电涡流传感器的典型应用
- 格式:doc
- 大小:155.00 KB
- 文档页数:9
列举电涡流式传感器的应用场合
电涡流式传感器是一种利用涡流效应测量物体表面缺陷、硬度、形态等特性的传感器。
电涡流式传感器应用广泛,以下是其主要应用场合:
1. 金属表面缺陷检测
电涡流式传感器可以检测金属表面的缺陷,如裂纹、孔洞、毛刺等。
应用于机械制造、汽车、航空航天等行业的产品质量检测及生产过程控制中。
2. 金属硬度检测
电涡流式传感器可以检测金属的硬度,主要应用于金属材料的硬度检测和分析。
3. 金属零件尺寸检测
电涡流式传感器可以测量金属零件的尺寸和形状,可以应用于測量有突起和凹陷的零件。
4. 金属疲劳损伤检测
5. 电动机缺陷检测
电涡流式传感器可以检测电动机转子上绝缘缺陷,例如裂痕、孔洞等,用于电动机的
生产质量控制。
6. 地下管道检测
电涡流式传感器可以检测地下管道中的缝隙、裂缝和铸造缺陷,用于管道安全控制和
维护。
总之,电涡流式传感器是一种非常实用的传感器,应用范围广泛,被广泛应用于金属
制造、物流、车辆、电子、电力等各个领域。
简述电涡流式传感器的应用
电涡流式传感器是一种常用的非接触式传感器,其原理是利用电磁感应的原理来检测物体的位置、速度和形状等参数。
它由一个发射电磁场的探头和一个接收电磁场的传感器组成。
电涡流式传感器具有高精度、快速响应、无磨损等特点,因此在许多领域得到广泛应用。
以下是几个典型的应用:
1. 接触式测量:电涡流式传感器可以用于接触式测量物体的厚度、直径和形状等参数。
例如,在汽车工业中,可以使用电涡流传感器来测量制动盘的磨损程度和真圆度,以保证制动盘的性能和安全性。
2. 无损检测:电涡流式传感器可以通过扫描物体表面的电磁场变化来检测材料的缺陷、裂纹和腐蚀等问题。
在航空、航天和金属加工等行业中,电涡流式传感器被广泛用于无损检测领域。
3. 速度测量:电涡流式传感器可以用来测量物体的速度和加速度。
例如,在汽车工业中,可以使用电涡流传感器来测量车轮的转速,以调整刹车的力度和保持安全性。
4. 位置控制:电涡流式传感器可以用于物体的位置反馈控制。
例如,在机器人控制系统中,可以使用电涡流传感器来检测机器人臂的位置,以精确控制其运动。
5. 涡流制动:电涡流式传感器可以用于制动系统中的涡流制动。
通过测量转子的旋转速度和位置,可以实现刹车力的控制和调
整,提高刹车系统的稳定性和安全性。
总体而言,电涡流式传感器在工业生产、机械制造、汽车工程、航空航天等领域都有广泛的应用,为产品质量控制和生产自动化提供了重要的技术支持。
生活中电涡流
电涡流是一种在生活中常见的现象,它不仅存在于我们的日常生活中,也在工业生产和科学研究中发挥着重要作用。
电涡流是一种由电磁感应产生的涡流,它在导体中形成闭合环路,从而产生磁场和涡流热。
在生活中,我们可以在许多地方看到电涡流的存在,比如在电磁炉、感应加热器、感应电动工具等设备中,都会产生电涡流现象。
在家庭中,电涡流可以用来加热食物或液体,比如在电磁炉上煮水或煮饭。
电涡流加热具有快速、高效的特点,而且不会产生火焰和烟雾,因此在厨房中得到了广泛的应用。
此外,感应加热器和感应电动工具也利用电涡流的原理进行加热和工作,比如感应加热器可以用来烧烤食物,感应电动工具可以用来加工金属和塑料等材料。
在工业生产中,电涡流也发挥着重要作用。
比如在金属加工中,通过控制电涡流加热可以实现对金属材料的精确加热和控制,从而提高生产效率和产品质量。
另外,电涡流也可以用来检测金属零件的质量和缺陷,通过测量电涡流的变化来判断金属材料的品质。
在科学研究中,电涡流也被广泛应用。
比如在材料科学和电磁学领域,电涡流被用来研究材料的导电性和磁性,以及设计新型的电磁材料和设备。
另外,电涡流还可以用来研究电磁场的分布和变化,从而帮助科学家们更好地理解电磁现象和探索新的应用领域。
总的来说,电涡流是一种在生活中常见的现象,它在家庭、工业和科学研究中都发挥着重要作用。
通过对电涡流的研究和应用,我们可以更好地利用电磁能量,提高生活质量和生产效率,推动科学技术的发展。
希望未来能够有更多的人关注和研究电涡流,发现更多的应用和创新。
标题:利用电涡流传感器测量板材厚度的原理与应用一、引言在工业生产和材料质量检测中,对板材的厚度进行准确测量十分重要。
而利用电涡流传感器测量板材厚度已经成为一种常见的方法。
本文将深入探讨电涡流传感器的工作原理、应用范围和优缺点,帮助读者全面理解利用电涡流传感器测量板材厚度的原理。
二、电涡流传感器的工作原理1. 电涡流现象电涡流是电磁学中的一种现象,当导体遇到磁场变化时,会产生涡流。
这些涡流在导体内部产生对抗外部磁场的反作用力,从而可以通过测量反作用力的大小来推断导体材料的性质。
2. 电涡流传感器的结构电涡流传感器通常由激励线圈和接收线圈组成。
激励线圈产生一个交变磁场,当板材放置在激励线圈附近时,板材中会产生相应的涡流。
接收线圈用于检测由涡流产生的磁场变化,从而得到板材的厚度信息。
三、电涡流传感器测量板材厚度的应用1. 工业生产中的应用在汽车制造、航空航天等领域,板材的厚度对产品的质量和性能有着决定性的影响。
利用电涡流传感器可以非破坏性地对板材进行厚度检测,有效保证产品质量。
2. 材料检测领域的应用除了工业生产,利用电涡流传感器还可以应用于材料检测领域。
例如在船舶和桥梁的结构健康监测中,电涡流传感器可以用于对金属结构的腐蚀和磨损进行监测。
四、电涡流传感器的优缺点1. 优点a. 非接触式测量:电涡流传感器不需要与被测物体直接接触,可以避免对被测物体造成损伤。
b. 高精度:电涡流传感器可以实现对板材厚度的高精度测量,满足工业生产对精度的要求。
2. 缺点a. 受材料影响:不同材料的导电性差异会影响电涡流传感器的测量精度,需要对测量系统进行校准。
b. 价格较高:电涡流传感器的制造成本较高,对设备的需求也较为严格。
五、总结与展望通过对电涡流传感器的工作原理、应用和优缺点进行了解,我们可以看到利用电涡流传感器测量板材厚度的原理在工业领域有着广泛的应用前景。
随着传感技术的不断发展,电涡流传感器将更加精准、稳定,并且适用于更多领域的厚度测量。
电涡流式传感器实验报告电涡流式传感器实验报告引言:电涡流式传感器是一种广泛应用于工业领域的非接触式传感器,它利用了涡流的原理来检测金属材料中的缺陷和变化。
本实验旨在探究电涡流式传感器的工作原理、应用领域以及实验结果的可靠性。
一、工作原理电涡流式传感器利用了电磁感应的原理,当电磁场通过金属材料时,会在材料内部产生电涡流。
这些电涡流会改变电磁场的分布,从而反映出材料的性质和状态。
传感器通过测量电涡流的变化来判断材料的缺陷和变化。
二、应用领域1. 材料缺陷检测:电涡流式传感器可以用于检测金属材料中的裂纹、疲劳和腐蚀等缺陷。
通过测量电涡流的变化,可以精确地定位和评估材料中的缺陷程度,为后续的修复和保养提供依据。
2. 金属排序:由于不同材料的电导率和磁导率不同,电涡流式传感器可以用于对金属进行分类和排序。
通过测量电涡流的强度和频率,可以快速准确地区分不同种类的金属材料。
3. 无损检测:电涡流式传感器是一种非接触式的检测方法,可以在不破坏材料表面的情况下进行检测。
因此,它被广泛应用于对复杂结构和精密零件的无损检测,如航空航天、汽车制造和电子设备等领域。
三、实验设计与结果在本实验中,我们选择了一块铝合金板作为被测材料,利用电涡流式传感器对其进行了缺陷检测。
实验过程中,我们将传感器靠近铝合金板表面,并通过测量电涡流的变化来判断板材中是否存在缺陷。
实验结果显示,当传感器靠近板材表面时,电涡流的强度和频率发生了明显的变化。
在板材表面平滑的区域,电涡流强度较弱,频率较高;而在存在缺陷的区域,电涡流强度增强,频率降低。
通过对实验结果的分析,我们可以准确地定位和评估板材中的缺陷。
四、实验结果的可靠性在实验过程中,我们注意到实验结果的可靠性受到多种因素的影响。
首先,传感器与被测材料的距离和角度会对测量结果产生影响。
因此,在实际应用中,需要根据具体情况进行传感器的位置和角度调整。
其次,被测材料的性质和状态也会对实验结果产生影响。
电涡流传感器的应用电涡流传感器的特点是结构简单,丛于进行非接触式的连续测量.灵敏度较高,适用性强。
它的阻抗受睹多因素影响.如金属材料的厚度、尺寸、形状、吧导率、磁导率、表面因素、距离等。
只要固定其他冈京就可以用电涡流传感器来测量剩下的一个因素,冈此电涡流传感器的应用领域—E们’泛。
似闹时包带来许多不确定冈素.一个或几个因素的微小变化就足以影响测量结果,所以电涡流传感器多用于走件测量。
即使要用作定量测量,也必须采用前面述及的逐点林定、计算机线性纠正、温度补偿等措施。
下血就几个主要的应用做简单的介绍。
一、位移的测量某些旋转机械,如高速旋转的气轮机对轴向位移要求很高。
当气轮机远行叫,M[片在高压蒸气候动F高速旋转,它的主轴承受巨大的抽N惟力。
若主抽的位移越过规定值时,叶片有nT能勺其他部件碰樟而断裂。
因此用屯涡流传感器测量各种金属1飞牛的微小位移量就显得卜分至给。
利用电涡流探头4盯以洲旦谙AII气轮机主轴的轴向位移、LU动机的轴向审动、磨床换向阀、先寻阀的位移和金属试件的热膨胀系数等。
伙穆测量范判可以从高灵敏度的o一1mm到大量程的o一3〔)mnb分辨率可达满里程的o.1%,其缺点足线件皮稍差。
只能达到1%GZXwY型吧涡流轴问位移监测保护装置可以在恶劣的环境(如高温、潮湿、剧烈振动等)露F接触测量利监视旋转机械的钠向位移。
轴向位移的收测如图6—9所示。
杯设备停止检修时,将探头安站在与联轴器端四的距离为2nun的基应L,调节二次仪表使示值为塔。
当气轮机启动后,长期检测其轴向位移量。
dj以发现,内于铀向推力和轴承的磨损川使探头’J联劝器端而的队离5减小,二次仪表的输出屯乐小零开娇增大。
可调整二次仪表去而上的报警设定位.使什移钽电容达到危险值(本例中为o.9mm)叫,一次仪表发出报警信号;当位移量达到1.2mm时.发出停帆信号以避免发生事故。
广述测量属于动态测量。
原理还可以将此类仪胎用于其他设备的监测。
电涡流传感器DJ以元接触地测量各种振动的振幅、频谱分布等参数。
电涡流传感器的典型应用
电涡流传感器是一种常用的电子传感器,可用于检测和测量流体中的流速和流量。
它们是由激励线圈和检测线圈组成的,通过流体流过激励线圈而产生的磁场在检测线圈中激励电压来检测流量。
电涡流传感器通常用于工业、交通和环境领域。
电涡流传感器可以用于工业管线和流量控制的实时监测。
可以在管道中安装电涡流传感器,以监控流量,并随时进行计算,从而提高管道操作的精确性。
电涡流传感器还可以用于螺旋蜗杆流量计中,以间接测量小型流量和低温度气体的流量。
在交通领域,电涡流传感器可以用于监测车辆的速度,从而控制车辆的行驶速度,以确保安全行车。
它们也可以用于监测水位,以便对水位的变动作出及时反应,以便采取重要措施。
在环境领域,电涡流传感器可以用于检测水位和污染水的流量,以便控制污染物的排放。
它们也可以用于检测湖泊的水位,以监督水资源的发展,从而保护湖泊的生态系统。
- 1 -。
一、实验目的1. 了解电涡流传感器的工作原理及特性。
2. 掌握电涡流传感器的安装与调试方法。
3. 通过实验,验证电涡流传感器在不同材料上的测量效果。
4. 分析电涡流传感器在实际应用中的优缺点。
二、实验原理电涡流传感器是一种非接触式传感器,它利用电磁感应原理,通过检测被测物体表面的涡流来测量物体的尺寸、位置、速度等参数。
当高频交流电流通过传感器线圈时,会在被测物体表面产生涡流,涡流的大小与物体表面的电导率、磁导率及传感器与物体表面的距离有关。
通过检测涡流的大小,可以实现对物体尺寸、位置等参数的测量。
三、实验设备1. 电涡流传感器2. 高频信号发生器3. 数据采集器4. 被测物体(不同材料)5. 测量装置6. 示波器四、实验步骤1. 将电涡流传感器安装在测量装置上,确保传感器与被测物体表面平行。
2. 将高频信号发生器的输出端连接到电涡流传感器的输入端。
3. 将数据采集器的输入端连接到电涡流传感器的输出端。
4. 设置高频信号发生器的频率、幅度等参数。
5. 将被测物体放置在传感器与测量装置之间,调整传感器与物体表面的距离。
6. 打开数据采集器,记录涡流大小与传感器与物体表面距离的关系。
7. 重复步骤5和6,分别对不同的被测物体进行测量。
8. 分析实验数据,总结电涡流传感器的应用特点。
五、实验结果与分析1. 实验数据表明,电涡流传感器在不同材料上的测量效果存在差异。
对于导电性能较好的材料,如铜、铝等,涡流较大,测量精度较高;而对于导电性能较差的材料,如塑料、木材等,涡流较小,测量精度较低。
2. 随着传感器与物体表面距离的增加,涡流大小逐渐减小。
在一定的距离范围内,涡流大小与距离呈线性关系。
3. 当传感器与物体表面距离达到一定值时,涡流大小趋于稳定,说明此时涡流已达到饱和状态。
六、实验结论1. 电涡流传感器具有非接触式、响应速度快、测量精度高等优点,适用于各种场合的尺寸、位置、速度等参数的测量。
2. 电涡流传感器在实际应用中,应注意选择合适的材料、调整传感器与物体表面的距离,以提高测量精度。
电涡流传感器的典型应用
电涡流传感器系统广泛应用于电力、石油、化工、冶金等行业和一些科研单位。
对汽轮机、水轮机、鼓风机、压缩机、空分机、齿轮箱、大型冷却泵等大型旋转机械轴的径向振动、轴向位移、键相器、轴转速、胀差、偏心、以及转子动力学研究和零件尺寸检验等进行在线测量和保护。
轴向位移测量
对于许多旋转机械,包括蒸汽轮机、燃汽轮机、水轮机、离心式和轴流式压缩机、离心泵等,轴向位移是一个十分重要的信号,过大的轴向位移将会引起过大的机构损坏。
轴向位移的测量,可以指示旋转部件与固定部件之间的轴向间隙或相对瞬时的位移变化,用以防止机器的破坏。
轴向位移是指机器内部转子沿轴心方向,相对于止推轴承二者之间的间隙而言。
有些机械故障,也可通过轴向位移的探测,进行判别:
●止推轴承的磨损与失效●平衡活塞的磨损与失效
●止推法兰的松动●联轴节的锁住等。
轴向位移(轴向间隙)的测量,经常与轴向振动弄混。
轴向振动是指传感器探头表面与被测体,沿轴向之间距离的快速变动,这是一种轴的振动,用峰峰值表示。
它与平均间隙无关。
有些故障可以导致轴向振动。
例如压缩机的踹振和不对中即是。
振动测量
测量径向振动,可以由它看到轴承的工作状态,还可以看到转子的不平衡,不对中等机械故障。
可以提供对于下列关键或基础机械进行机械状态监测所需要的信息:
·工业透平,蒸汽/燃汽·压缩机,空气/特殊用途气体,径向/轴向
·膨胀机·动力发电透平,蒸汽/燃汽/水利
·电动马达·发电机
·励磁机·齿轮箱
·泵·风扇
·鼓风机·往复式机械
振动测量同样可以用于对一般性的小型机械进行连续监测。
可为如下各种机械故障的早期判别提供了重要信息。
·轴的同步振动·油膜失稳
·转子摩擦·部件松动
·轴承套筒松动·压缩机踹振
·滚动部件轴承失效·径向预载,内部/外部包括不对中
·轴承巴氏合金磨损·轴承间隙过大,径向/轴向
·平衡(阻气)活塞磨损/失效·联轴器“锁死”
·轴弯曲·轴裂纹
·电动马达空气间隙不匀·齿轮咬合问题
·透平叶片通道共振·叶轮通过现象
偏心测量
偏心是在低转速的情况下,对轴弯曲程度的测量,这种弯曲可由下列情况引起:
·原有的机械弯曲·临时温升导致的弯曲·在静止状态下,必然有些向下弯曲,有时也叫重力弯曲。
偏心的测量,对于评价旋转机械全面的机械状态,是非常重要的。
特别是对于装有透平监测仪表系统(TSI)的汽轮机,在启动或停机过程中,偏心测量已成为不可少的测量项目。
它使你能看到由于受热或重力所引起的轴弯曲的幅度。
转子的偏心位置,也叫轴的径向位置,它经常用来指示轴承的磨损,以及加载荷的大小。
如由不对中导致的那种情况,它同时也用来决定轴的方位角,方位角可以说明转子是否稳定。
胀差测量
对于汽轮发电机组来说,在其启动和停机时,由于金属材料的不同,热膨胀系数的不同,以及散热的不同,轴的热膨胀可能超过壳体膨胀;有可能导致透平机的旋转部件和静止部件(如机壳、喷嘴、台座等)的相互接触,导致机器的破坏。
因此胀差的测量是非常重要的。
转速测量
对于所有旋转机械而言,都需要监测旋转机械轴的转速,转速是衡量机器正常运转的一个重要指标。
而电涡流传感器测量转速的优越性是其它任何传感器测量没法比的,它既能响应零转速,也能响应高转速,抗干扰性能也非常强。
电涡流传感器的典型应用图例
补偿式胀差测量双斜面胀差测量
轴承测量示意图换向片测量示意图
图2—1 传感器的典型应用实例
滚动轴承、电机换向器整流片动态监控
对使用滚动轴承的机器预测性维修很重要。
探头安装在轴承外壳中,以便观察轴承外环。
由于滚动元件在轴承旋转时,滚动元件与轴承有缺陷的地方相碰撞时,外环会产生微小变形。
监测系统可以监测到这种变形信号。
当信号变形时意味着发生了轴承故障,如滚动元件的裂纹缺陷或者轴承环的缺陷等。
还可以测量轴承内环运行状态,经过运算可以测量轴承打滑度。
图2—2
图2—3 电涡流传感器及其监测系统在汽轮机上的典型应用
3、电涡流传感器测量时的安装要求
OD9000/9000XL系列电涡流传感器
电涡流传感器测量时的安装要求
轴的径向振动测量
当需要测量轴的径向振动时,要求轴
的直径大于探头直径的三倍以上。
每
个测点应同时安装两个传感器探头,
两个探头应分别安装在轴承两边的
同一平面上相隔90º±5º。
由于轴承
盖一般是水平分割的,因此通常将两个探头分别安装在垂直中心线每一侧45º,从原动机端看,分别定义为X探头(水平方向)和Y探头(垂直方向),X方向在垂直中心线的右侧,Y方向在垂直中心线的左侧。
图3—1 轴的径向振动测量
轴的径向振动探头安装位置与轴承的最大距离。
图3—2 为径向振动测量时探头的安装
探头中心线应与轴心线正交,探头监测的表面(正对探头中心线的两边1.5倍探头直径宽度的轴的整个圆周面,如图)应无裂痕或其它任何不连续的表面现象(如键槽、凸凹不平、油孔等),且在这个范围内不能有喷镀金属或电镀,其表面的粗糟度应在
0.4 um至0.8um之间。
轴向位移测量
测量轴的轴向位移时,测量面应该与轴是一个整体,这个测量面是以探头的中心线为中心,宽度为1.5倍的探头圆环。
探头安装距离距止推法兰盘不应超过305mm(API670标准推荐值),否则测量结果不仅包含轴向位移的变化,而且包含胀差在内的变化,这样测量的不是轴的真实位移值。
键相测量
图3—3 键相器测量
键相测量就是通过在被测轴上设置一个凹槽或凸键,称键相标记。
当这个凹槽或凸键转到探头位置时,相当于探头与被测面间距突变,传感器会产生一个脉冲信号,轴每转一圈,就会产生一个脉冲信号,产生的时刻表明了轴在每转周期中的位置。
因此通过对脉冲计数,可以测量轴的转速;通过将脉冲与轴的振动信号比较,可以确定振动的相位角,用于轴的动平衡分析以及设备
的故障分析与诊断等方面。
凹槽或凸键要足够大,以使产生的脉冲信号峰峰值不小于5V (AP1670标准要求不小于7V)。
一般若采用φ5、φ8探头,则这一凹槽或凸键宽度应大于7.6mm、深度或高度应大于1.5mm (推荐采用2.5mm以上)、长度应大于0.2mm。
凹槽或凸键应平行于轴中心线,其长度尽量长,以防当轴产生轴向窜动时,探头
还能对着凹槽或凸键。
为了避免由于轴相位移引起的探头与被测面之间的间隙变化过大,应将键相探头安装在轴的径向,而不是轴向的位置。
应尽可能地将键相探头安装在机组的驱动部分上,这样即使机组的驱动部分与载荷脱离,传感器仍会有键相信号输出。
当机组具有不同的转速时通常需要有多套键相传感器探头对其进行监测,从而可以为机组的各部分提供有效的键相信号。
键相标记可以是凹槽,也可以是凸键,如图所示,API670标准要求用凹槽的形式。
当标记是凹槽时,安装探头要对着轴的完整部分调整初始安装间隙(安装在传感器的线性中点为宜),而不是对着凹槽来调整初始安装间隙。
而当标记是凸键时探头一定要对着凸起的顶部表面调整初始安装间隙(安装在传感器的线性中点为宜),不是对着轴的其它完整表面进行调整。
否则当轴转动时,可能会造成凸键与探头碰撞,剪断探头。