti,j,kk,ii,l,jj,js;double*e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if(l<n)l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for(i=0;i<=n-1;i++)for(j=0;j<=n-1;j++)颠{ii=i*l+j;a[ii]=0.0;for(kk=0;kk<=n-1;kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];for(i=0;i<=n-1;i++)for(j=0;j<=n-1;j++){ii=i*n+j;p[ii]=q[ii];for(kk=0;kk<=n-1;kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];for(ii=2;ii<=k;ii++){for(i=0;i<=n-1;i++)for(j=0;j<=m-1;j++){jj=i*l+j;a皿=0.0;for(kk=0;kk<=n-1;kk++)I a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];)for(i=0;i<=m-1;i++)I for(j=0;j<=m-1;j++)yl{jj=i*m+j;e[jj]=r[jj];I for(kk=0;kk<=n-1;kk++)I e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];)js=rinv(e,m);{free(e);free(a);free(b);return(js);}for(i=0;i<=n-1;i++)for(j=0;j<=m-1;j++){jj=i*m+j;g[jj]=0.0;for(kk=0;kk<=m-1;kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for(i=0;i<=n-1;i++){jj=(ii-1)*n+i;x[jj]=0.0;for(j=0;j<=n-1;j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for(i=0;i<=m-1;i++){jj=i*l;b[jj]=y[(ii-1)*m+i];for(j=0;j<=n-1;j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for(i=0;i<=n-1;i++){jj=(ii-1)*n+i;for(j=0;j<=m-1;j++)I x[jj]=x[jj]+g[i*m+j]*b[j*l];)I if(ii<k)5¥{for(i=0;i<=n-1;i++)I for(j=0;j<=n-1;j++)有己{jj=i*l+j;a皿=0.0;I for(kk=0;kk<=m-1;kk++)I a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];I if(i==j)a[jj]=1.0+a[jj];□)I for(i=0;i<=n-1;i++)I for(j=0;j<=n-1;j++){jj=i*l+j;b[jj]=0.0;I for(kk=0;kk<=n-1;kk++)I b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];)I for(i=0;i<=n-1;i++)I for(j=0;j<=n-1;j++)▼I{jj=i*l+j;a[jj]=0.0;I for(kk=0;kk<=n-1;kk++)I a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];)I for(i=0;i<=n-1;i++)for(j=0;j<=n-1;j++){jj=i*n+j;p[jj]=q[jj];I for(kk=0;kk<=n-1;kk++)I P[jj]=P[jj]+f[i*n+kk]*a[j*l+kk];}}free(e);free(a);free(b);return(js);。
卡尔曼滤波算法实现代码其c语言实现代码如下:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];}js=rinv(e,m);if (js==0){ free(e); free(a); free(b); return(js);}for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];}}}free(e); free(a); free(b);return(js);}C++实现代码如下:============================kalman.h================= ===============// kalman.h: interface for the kalman class.////////////////////////////////////////////////////////////////////////#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_)#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_#if _MSC_VER > 1000#pragma once#endif// _MSC_VER > 1000#include <math.h>#include "cv.h"class kalman{public:void init_kalman(int x,int xv,int y,int yv);CvKalman* cvkalman;CvMat* state;CvMat* process_noise;CvMat* measurement;const CvMat* prediction;CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();};#endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp=============== =================#include "kalman.h"#include <stdio.h>/* tester de printer toutes les valeurs des vecteurs*//* tester de changer les matrices du noises *//* replace state by cvkalman->state_post ??? */CvRandState rng;const double T = 0.1;kalman::kalman(int x,int xv,int y,int yv){cvkalman = cvCreateKalman( 4, 4, 0 );state = cvCreateMat( 4, 1, CV_32FC1 );process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 );int code = -1;/* create matrix data */const float A[] = {1, T, 0, 0,0, 1, 0, 0,0, 0, 1, T,0, 0, 0, 1};const float H[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};const float P[] = {pow(320,2), pow(320,2)/T, 0, 0,pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,0, 0, pow(240,2), pow(240,2)/T,0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)};const float Q[] = {pow(T,3)/3, pow(T,2)/2, 0, 0,pow(T,2)/2, T, 0, 0,0, 0, pow(T,3)/3, pow(T,2)/2,0, 0, pow(T,2)/2, T};const float R[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 );rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));//cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );//cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise );}CvPoint2D32f kalman::get_predict(float x, float y){/* update state with current position */state->data.fl[0]=x;state->data.fl[2]=y;/* predict point position *//* x'k=A鈥 k+B鈥 kP'k=A鈥 k-1*AT + Q */cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl [0]), 0 );cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman-> state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, meas urement, measurement );/* adjust Kalman filter state *//* Kk=P'k鈥 T鈥?H鈥 'k鈥 T+R)-1xk=x'k+Kk鈥?zk-H鈥 'k)Pk=(I-Kk鈥 )鈥 'k */cvKalmanCorrect( cvkalman, measurement );float measured_value_x = measurement->data.fl[0];float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );float predict_value_x = prediction->data.fl[0];float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y)); }void kalman::init_kalman(int x,int xv,int y,int yv){state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;}。
卡尔曼滤波算法实现代码C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_#if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000#include <math.h> #include "cv.h"class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman();};#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp=============== =================#include "kalman.h" #include <stdio.h>/* tester de printer toutes les valeurs des vecteurs */ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) {cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;/* create matrix data */ const float A[] = { 1, T, 0, 0, 0, 1, 0, 0, 0, 0, 1, T, 0, 0, 0, 1 };const float H[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 };const float P[] = { pow(320,2), pow(320,2)/T, 0, 0, pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0, 0, 0, pow(240,2), pow(240,2)/T, 0, 0, pow(240,2)/T, pow(240,2)/pow(T,2) };const float Q[] = { pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T, 0, 0, 0, 0, pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T };const float R[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }; cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 ); rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A)); memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H)); memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q)); memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P)); memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R)); //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) ); //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1)); //cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x; state->data.fl[1]=xv; state->data.fl[2]=y;state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise ); }CvPoint2D32f kalman::get_predict(float x, float y) {/* update state with current position */ state->data.fl[0]=x; state->data.fl[2]=y;/* predict point position */ /* x'k=A 鈥 k+B 鈥 kP'k=A 鈥 k-1*AT + Q */ cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl [0]), 0 ); cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */ cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman-> state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, meas urement, measurement );cvKalmanCorrect( cvkalman, measurement ); float measured_value_x = measurement->data.fl[0]; float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 ); float predict_value_x = prediction->data.fl[0]; float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y)); }void kalman::init_kalman(int x,int xv,int y,int yv) { state->data.fl[0]=x;state->data.fl[1]=xv; state->data.fl[2]=y; state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv; }c 语言实现代码如下:#include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m; if (l<n) l=n; a=malloc(l*l*sizeof(double)); b=malloc(l*l*sizeof(double)); for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*l+j; a[ii]=0.0; for (kk=0; kk<=n-1; kk++) a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*n+j; p[ii]=q[ii]; for (kk=0; kk<=n-1; kk++) p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j]; } for (ii=2; ii<=k; ii++) { for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++) { jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];} for (i=0; i<=m-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj]; for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j]; } js=rinv(e,m); if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0; for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk]; } for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0; for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j]; } for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i]; for (j=0; j<=n-1; j++) b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j]; } for (i=0; i<=n-1; i++) { jj=(ii-1)*n+i;for (j=0; j<=m-1; j++) x[jj]=x[jj]+g[i*m+j]*b[j*l];} if (ii<k){ for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j]; if (i==j) a[jj]=1.0+a[jj]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; b[jj]=0.0; for (kk=0; kk<=n-1; kk++) b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*n+j; p[jj]=q[jj]; for (kk=0; kk<=n-1; kk++) p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk]; } }} free(e); free(a); free(b); return(js);}。
卡尔曼滤波c语言卡尔曼滤波是一种用于估计系统状态的算法,它可以通过将系统测量值和先验估计值进行加权平均,得到一个更准确的状态估计值。
以下是一个简单的卡尔曼滤波的C语言实现示例:c#include <stdio.h>#define SENSOR_NOISE 0.1 测量噪声方差#define PROCESS_NOISE 0.001 过程噪声方差float kalman_filter(float measurement, float previous_estimate, float previous_covariance) {预测步骤float predicted_estimate = previous_estimate;float predicted_covariance = previous_covariance +PROCESS_NOISE;更新步骤float kalman_gain = predicted_covariance / (predicted_covariance + SENSOR_NOISE);float current_estimate = predicted_estimate + kalman_gain *(measurement - predicted_estimate);float current_covariance = (1 - kalman_gain) * predicted_covariance;return current_estimate;}int main() {float measurement1 = 10.5;float measurement2 = 12.3;float estimate = 0; 初始估计值float covariance = 1; 初始估计方差estimate = kalman_filter(measurement1, estimate, covariance);printf("Estimate after measurement1: %f\n", estimate);estimate = kalman_filter(measurement2, estimate, covariance);printf("Estimate after measurement2: %f\n", estimate);return 0;}在上述示例中,传感器测量值和初始估计值分别通过`kalman_filter`函数进行卡尔曼滤波处理。
本文档如对你有帮助,请帮忙下载支持!卡尔曼滤波算法实现代码C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_#if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000#include <math.h> #include "cv.h"class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);本文档如对你有帮助,请帮忙下载支持! kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman();};#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp=============== =================#include "kalman.h" #include <stdio.h>/* tester de printer toutes les valeurs des vecteurs */ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) {cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;/* create matrix data */ const float A[] = { 1, T, 0, 0, 0, 1, 0, 0, 0, 0, 1, T, 0, 0, 0, 1 };const float H[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 };本文档如对你有帮助,请帮忙下载支持!const float P[] = { pow(320,2), pow(320,2)/T, 0, 0, pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0, 0, 0, pow(240,2), pow(240,2)/T, 0, 0, pow(240,2)/T, pow(240,2)/pow(T,2) };const float Q[] = { pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T, 0, 0, 0, 0, pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T };本文档如对你有帮助,请帮忙下载支持! const float R[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }; cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 ); rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A)); memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H)); memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q)); memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P)); memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R)); //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) ); //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1)); //cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x; state->data.fl[1]=xv; state->data.fl[2]=y;本文档如对你有帮助,请帮忙下载支持! state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise ); }CvPoint2D32f kalman::get_predict(float x, float y) {/* update state with current position */ state->data.fl[0]=x; state->data.fl[2]=y;/* predict point position */ /* x'k=A 鈥 k+B 鈥 kP'k=A 鈥 k-1*AT + Q */ cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl [0]), 0 ); cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */ cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman-> state_post );/* zk=H?xk+vk */本文档如对你有帮助,请帮忙下载支持! cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, meas urement, measurement );cvKalmanCorrect( cvkalman, measurement ); float measured_value_x = measurement->data.fl[0]; float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 ); float predict_value_x = prediction->data.fl[0]; float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y)); }void kalman::init_kalman(int x,int xv,int y,int yv) { state->data.fl[0]=x;state->data.fl[1]=xv; state->data.fl[2]=y; state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv; }c 语言实现代码如下:#include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m; if (l<n) l=n; a=malloc(l*l*sizeof(double)); b=malloc(l*l*sizeof(double)); for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*l+j; a[ii]=0.0; for (kk=0; kk<=n-1; kk++) a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*n+j; p[ii]=q[ii]; for (kk=0; kk<=n-1; kk++) p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j]; } for (ii=2; ii<=k; ii++) { for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++) { jj=i*l+j; a[jj]=0.0;本文档如对你有帮助,请帮忙下载支持!for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];} for (i=0; i<=m-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj]; for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j]; } js=rinv(e,m); if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0; for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk]; } for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0; for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j]; } for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i]; for (j=0; j<=n-1; j++) b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j]; } for (i=0; i<=n-1; i++) { jj=(ii-1)*n+i;本文档如对你有帮助,请帮忙下载支持!for (j=0; j<=m-1; j++) x[jj]=x[jj]+g[i*m+j]*b[j*l];} if (ii<k){ for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j]; if (i==j) a[jj]=1.0+a[jj]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; b[jj]=0.0; for (kk=0; kk<=n-1; kk++) b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*n+j; p[jj]=q[jj]; for (kk=0; kk<=n-1; kk++) p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk]; } }本文档如对你有帮助,请帮忙下载支持!} free(e); free(a); free(b); return(js);}本文档如对你有帮助,请帮忙下载支持!。
卡尔曼滤波代码c卡尔曼滤波是一种用于估计系统状态的滤波算法。
以下是一个简单的卡尔曼滤波的 C 代码实现:```c#include <stdio.h>#define Q 0.1 // 过程噪声的方差#define R 1.0 // 测量噪声的方差void kalman_filter(float* x, float* P, float z, float* K) {// 预测步骤float x_pred = *x;float P_pred = *P + Q;// 更新步骤float y = z - x_pred;float S = P_pred + R;float K_gain = P_pred / S;*x = x_pred + K_gain * y;*P = (1 - K_gain) * P_pred;*K = K_gain;}int main() {float x = 0; // 初始状态float P = 1; // 初始协方差float K; // 卡尔曼增益float measurements[] = {1, 2, 3, 4, 5}; // 测量值for (int i = 0; i < 5; i++) {kalman_filter(&x, &P, measurements[i], &K);printf("Measurement: %.2f, Estimated: %.2f\n", measurements[i], x);}return 0;}```在这个例子中,我们使用卡尔曼滤波来估计一个连续的测量值序列。
在每次测量后,我们调用`kalman_filter` 函数来更新状态估计值`x` 和协方差 `P`。
然后,我们打印出当前测量值和估计值。
这只是一个简单的卡尔曼滤波实现,更复杂的应用可能需要更多的参数和计算。
如果你有特定的应用需求,可以根据卡尔曼滤波的原理进行相应的调整和扩展。
自适应卡尔曼滤波c语言实现自适应卡尔曼滤波(Adaptive Kalman Filtering)是一种改进的卡尔曼滤波算法,它能够在系统噪声和测量噪声方差未知或变化的情况下,自动调整卡尔曼滤波器的参数,以提高滤波效果。
以下是一个简单的C语言实现自适应卡尔曼滤波的示例代码:```c#include <stdio.h>#define STATE_DIMENSION 2 // 状态维度#define MEASUREMENT_DIMENSION 1 // 测量维度typedef struct {double x[STATE_DIMENSION]; // 状态向量double P[STATE_DIMENSION][STATE_DIMENSION]; // 状态协方差矩阵double Q[STATE_DIMENSION][STATE_DIMENSION]; //过程噪声协方差矩阵doubleR[MEASUREMENT_DIMENSION][MEASUREMENT_DIMEN SION]; // 测量噪声协方差矩阵} KalmanFilter;void kalman_filter_init(KalmanFilter* kf) {// 初始化状态向量kf->x[0] = 0.0;kf->x[1] = 0.0;// 初始化状态协方差矩阵kf->P[0][0] = 0.0;kf->P[0][1] = 0.0;kf->P[1][0] = 0.0;kf->P[1][1] = 0.0;// 初始化过程噪声协方差矩阵kf->Q[0][0] = 0.1;kf->Q[0][1] = 0.0;kf->Q[1][0] = 0.0;kf->Q[1][1] = 0.1;// 初始化测量噪声协方差矩阵kf->R[0][0] = 1.0;}void kalman_filter_update(KalmanFilter* kf, double z) {// 预测步骤double x_hat[STATE_DIMENSION];double P_hat[STATE_DIMENSION][STATE_DIMENSION]; doubleK[STATE_DIMENSION][MEASUREMENT_DIMENSION]; for (int i = 0; i < STATE_DIMENSION; i++) {x_hat[i] = kf->x[i];for (int j = 0; j < STATE_DIMENSION; j++) {x_hat[i] += kf->Q[i][j] * kf->x[j];}}for (int i = 0; i < STATE_DIMENSION; i++) {for (int j = 0; j < STATE_DIMENSION; j++) {P_hat[i][j] = kf->P[i][j] + kf->Q[i][j];}}// 更新步骤double y = z - x_hat[0];double S = P_hat[0][0] + kf->R[0][0];double K0 = P_hat[0][0] / S;kf->x[0] = x_hat[0] + K0 * y;kf->P[0][0] = (1 - K0) * P_hat[0][0];}int main() {KalmanFilter kf;double measurements[] = {0.1, 0.2, 0.3, 0.4, 0.5}; // 测量值序列kalman_filter_init(&kf);for (int i = 0; i < sizeof(measurements) / sizeof(double); i++) { kalman_filter_update(&kf, measurements[i]);printf("x[%d] = %f\n", i, kf.x[0]);}return 0;}这个示例代码实现了一个一维自适应卡尔曼滤波器,用于对一个测量值序列进行滤波。
卡尔曼滤波算法实现代码C++实现代码如下:============================kalman.h========================== ======// kalman.h: interface for the kalman class.////////////////////////////////////////////////////////////////////////#if !defined(AFX_KALMAN_H__ED 3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_#if _MSC_VER > 1000#pragma once#endif// _MSC_VER > 1000#include <math.h>#include "cv.h"class kalman {public:void init_kalman(int x,int xv,int y,int yv);CvKalman* cvkalman;CvMat* state;CvMat* process_noise;CvMat* measurement;const CvMat* prediction;CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();};#endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED _)============================kalman.cpp======================== ========#include "kalman.h"#include <stdio.h>/* tester de printer toutes les valeurs des vecteurs*//* tester de changer les matrices du nois es *//* replace state by cvkalman->state_post ??? */CvRandState rng;const double T = 0.1;kalman::kalman(int x,int xv,int y,int yv){cvkalman = cvCreateKalman( 4, 4, 0 );state = cvCreateMat( 4, 1, CV_32FC1 );process_noise = cvCreateMat( 4, 1, CV_32FC1 );measurement = cvCreateMat( 4, 1, CV_32FC1 );int code = -1;/* create matrix data */const float A[] = {1, T, 0, 0,0, 1, 0, 0,0, 0, 1, T,0, 0, 0, 1};const float H[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};const float P[] = {pow(320,2), pow(320,2)/T, 0, 0,pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,0, 0, pow(240,2), pow(240,2)/T,0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)};const float Q[] = {pow(T,3)/3, pow(T,2)/2, 0, 0,pow(T,2)/2, T, 0, 0,0, 0, pow(T,3)/3, pow(T,2)/2,0, 0, pow(T,2)/2, T};const float R[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI ); cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 );rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));//cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );//cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise );}CvPoint2D32f kalman::get_predict(float x, float y)/* update state with current position */state->data.fl[0]=x;state->data.fl[2]=y;/* predict point position *//* x'k=A鈥k+B鈥k P'k=A鈥k-1*AT + Q */cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, measurement, meas urement );cvKalmanCorrect( cvkalman, measurement );float measured_value_x = measurement->data.fl[0];float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );float predict_value_x = prediction->data.fl[0];float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));}void kalman::init_kalman(int x,int xv,int y,int yv)state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv; }c语言实现代码如下:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];} js=rinv(e,m);if (js==0) { free(e); free(a); free(b); return(js);}for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];} }}free(e); free(a); free(b);return(js);。
自适应卡尔曼滤波c语言实现
摘要:
1.自适应卡尔曼滤波简介
2.C 语言实现的步骤
3.具体实现过程
4.总结与展望
正文:
【1.自适应卡尔曼滤波简介】
自适应卡尔曼滤波(Adaptive Kalman Filter,简称AKF)是一种在线性时变系统中估计状态变量的算法。
它是卡尔曼滤波(Kalman Filter,简称KF)的一种扩展,用于解决非线性系统的状态估计问题。
AKF 通过在线性时变系统中加入自适应参数,从而实现对非线性系统的状态估计。
AKF 具有实时性、鲁棒性和准确性等优点,广泛应用于导航、定位、机器人控制等领域。
【2.C 语言实现的步骤】
C 语言实现自适应卡尔曼滤波主要分为以下几个步骤:
(1)导入所需库:需要导入数学库,如math.h,以便使用其中的三角函数、指数函数等。
(2)定义系统模型:根据实际问题,定义系统的状态转移方程和观测方程,并确定系统的初始状态。
(3)编写卡尔曼增益计算函数:根据系统模型,编写一个函数用于计算卡尔曼增益。
(4)编写预测函数:根据系统模型和卡尔曼增益,编写一个函数用于预测系统的状态。
(5)编写更新函数:根据观测值和预测值,编写一个函数用于更新系统的状态。
(6)编写主函数:在主函数中,调用以上函数,实现自适应卡尔曼滤波的完整过程。