(振动理论课件)非线性振动概述
- 格式:ppt
- 大小:2.71 MB
- 文档页数:3
第六章 连续线性振动系统离散线性振动系统具有两个鲜明的特征:其一是描述系统在任一时刻的位形只需有限个自由度;其二是描述系统的状态用的是二阶常微分方程组,而在数学上对此类常微分方程组的处理可以很容易地转化为对一组线性代数方程组的处理,因此研究此类系统所需的数学工具自然而然地就是矩阵代数[1]。
工程实际中的许多结构均是可变形的弹性体,当这些弹性体的弹性恢复力和变形服从胡克定律时,通常将其当作线性连续媒质来处理,这里的连续指的是系统的质量、刚度、阻尼等在空间上的连续不间断的分布,因此是宏观意义上的,如果在物质的分子、原子等微观尺度上来考虑问题,则任何媒质均是不连续的。
任何物体均可以看作是由无限多个无穷小的微元体所组成的,为描述物体未变形时这些微元体在空间中的确切位置。
一般需事先在空间中建立一个参考坐标系。
参考坐标系的维数视情况而定,可能是一维的,也可能是二维的或三维的每个微元体在空间中的位置,就由该微元体所占空间位置在参考坐标系中的坐标来确定。
物体在变形过程中各微元体在t时刻的位置,由其位移矢量来描述。
因此位移矢量是各微元体在参考坐标系中的坐标和时间t的函数,位移矢量在参考坐标系中各坐标轴上投影的个数就称为该微元体的自由度数由于组成物体的微元体的个数是无限的,因此整个系统的自由度数是无限的为了保证不引入几何非线性。
一般要求物体的变形为小变形,即各微元体离开静止位置的位移为小位移。
且要求各微元体的位移函数对参考坐标和时间t具有足够阶数的连续偏导数。
由以上分析可知,连续线性振动系统是一个具有无限多个自由度的系统。
描述该系统运动过程的是偏微分方程。
典型的连续线性振动系统有作横向振动的弦、作纵向振动的杆、作扭转振动的轴、作弯曲振动的梁和板等。
本章主要讨论连续线性振动系统的运动微分方程、边界值问题、在初始条件下的自由振动响应、强迫振动响应、波在结构中的传播特性、连续线性系统的近似解法等。
§6.1 二阶系统的振动这里所讲的二阶系统是指其运动微分方程归结为二阶偏微分方程的系统,典型的有弦的横向振动、杆的纵向振动和轴的扭转振动等。
6.1 非线性系统的举例●在粘性阻尼条件下,系统的运动微分方程为线性二阶常微分方程⏹线性振动理论能表征很多实际问题⏹对于不能用常系数线性微分方程来描述的物理系统,需要讨论非线性微分方程●忽略质量变化,单自由度系统的运动方程的一般形式可以写为⏹带有非线性特征的系统称为非线性系统,其运动称为非线性振动或者非线性响应⏹叠加原理不适用于非线性系统⏹通常,非线性振动不是简谐的,其频率随振幅改变非线性现象的一个重要类型是弹性恢复力与变形不成比例硬化弹簧软化弹簧32014/11/14质量附在长度为的拉直的弦AB 的中部,弦的初始张力用表示。
令质量在弦的横向上离开平衡位置的距离为,弦中产生的弹性恢复力如图(b )所示该系统自由振动方程:对称硬化弹簧的例子2014/11/144由几何关系代入运动方程显然这是一个非线性方程如果认为是小振动,有,因此52014/11/14●单摆,重,长度。
单摆离开竖直位置的夹角为, 单摆关于轴的回复力矩为,绕轴的转动方程为●代入质量的惯性矩, 有●小振幅情况为简谐振动,●振幅较大,对称软化弹簧的例子2014/11/14 6对比两种情况的非线性方程72014/11/14硬化情形分段线性化恢复力2014/11/148软化情形92014/11/14●如果动力荷载使结构或机器部件变形时超出了材料弹性范围,造成的运动称为非弹性响应●一建筑的二维矩形钢框架,受横向力作用于屋顶。
如果柱的弯曲刚度小于梁的弯曲刚度,随着荷载无限增加,在柱的两端会形成所谓的塑性铰。
102014/11/14●对应的载荷-位移曲线●实验表明,最大的正力和最大的负力在数值上是相等的●滞后回线关于原点对称2014/11/1411线性软化弹性卸载反向加载弹性卸载●曲线部分常常用直线代替,用以模拟真实的材料行为●双线性非弹性恢复力2014/11/1412双线性●理想弹塑性恢复力●滞后回线表示的能量耗散在这里被假定通过塑性铰损失掉,结构的其余部分依然保持能量守恒●这种能量耗散机制称为滞后阻尼2014/11/1413刚塑形带有摩擦抗力的单自由度系统及其滞后回线142014/11/14●下图两个问题在数学上是相同的⏹前者是属于刚塑形恢复力的情况,弹性变形与塑形范围相比很小⏹后者是没有弹簧的质量在摩擦力的阻滞下运动⏹除粘性阻尼外,其它类型的耗散机制均导致非线性⏹通常,假定质量、阻尼和刚度特征不随位移、速度和加速度而改变。
非线性振动百科名片恢复力与位移不成正比或阻尼力不与速度一次方成正比的系统的振动。
尽管线性振动理论早已相当完善,在工程上也已取得广泛和卓有成效的应用,但在实际问题中,总有一些用线性理论无法解释的现象。
一般说,线性模型只适用于小运动范围,超出这一范围,按线性问题处理就不仅在量上会引起较大误差,而且有时还会出现质上的差异,这就促使人们研究非线性振动。
目录编辑本段简介非线性振动恢复力与位移不成线性比例或阻尼力与速度不成线性比例的系统的振动。
尽管线性振动理论早已相当完善,在工程上也已取得广泛和卓有成效的应用,但在实际问题中,总有一些用线性理论无法解释的现象。
一般说,线性振动只适用于小运动范围,超过此范围,就变成非线性振动。
非线性系统的运动微分方程是非线性的,不能用叠加原理求解。
方程中不显含时间的非线性系统称为非线性自治系统;显含时间的称为非线性非自治系统。
保守非线性自治系统的自由振动仍是周期性的,但其周期依赖于振幅。
对于渐硬弹簧,振幅越大,周期越短;对于渐软弹簧,振幅越大,周期越长。
非保守非线性自治系统具有非线性阻尼,阻尼系数随运动而变化,因而有可能在某个中间振幅下等效阻尼为零,从而能把外界非振动性能量转变为振动激励而建立起稳定的自激振动(简称自振)。
弦乐器和钟表是常见的自振系统。
周期地改变系统的某个参量而激起系统的大幅振动称参变激发。
当系统的固有频率⑴等于或接近参量变化频率的一半时,参变激发现象最易产生。
具有非线性恢复力的系统受到谐激励时,其定常受迫振动存在跳跃现象,即激励频率3缓慢变化时,响应振幅一般也平稳变化,但通过某些特定3值时,振幅会发生跳跃突变。
具有非线性恢复力且固有频率为 3 n 的系统,在受到频率为3的谐激励时,有可能产生频率为 3 /n (心3 n)的定常受迫振动(n为正整数),称为亚谐共振或分频共振。
它的出现不仅与系统和激励的参数有关,而且依赖于初始条件。
亚谐共振可以解释为,由于非线性系统的响应不是谐和的,频率3/n的响应中存在频率为 3 的高次谐波,激励对高次谐波作功而维持了振动。
非线性振动现象振动是物体围绕平衡位置做周期性的来回运动,它是自然界中普遍存在的现象。
在很多实际问题中,我们会遇到非线性振动现象,即振动系统不满足线性的回复力定律。
非线性振动现象在物理学、工程学以及生物学等领域都有广泛的应用和重要的研究价值。
一、什么是非线性振动现象非线性振动现象是指振动系统的受力律不满足线性回复力定律,即系统力与位移之间的关系不是线性的。
与线性振动相比,非线性振动显示出更加丰富的运动特性和行为。
非线性振动现象的出现主要归结为以下几个方面的原因:1.回复力律的非线性:通常线性振动系统受到的回复力与振动的位移成正比,但在某些情况下,回复力可能随着位移的增加而变化速率不等,导致非线性振动现象的出现。
2.系统参数的非线性:振动系统的参数非线性,如刚度、阻尼系数、质量等的变化,也会导致系统的振动特性发生变化。
3.外部扰动的非线性:外界对振动系统的扰动如果不规律、不可逆,也会导致系统出现非线性振动现象。
二、非线性振动的种类非线性振动现象的种类繁多,下面介绍几种常见的非线性振动现象:1.硬度非线性:当振动系统的回复力不仅与位移的大小有关,还与位移的变化率有关时,就会出现硬度非线性。
硬度非线性表现为振动系统的频率与振幅的关系非线性,通常存在频率间跳变、倍频和次谐波等特点。
2.阻尼非线性:振动系统受到非线性阻尼时,会出现振幅的跃变、突变等非线性现象。
3.非线性共振:当振动系统的频率接近系统的特征频率时,振幅会出现非线性的迅速增大,达到共振峰值。
4.受迫非线性振动:当振动系统受到非线性外力激励时,振幅和频率会发生非线性变化。
三、非线性振动的应用非线性振动现象在各个领域都有广泛的应用和研究价值:1.物理学:非线性振动现象的研究在物理学领域中有重要的地位。
例如,非线性振动现象的研究为材料的性能评估和电磁波的传播提供了重要依据。
2.工程学:非线性振动的研究对于工程结构的设计和优化至关重要。
例如,建筑结构和桥梁的振动特性分析需要考虑非线性振动的影响。
振动理论(6-1)第6章具有非线性特征的系统陈永强北京大学力学系6.1 非线性系统的举例●在粘性阻尼条件下,系统的运动微分方程为线性二阶常微分方程⏹线性振动理论能表征很多实际问题⏹对于不能用常系数线性微分方程来描述的物理系统,需要讨论非线性微分方程●忽略质量变化,单自由度系统的运动方程的一般形式可以写为⏹带有非线性特征的系统称为非线性系统,其运动称为非线性振动或者非线性响应⏹叠加原理不适用于非线性系统⏹通常,非线性振动不是简谐的,其频率随振幅改变非线性现象的一个重要类型是弹性恢复力与变形不成比例硬化弹簧软化弹簧32014/11/14质量附在长度为的拉直的弦AB 的中部,弦的初始张力用表示。
令质量在弦的横向上离开平衡位置的距离为,弦中产生的弹性恢复力如图(b )所示该系统自由振动方程:对称硬化弹簧的例子2014/11/144由几何关系代入运动方程显然这是一个非线性方程如果认为是小振动,有,因此52014/11/14●单摆,重,长度。
单摆离开竖直位置的夹角为, 单摆关于轴的回复力矩为,绕轴的转动方程为●代入质量的惯性矩, 有●小振幅情况为简谐振动,●振幅较大,对称软化弹簧的例子2014/11/14 6对比两种情况的非线性方程72014/11/14硬化情形分段线性化恢复力2014/11/148软化情形92014/11/14●如果动力荷载使结构或机器部件变形时超出了材料弹性范围,造成的运动称为非弹性响应●一建筑的二维矩形钢框架,受横向力作用于屋顶。
如果柱的弯曲刚度小于梁的弯曲刚度,随着荷载无限增加,在柱的两端会形成所谓的塑性铰。
102014/11/14●对应的载荷-位移曲线●实验表明,最大的正力和最大的负力在数值上是相等的●滞后回线关于原点对称2014/11/1411线性软化弹性卸载反向加载弹性卸载●曲线部分常常用直线代替,用以模拟真实的材料行为●双线性非弹性恢复力2014/11/1412双线性●理想弹塑性恢复力●滞后回线表示的能量耗散在这里被假定通过塑性铰损失掉,结构的其余部分依然保持能量守恒●这种能量耗散机制称为滞后阻尼2014/11/1413刚塑形带有摩擦抗力的单自由度系统及其滞后回线142014/11/14●下图两个问题在数学上是相同的⏹前者是属于刚塑形恢复力的情况,弹性变形与塑形范围相比很小⏹后者是没有弹簧的质量在摩擦力的阻滞下运动⏹除粘性阻尼外,其它类型的耗散机制均导致非线性⏹通常,假定质量、阻尼和刚度特征不随位移、速度和加速度而改变。