卡方检验
- 格式:doc
- 大小:174.00 KB
- 文档页数:8
统计方法卡方检验卡方检验(Chi-Square Test)是一种统计方法,用于检验两个或多个分类变量之间的关系。
它通过比较观察到的频数与期望的频数之间的差异,来判断这些变量是否独立或存在相关性。
卡方检验可以用于不同类型的问题,包括:1.两个分类变量之间的关系:例如,我们可以使用卡方检验来确定性别和吸烟偏好之间是否存在关联。
2.多个分类变量之间的关系:例如,我们可以使用卡方检验来确定教育水平、职业和收入之间是否有关联。
卡方检验的原理是基于观察到的频数与期望的频数之间的差异。
观察到的频数是指在实际数据中观察到的变量组合的频数。
期望的频数是指在假设独立的情况下,根据变量边际分布计算得到的预期频数。
卡方检验通过计算卡方统计量来衡量这两组频数之间的差异。
在进行卡方检验之前,需要设置零假设(H0)和备择假设(Ha)。
零假设通常是指两个或多个分类变量之间独立的假设,而备择假设则是指两个或多个分类变量之间存在相关性的假设。
卡方检验的计算过程可以分为以下几个步骤:1.收集观察数据:将观察到的数据以交叉表格的形式整理起来。
表格的行和列分别代表两个或多个分类变量的不同组合,表格中的数值表示观察到的频数。
2.计算期望频数:根据变量边际分布计算得到期望频数。
期望频数是在零假设成立的情况下,根据变量边际分布计算得到的预期频数。
3.计算卡方统计量:根据观察频数和期望频数之间的差异计算卡方统计量。
卡方统计量的计算公式为:X^2=Σ((O-E)^2/E)其中,Σ代表对所有单元格进行求和,O表示观察到的频数,E表示期望频数。
4. 计算自由度:自由度(degrees of freedom)是进行卡方检验时需要考虑的自由变量或条件的数量。
在卡方检验中,自由度等于(行数 - 1)乘以(列数 - 1)。
5.查找临界值:使用给定的自由度和显著性水平(通常为0.05)查找卡方分布表格,以确定接受或拒绝零假设。
6.比较卡方统计量和临界值:如果卡方统计量大于临界值,则拒绝零假设,认为两个或多个分类变量之间存在相关性;如果卡方统计量小于临界值,则接受零假设,认为两个或多个分类变量之间独立。
卡方检验的名词解释
卡方检验是一种非参数检验方法,用于检验样本是否符合某种分布,或者两个样本是否来自于同一分布。
其基本思想是根据样本数据计算出某个统计量,然后通过这个统计量的值与期望值的比较来判断样本数据是否偏离预期分布。
卡方检验适用于样本数据不服从正态分布或样本大小较小的情况。
卡方检验的应用非常广泛,例如在医学研究中用于比较治疗方法的效果、在社会学研究中用于比较不同群体的特征等。
卡方检验的结果可以用卡方值、自由度和显著性水平来表示。
其中,卡方值表示样本数据与预期分布之间的差异,自由度表示卡方检验中减去的理论频数,显著性水平表示样本数据是否显著偏离预期分布。
在实际应用中,要根据具体情况选择合适的卡方检验方法,并根据卡方检验结果做出相应的决策。
卡方检验名词解释
卡方检验属于非参数检验,由于非参检验不存在具体参数和总体正态分布的假设,所以有时被称为自由分布检验。
参数和非参数检验最明显的区别是它们使用数据的类型。
非参检验通常将被试分类,如民主党和共和党,这些分类涉及名义量表或顺序量表,无法计算平均数和方差。
卡方检验分为拟合度的卡方检验和卡方独立性检验。
我们用几个例子来区分这两种卡方检验:
•对于可口可乐公司的两个领导品牌,大多数美国人喜欢哪一种?•公司采用了新的网页页面B,相较于旧版页面A,网民更喜欢哪一种页面?
以上两个例子属于拟合度的卡方检验,原因在于它们都是有关总体比例的问题。
我们只是将个体分类,并想知道每个类别中的总体比例。
它检验的内容仅涉及一个因素多项分类的计数资料,检验的是单一变量在多项分类中实际观察次数分布与某理论次数是否有显著差异。
拟合度的卡方检验定义:
主要使用样本数据检验总体分布形态或比例的假说。
测验决定所获得的的样本比例与虚无假设中的总体比例的拟合程度如何。
拟合度的卡方检验又叫最佳拟合度的卡方检验,为何取名“最佳拟合”?这是因为最佳拟合度的卡方检验的目的是比较数据(实际频数)与虚无假设。
确定数据如何拟合虚无假设指定的分布,因此取名“最佳拟合”。
关于拟合度的卡方检验有一些翻译上的区别,其实表达的是一个意思:
拟合度的卡方检验=卡方拟合优度检验=最佳拟合度卡方检验
以下统称:卡方拟合优度检验
卡方统计的公式:卡方卡方=χ2=Σ(fo−fe)2fe
公式中O代表observation,即实际频数;E代表Expectation,即期望频数。
卡方检验格式一、什么是卡方检验?卡方检验(chi-square test)是一种常用的假设检验方法,用于比较实际观测值与理论预期值之间的差异是否显著。
它适用于离散型的数据,通常用于比较两个或多个分类变量之间的关联性。
卡方检验可以帮助我们判断观察到的数据是否符合某种期望的分布模式,从而评估变量之间的独立性。
二、卡方检验的原理卡方检验的原理基于卡方统计量(chi-square statistic),它用于度量观测值与理论预期值之间的差异程度。
卡方统计量的计算公式如下:^2}{E_i})其中,为观测值,为理论预期值。
三、卡方检验的步骤卡方检验一般包括以下步骤:1. 设置假设在进行卡方检验前,需要明确研究者想要验证的假设。
通常会设立两个假设:零假设(H0)和备择假设(H1)。
零假设常常是指变量之间没有关联或没有差异,备择假设则是指变量之间存在关联或差异。
2. 构建列联表在进行卡方检验时,需要构建一个列联表(contingency table),用于记录观测值和理论预期值。
列联表是一个二维表格,行代表一个变量的不同类别,列代表另一个变量的不同类别。
观测值填写实际观测到的频数,理论预期值填写根据假设计算得到的期望频数。
3. 计算卡方统计量根据构建的列联表,可以计算卡方统计量。
按照公式 ^2}{E_i}) 计算每个观测值与期望值的差异平方和,并相加得到卡方统计量。
4. 确定显著性水平在进行卡方检验时,需要设定一个显著性水平(significance level)来评估卡方统计量的显著性。
常用的显著性水平有0.05和0.01两种。
更小的显著性水平表示对差异的要求更高。
5. 查表或计算临界值根据显著性水平和自由度(degree of freedom),可以查找卡方分布表得到临界值。
根据卡方统计量和临界值的比较,可以判断观测值与理论预期值之间的差异是否显著。
6. 判断结论根据卡方统计量与临界值的比较结果,可以判断零假设是否被拒绝。
卡方检验及校正卡方检验的计算卡方检验(Chi-squared test)是一种用于比较观察值与期望值之间的差异是否显著的统计方法。
它可以用于分析两个或多个分类变量之间的关联性或独立性。
卡方检验的原假设是观察值与期望值没有显著差异,备择假设是它们有显著差异。
在进行卡方检验之前,需要计算期望值以比较与观察值的差异。
这可以通过以下步骤完成:1.建立假设:首先,建立原假设和备择假设。
原假设通常假设两个变量之间没有关联性或独立性,备择假设则是它们之间存在关联性或独立性。
2.计算期望频数:对于给定的样本数据,可以计算出每个分类变量的期望频数。
期望频数是基于原假设计算出来的,它表示了在原假设成立的情况下,每个分类变量中的期望观察值数量。
3.计算卡方值:卡方值是观察频数与期望频数的差异的平方的总和除以期望频数的总和。
卡方值越大,观察值与期望值之间的差异越大,意味着更有可能拒绝原假设。
4.确定自由度:自由度是用于计算卡方分布的参数。
对于二维列联表(2x2),自由度为1;对于更大的列联表,自由度为(行数-1)x(列数-1)。
5.判断统计显著性:根据自由度和卡方值,可以查找卡方分布表以确定观察值与期望值之间的差异是否显著。
如果卡方值大于临界值,则可以拒绝原假设,认为观察值与期望值之间存在显著差异。
校正卡方检验(Adjusted Chi-squared test)是对卡方检验的改进,它通过应用连续性修正或其他修正方法来解决离散数据中的小样本问题。
当样本容量较小时,卡方检验可能会产生不准确的结果,因为期望频数可能会小于5,从而违反了卡方检验的假设条件。
校正卡方检验的计算步骤与普通卡方检验类似,但需要应用修正方法来计算期望频数。
修正方法可以是连续性校正(continuity correction)、费希尔校正(Fisher's exact test)或模拟校正(simulation correction)等。
连续性校正是在计算期望频数时,对每个单元格中的观察频数进行微小的调整。
卡方检验知识点总结卡方检验的原理是基于观测值与期望值的差异来进行判断的。
在卡方检验中,我们会对观测频数和期望频数进行比较,从而得出相关性的结论。
下面将详细介绍卡方检验的相关知识点。
1. 卡方检验的基本思想卡方检验的基本思想是比较观测频数与期望频数之间的差异,通过检验这种差异是否显著来判断两个变量之间的关系是否存在。
当观测频数与期望频数之间的差异较大时,可以认为两个变量之间存在相关性;当观测频数与期望频数之间的差异较小时,可以认为两个变量之间不存在相关性。
2. 卡方检验的适用条件在进行卡方检验时,需要满足一定的条件才能得到可靠的结果。
首先,变量的测量水平必须是分类(或者说是定性的)。
其次,样本的观测数据必须是频数形式,而且样本量要足够大(通常要求每个单元的期望频数不小于5)。
最后,在进行卡方检验前,需要明确变量之间的关系是独立的还是相关的。
3. 卡方检验的类型卡方检验有两种类型:独立性检验和拟合优度检验。
独立性检验是用于判断两个分类变量之间是否存在相关性,可以用于解决“两个变量关系是否显著”这类问题;拟合优度检验是用于判断观测频数与期望频数之间是否存在差异,可以用于解决“观测数据是否符合某种理论模型”这类问题。
4. 卡方检验的步骤进行卡方检验时,首先要确定研究的问题类型(是独立性检验还是拟合优度检验),然后计算卡方值,最后根据卡方值进行显著性检验。
具体的步骤如下:- 确定问题类型:根据研究的问题类型选择相应的卡方检验类型,是独立性检验还是拟合优度检验。
- 构建假设:根据问题类型构建原假设和备择假设,通常原假设是变量之间不存在相关性,备择假设是变量之间存在相关性。
- 计算卡方值:根据观测频数和期望频数计算卡方值,通常使用下面的公式进行计算:卡方值= Σ((观测频数-期望频数)² / 期望频数)。
- 计算自由度:根据研究问题的条件计算卡方检验的自由度,一般计算公式为:自由度 = (行数-1) * (列数-1)。
表内用虚线隔开的这四个数据是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的两种疗法有效率分别为44.2%和77.3%,两者的差别可能是抽样误差所致,亦可能是两种治疗有效率(总体率)确有所不同。
这里可通过x2检验来区别其差异有无统计学意义,检验的基本公式为:
式中A为实际数,以上四格表的四个数据就是实际数。
T为理论数,是根据检验假设推断出来的;即假设这两种卵巢癌治疗的有效率本无不同,差别仅是由抽样误差所致。
这里可将两种疗法合计有效率作为理论上的有效率,即53/87=60.9%,以此为依据便可推算出四格表中相应的四格的理论数。
兹以表20-11资料为例检验如下。
检验步骤:
1.建立检验假设:
H0:π1=π2
H1:π1≠π2
α=0.05
2.计算理论数(TRC),计算公式为:
TRC=nR.nc/n 公式(20.13)
因为上表每行和每列合计数都是固定的,所以只要用TRC式求得其中一项理论数(例如T1.1=26.2),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:T1.1=26.2
T1.2=43-26.2=16.8
T2.1=53-26.2=26.8
T2.2=44-26.2=17.2
3.计算x2值按公式20.12代入
4.查x2值表求P值
在查表之前应知本题自由度。
按x2检验的自由度v=(行数-1)(列数-1),则该题的自由度v=(2-1)(2-1)=1,查x2界值表(附表20-1),找到x20.001(1)=6.63,而本题x2=10.01即x2>x20.001(1),P<0.01,差异有高度统计学意义,按α=0.05水准,拒绝H0,可以认为采用化疗加放疗治疗卵巢癌的疗效比单用化疗佳。
通过实例计算,读者对卡方的基本公式有如下理解:若各理论数与相应实际数相差越小,x2值越小;如两者相同,则x2值必为零,而x2永远为正值。
又因为每一对理论数和实际
计算结果与前述用基本公式一致,相差0.01用换算时小数点后四舍五入所致。
三、四格表x2值的校正
x2值表是数理统计根据正态分布中的定义计算出来的。
自由度为1时,尤其当1<T<5,而n>40时,应用以下校正公式:
如果用四格表专用公式,亦应用下式校正:
例20.8某医师用甲、乙两疗法治疗小儿单纯性消化不良,结果如表20-14.试比较两种疗法效果有无差异?
表20-14 两种疗法效果比较的卡方较正计算
从表20-14可见,T1.2和T2.2数值都<5,且总例数大于40,故宜用校正公式(20.15)检验。
步骤如下:
1.检验假设:
H0:π1=π2
H1:π1≠π2
α=0.05
2.计算理论数:(已完成列入四格表括弧中)
3.计算x2值:应用公式(20.15)运算如下:
查x2界值表,x20.05(1)=3.84,故x2<x20.05(1),P>0.05.
按α=0.05水准,接受H0,两种疗效差异无统计学意义。
如果不采用校正公式,而用原基本公式,算得的结果x2=4.068,则结论就不同了。
如果观察资料的T<1或n<40时,四格表资料用上述校正法也不行,可参考预防医学专业用的医学统计学教材中的精确检验法直接计算概率以作判断。
四、行×列表的卡方检验(x2test for R×C table)
适用于两个组以上的率或百分比差别的显著性检验。
其检验步骤与上述相同,简单计算公式如下:
3.确定P值和分析
本题v=(2-1)(4-3)=3,据此查附表20-1:
从表中资料可见有四种结果:(a)甲+乙+,(b)甲+乙-(c)甲-乙+,(d)甲-乙-;如果我们目的是比较两种培养基的培养结果有无差异,则(a)、(d)两种结果是一致的,对差异比较毫无意义,可以不计,我们只考虑结果不同的(b)和(c),看其差异有无意义,可以应用以下简易公式计算:
检验步骤:
1.检验假设
H0:π1=π2
H1:π1≠π2
α=0.05。