电涡流传感器的设计
- 格式:pdf
- 大小:473.12 KB
- 文档页数:2
电涡流传感器结构电涡流传感器是一种常用的非接触式传感器,它利用电涡流效应来测量物体的位置、速度和形状等参数。
本文将从电涡流传感器的结构、工作原理和应用领域等方面进行详细介绍。
一、电涡流传感器的结构电涡流传感器的主要部件包括传感器头、激励线圈、接收线圈和信号处理电路等。
1. 传感器头:传感器头是电涡流传感器的核心部件,它通常由铜或铝制成。
传感器头的外形多为圆柱形,底部设置了一个槽口,用于安装激励和接收线圈。
2. 激励线圈:激励线圈通过通电产生交变磁场,激励物体产生电涡流。
激励线圈通常由多层绕组构成,以增强磁场的强度和稳定性。
3. 接收线圈:接收线圈用于检测物体产生的电涡流,并将其转化为电信号。
接收线圈通常与激励线圈相互独立,但它们之间的距离很近,以提高传感器的灵敏度和响应速度。
4. 信号处理电路:信号处理电路对接收到的电信号进行放大、滤波和解调等处理,以获得准确的测量结果。
信号处理电路通常由模拟电路和数字电路组成,可以根据不同的应用需求进行设计。
二、电涡流传感器的工作原理电涡流传感器的工作原理基于电磁感应和电涡流效应。
当激励线圈通电时,会在传感器头附近产生一个交变磁场。
当传感器头靠近导电物体时,物体内部会感应出一个感应电流,即电涡流。
这个电涡流的方向和大小与物体的导电性、形状和相对速度等因素有关。
接收线圈检测到电涡流的变化,并将其转化为电信号。
信号处理电路对接收到的电信号进行处理,得到物体的位置、速度和形状等参数。
三、电涡流传感器的应用领域电涡流传感器广泛应用于工业自动化、航空航天、汽车制造、医疗设备等领域。
1. 位移测量:电涡流传感器可用于测量物体的位移,如测量机械零件的偏心量、轴向位移等。
2. 速度测量:电涡流传感器可以测量物体的速度,如测量转子的转速、涡轮的叶片速度等。
3. 形状测量:电涡流传感器可以测量物体的形状,如测量管道的弯曲程度、板材的变形等。
4. 材料检测:电涡流传感器可以用于检测材料的导电性和缺陷,如检测金属管道的腐蚀程度、焊接接头的质量等。
电涡流传感器的仿真与设计电涡流传感器是一种基于电磁感应原理的传感器,具有非接触、高精度、高灵敏度等优点,因此在工业、科研、医疗等领域得到广泛应用。
本文将介绍电涡流传感器的仿真与设计,包括其原理、应用和未来发展。
电涡流传感器的工作原理是利用电磁感应原理,当一个导体置于变化的磁场中时,导体内部会产生感应电流,这种电流被称为电涡流。
电涡流的大小和方向取决于磁场的变化,因此,通过测量磁场的变化,可以推导出被测物体的位置、速度、尺寸等参数。
在进行电涡流传感器的设计和应用之前,通常需要进行仿真和验证。
本文将介绍如何使用仿真工具进行电涡流传感器的设计和验证。
需要搭建一个包含激励源、传感器和数据采集器的电路。
激励源用于产生磁场,传感器用于感测磁场的变化,数据采集器用于采集传感器的输出信号。
激励电源的配置应根据传感器的工作频率、功率和电压等参数进行选择。
通常,激励电源的频率与传感器的谐振频率一致,以获得最佳的测量效果。
将传感器与数据采集器连接,使得传感器能够感测到磁场的变化并将输出信号传输给数据采集器。
数据采集器应选择具有较高灵敏度和分辨率的型号,以保证测量结果的准确性。
运行仿真程序并分析仿真结果,以验证设计的可行性和有效性。
可以通过调整激励电源的参数、传感器的位置和方向等来优化仿真结果,并分析各种情况下传感器的响应特性和测量误差。
在完成仿真后,可以开始进行电涡流传感器的硬件和软件设计。
电路设计应考虑传感器的供电、信号的放大和滤波、抗干扰措施等因素。
可以根据仿真结果来选择合适的元件和电路拓扑结构,以满足传感器在不同情况下的性能要求。
根据应用场景的不同,选择合适的传感器类型和材料。
例如,对于高温环境,应选择能够在高温下正常工作的传感器;对于需要测量非金属材料的场景,可以选择使用高频激励源来减小对非金属材料的感测误差。
根据电路设计和传感器选择的结果,编写数据采集器的程序。
程序中应包括信号的读取、处理、存储和传输等功能,以便将传感器的输出信号转换为有用的测量结果。
基于电涡流传感器的金属识别系统设计电涡流传感器在金属识别领域有着较广泛的应用,它不仅可以对大型旋转机械的轴的径向振动、轴向位移、轴转速等参数进行在线测量,还可以对零件的尺寸进行检验。
本文主要应用电涡流传感器能够实现对金属进行探测的特点,来通过单片机控制完成设计一个金属识别系统。
通过本系统作为一个实验模型对电涡流传感器的工作原理和测量方法进行研究。
标签:电涡流传感器;电桥法;金属识别1 传感器工作原理电涡流传感器属于电感式传感器的一种,它是利用线圈与传感器之间的交互模式来引导电流系数变化的数据模型,它的实现方式是通过转换电感量的传感系统进行的。
高频反射式电涡流传感器主要是由线圈在框架上的缠绕构成,这种线圈的形状呈现扁平状态,它可以固定在仪器的顶端,也可以将其粘连在整个框架的周围,紧贴仪器的槽内安置。
说到此类型的传感器的结构安装,相信大家都能够理解。
它是由系统内部的电圈组成,电圈在外形框架上缠绕,将整体结构稳定住。
它的缠绕方式也分为许多种,可以是在仪器的顶部进行互换,也可以在框架的周围进行购置。
电涡流传感器的特殊性就在于它是通过线圈与金属导体产生反应来进行操作的,而它们之间也可以称作是一种耦合性吸引。
耦合程度的不同则说明电涡流传感器的变化规律也是不同的。
电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。
涡流的大小与金属体的电阻率ρ、磁导率μ、金属板的厚度d、线圈与金属导体的距离x、线圈的励磁电流频率f等参数有关。
电涡流传感器的运动规则相对简单,它主要是通过电涡流信息感应来完成的,将电涡流内部的电量剔除,非电量留下,与线圈的阻抗规律形成变化趋势,进行通过二者不同程度的反映进行测量。
所以,我们可以由此得出,测量仪器的内部结构与许多方面都相关,其中包括设备的性能、仪器的感应效率、设备的规格等等。
通常情况下来说,传感器的灵敏度取决于被测物体的基本属性,被测物体的基本属性比较好,传感器的灵敏程度也就相對较高。
电涡流传感器的仿真与设计一、本文概述随着科技的飞速发展,传感器技术作为现代工业、自动化控制以及科研实验等领域中不可或缺的一环,其重要性日益凸显。
电涡流传感器作为一种非接触式测量工具,因其高精度、快速响应和广泛的应用范围,受到了广泛关注。
本文旨在深入探讨电涡流传感器的仿真与设计,以期为其在实际应用中的优化和改进提供理论支持和实践指导。
本文首先将对电涡流传感器的基本原理进行阐述,包括电涡流效应的产生机制以及传感器的工作原理。
在此基础上,我们将对电涡流传感器的仿真技术进行深入分析,探讨如何利用仿真软件对传感器性能进行预测和优化。
接着,本文将重点讨论电涡流传感器的设计要点,包括线圈结构、信号处理电路、屏蔽措施等方面,以期提高传感器的测量精度和稳定性。
本文还将关注电涡流传感器在不同应用场景下的性能表现,如高温、高湿、强电磁干扰等恶劣环境下的适应性。
通过实际案例分析,我们将对传感器的性能进行客观评估,并提出针对性的改进措施。
本文将展望电涡流传感器未来的发展趋势,探讨新技术、新材料在传感器设计中的应用前景。
通过本文的研究,我们期望能够为电涡流传感器的仿真与设计提供一套系统的理论框架和实践方法,推动传感器技术的不断发展和创新。
二、电涡流传感器的基本原理电涡流传感器,作为一种非接触式的测量工具,其基本原理基于法拉第电磁感应定律和电涡流效应。
当交变电流通过传感器线圈时,会在其周围产生交变磁场。
当这个磁场靠近导电材料(如金属)表面时,会在材料内部感应出电涡流。
电涡流的大小和相位与磁场强度、材料电导率、磁导率以及传感器与材料之间的距离有关。
电涡流传感器通过测量这个交变磁场与电涡流之间的相互作用,从而实现对材料性质或位置的测量。
具体来说,当传感器与被测物体之间的距离发生变化时,电涡流的大小和相位也会相应变化,进而引起传感器线圈的电感、阻抗或电压的变化。
通过测量这些电气参数的变化,可以实现对被测物体位置、材料电导率等物理量的测量。
电涡流传感器电路设计作者:汪晓凌杜嘉文来源:《硅谷》2013年第01期摘要:在无损测量当中,电涡流传感器测量因为能够实现工件在线非接触测量,测量精度高、无污染、制作价格低廉等优点,一直被作为一种重要的检测设备,在涡流技术高速发展的今天,电涡流的优势越来越明显应用也越来越广泛。
电涡流传感器是电涡流测量淬火层厚度的核心部分,传感器的测量精度直接影响整个测厚设备的精度,传统的电涡流传感器包括测量探头、整流滤波电路的设计、放大器的设计等,电涡流传感器的精确测量也离不开位移测厚标定器,这里主要研究电涡流测厚核心电路的设计。
关键词:无损测量;电涡流;测厚;电路0 引言电涡流无损检测具有很悠久的历史,从Michael Faradays总结出电磁感应定律,即变化的磁场能产生电场以来,电磁感应相关技术取得了巨大的发展。
后来Foster提出的通过分析系统的阻抗变化来分析涡流检测仪的干扰因素,为涡流检测提供了很好的理论依据,大大推动了电涡流无损检测技术的发展。
通过对阻抗分析法的有效运用,电涡流测量技术已经渗透到我们工业测量的方方面面,包括了航空航天、核工业、机械、冶金、石油、化工、机械、汽车等部门,电涡流无损技术的快速发展,相关研究和运用也越来越广泛,其中传感器的电路设计和测量精度的控制都是研究的焦点。
1 涡流检测原理图涡流检测是无损检测的一个分支,是运用电磁感应原理,将一半径为r的线圈通过正弦波电流后,线圈周围就会产生一交变磁场H1;若在距线圈x处有一电导率为a,磁导率为u厚度为d的金属板,线圈周围的交变磁场会在金属表面产生感应电流,也称作涡流。
金属表面也产生一个与原磁场方向相反的相同的相同频率的磁场H2,反射到探头线圈,导致载流线圈的阻抗和电感的变化,改变了线圈的电流大小及相位,原理图如图1所示。
图1 电涡流测厚原理图2 测厚探头的设计图2 电涡流测量电路整体设计图电涡流测量电路的整体测量电路设计图如图2所示,涡流探头测量物体厚度后引起阻抗的变化,通过电桥电路转化成电流信号输出,也由于信号很微弱,需要经过放大器进行功率放大输出,经过整波电路,把交流信号转化为直流信号,然后把那些高频的还有低频的号过滤掉,得到干扰较小的电流信号,经过放大器尽心比例放大后接入ARM7的A/D转换接口,把模拟信号转化为数字信号,对信号进行控制然后接入数字示波器,观察波形输出,把结果通过PC 机显示出来[1]。
HEFEI UNIVERSITY OF TECHNOLOGY《传感器原理及应用》课程考核论文题目电涡流位移传感器设计班级机设八班学号姓名成绩机械与汽车工程学院机械电子工程系二零一二年五月电涡流位移传感器摘要:随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。
特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显著。
传感器技术的应用在许多个发达国家中,已经得到普遍重视。
在工程中所要测量的参数大多数为非电量,促使人们用电测的方法来研究非电量,及研究用电测的方法测量非电量的仪器仪表,研究如何能正确和快速的非电量技术。
电涡流传感器已成为目前电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。
关键词:电涡流式传感器传感器技术电量非电量Abstract:With modern measurement, control box of automation technology development, the sensor technology is more and more attention by people. Especially in recent years, due to the development of science and technology and ecological balance the need, sensor in various fields are also increasingly significant role. The sensor technology application in many developed countries, has been paid attention to. In the project in measured parameters for the most power, the power to urge people to approach to the power, and the research method of the electricity measurement of electric instruments, to study how to correct and fast the power technology. The eddy current sensor has become the electrical measurement technology is very important means of detection, widely used in engineering survey and scientific experiments.Key words:Eddy current sensor, sensor technology ,non-power electrical measurement techniques,一:总体设计方案电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。
引言
电涡流传感器具有灵敏度高、分辨力高、线性度高、重复性好、结构简单、抗干扰能力强、线性测量范围宽、安装方便、非接触测量、耐高温、能在油、汽、水等恶劣环境下长期连续工作的特点以及能够实现信息的远距离传输、记录、显示和控制的优势,被广泛应用于工业生产和科学研究等领域的位移、振动、偏心、胀差、厚度、转速等物理量的在线检测和安全保护,为精密诊断系统提供了全息动态特性。
因而对于电涡流传感器的研究有着深远的理论和实践意义。
目前,对电涡流传感器的研究,主要集中在电磁学模型机理的研究、线圈几何形状的优化设计、测量精度的提高、非线性的线性化和应用范围的拓展等方面。
本文提出了一种新型的电涡流传感器设计方案,具有速度快、功耗低、稳定性好等诸多优点,并已广泛应用于电力、石化、冶金、钢铁、航空航天等领域,取得了非常好的效果,得到了用户的一致好评。
1 电涡流传感器的基本工作原理[1-2]
电涡流传感器的基本工作原理是基于电涡流效应。
根据法拉第电磁感应定律可知:金属导体置于变化的磁场中时,导体表面就会有感应电流产生。
电流的流线在金属导体内自行闭合,这种由电磁感应原理产生的旋涡状感应电流称为电涡流,这种现象称为电涡流效应,电涡流传感器就是利用电涡流效应来检测导电物体的各种物理参数的。
如图1所示。
理论和实践均证明:电涡流的大小与导体的磁导率ξ、电导率σ、线圈与导体之间的距离D 、激励电流强度I 、激励电流角频率ω、线圈尺寸因子等参数有关。
探头线圈的阻抗Z 是上述参数的函数,即Z =F (,ξ, σ, D , I,ω) 。
很显然,如果只改变其中的某一参数,其他参数恒定,阻抗就成为该参数的单值函数。
假设被测金属导体材质均匀,且具有线性和各向同性的性能特点,我们可以控制,ξ, σ, I ,ω这几个参数在一定范围内不变,则阻抗就成为距离的单值
函数,再通过前置器电子线路的处理,将探头线圈阻抗的变化,即探头线圈与金属导体之间的距离的变化转化为电压或电流的变化。
输出信号的大小随探头到被测体表面之间的距离而变化,电涡流传感器正是基于这样的原理实现对位移、振动、胀差、偏心等的测量。
图1 电涡流传感器的工作原理
2 电涡流传感器电路设计
2.1 测量电路的选择[3-5]
电涡流传感器的测量电路可分为调频式和调幅式两种,调幅式测量电路又可细分为恒定频率的调幅式和频率变化的调幅式两种。
调幅式测量电路是指以输出高频信号的幅度来反映电涡流传感器探头与被测金属导体之间的关系。
其特点是:输出可以被调理为直流电压,而对直流电压进行数据采集的速度快、时间短、可以降低功耗。
调频式测量电路是指将探头线圈的电感量与微调电容构成振荡器,以振荡器的频率作为输出量的一种转换电路。
其优点是:电路结构简单,抗干扰能力强,性能较稳定,分辨率和精度高,易与计算机连接,频率输出便于数据采集和处理,成本较低。
在本设计中我们采用调幅式电路。
2.2 滤波、稳压、同相比例放大电路的设计
该部分电路的作用是消除直流电源中的交流成分以及电源电压的波动所造成的影响。
如图2所示。
2.3 振荡电路的设计[6]
电感三点式振荡电路:由于反馈支路是电感,振荡器的输出波形中含有较多的高次谐波,且振荡频率不高,对本设计不适用,故不予采用。
电容三点式振荡电路:由于输出端和反馈支路均为电容,对高次谐波电抗小,反馈电压中高次谐波分量很少,振荡频率稳定度高,因而输出波形好,更接近正弦
波。
振荡频率可以较高。
符合本设计的要求,故采用。
如图3所示。
图3 电容三点式振荡电路
在本设计中,为了保证振荡电路输出信号的稳定和可靠,我们采取了如下措施:
针对电源电压的变化,在电源端添加了稳压环节;针对负载变化,在振荡电路与负载之间插入了缓冲电路以屏蔽负载的影响;针对环境温度变化,采用了温度系数较小的元件,例如云母电容等;针对外界磁场会引起磁性材料磁导率的变化,影响传感器线圈的涡流效应,将振荡器密封在传感器壳体内,起到屏蔽作用,可减少回路与外界发生的电磁耦合。
2.4 检波、滤波电路的设计
检波、滤波电路将电容三点式振荡器的输出信号,经过检波、滤波,将其转换为直流信号。
通过对电路的优化设计,对元器件一致性的筛选以及电阻、电容参数的合理选配,使得该电路既能保证独立线性指标的要求,又能满足对动态响应时间指标的要求,同时还要尽可能降低直流信号输出的交流噪声。
检波、滤波电路如图4所示。
2.5 对数运算电路的设计[7]
电涡流传感器的设计
伍艮常 株洲职业技术学院,湖南株洲 412001
DOI :10.3969/j.issn.1001-8972.2011.12.076
图2 滤波、稳压、同相比例放大电路
采用对数运算电路对传感器的非线性段进行线性化补偿,在保证测量精度要求的前提下,最大限度地扩大传感器的测量范围。
本对数运算放大电路采用的运算放大器、电阻和二极管,都是非常基本的电子元器件,相对于其他复杂的芯片,具有很好的时间稳定性和温度稳定性,因此该电路在高温环境长时间使用可以保持优良的矫正性能,可靠性好。
对数运算电路的工作原理主要是基于二极管的非线性伏安特性,伏安特性曲线在输入(横轴方向)逐渐增大时,输出(纵轴方向)的变化率不断增大,这种曲线类似指数运算。
指数运算与对数运算互为逆运算,使得该电路的输出和输入之间满足对数的函数关系。
对数运算放大电路如图5所示。
图5 对数运算放大电路
2.6 放大、迁移、滤波电路的设计该部分电路的作用是对检波、滤波、线性化处理后的直流信号进行信号的迁移、放大、再滤波处理,确保传感器处于最佳线性工作区间,确保输出形式符合技术指标要求,确保信号的交流噪声控制在最低程度,确保传感器输出信号稳定、可靠。
由于电涡流传感器的供电电源仅为24V ,电压过低,以及由位移量转化而成的电信号变化缓慢且非周期性和比较微弱的特点,致使传感器的电容三点式振荡器的输出信号以及经过检波、滤波、线性化处理后的直流信号幅度也很低,为保证传感器的信号输出符合技术指标要求,需在信号的迁移、放大、滤波环节加以放大处理。
放大、迁移、滤波电路如图6所示。
3 线圈的设计
线圈是电涡流传感器的一个非常重要的元件,其尺寸和形状直接关系到传感器的灵敏度和测量范围;其材料和线径的选择也很关键;本设计为了缩短设计时间和提高精确度,借助了计算机进行辅助设计,求得了一组比较合理的参数。
限于篇幅,不展开讨论。
4 关键技术
4.1电容三点式振荡电路的设计
这是一个同时具有深度负反馈和自举反馈的电容三点式振荡电路,图中的L 就是传感器线圈的电感,其特点是该电路容易起振,灵敏度高,稳定性好,时漂小,输出幅值大。
采用电容三点式振荡电路,可提高整个系统的可靠性及控制精度。
为了保证此项关键技术的实现,采用了以下方法和措施:
1)为了减小电源引起的频率漂移,在原电源前添加一稳压环节,使电路工作在稳压状态,从而改善了对其频率的影响。
2)晶体管发射结电阻R b e 和发射结电容Cbe 对频率稳定度的影响很大,其中后者影响更大,在振荡电路中引入C2、C3便是为了减小发射结电阻R b e 和发射结电容Cbe 对频率稳定度的影响。
3)为了减小电路的负载效应,增大品质因数Q 以及使谐波的失真系数减小,设计了一个射极跟随器。
4)为了提高频率稳定度,便要提高电感L 和电容C 的稳定性(主要是温度稳定性),电感L 的稳定性主要取决于材料和工艺,电容C 的稳定性主要取决于材料,一般选用瓷介或云母电容,这种电容损耗小,电容量稳定性高,并具有多种低温度系数,适用于谐振回路和需要补偿温度效应的电路中。
4.2 对数运算电路的设计
对数运算电路是指输出和输入之间满足对数函数关系的电路,本设计中对数运算电路主要用于对传感器的非线性段进行线性化补偿,在保证测量精度要求的前提下,最大限度地扩大电涡流传感器的量程。
在设计中始终坚持简单、明了、够用的原则,本对数运算放大电路设计采用的是运算放大器、电阻和二极管,它们都是非常基本的电子元器件,相对于其他复杂的芯片,具有很好的时间稳定性和温度稳定性,因此该电路可以在高温环境下长时间工作,可靠性好。
因此也从根本上保证了电涡流传感器的工作可靠性。
5 结束语
本文对电涡流传感器的工作原理和电路设计进行了比较详细的介绍,依照本设计生产的电涡流传感器具有体积小、重量轻、抗振动、抗冲击、耐高低温等优点,在油田、矿山、电厂、钢厂等领域得到了广泛的应用,赢得了用户一致好评。
理论和实践均证明本设计科学、合理,具有一定的推广应用价值。