矩估计与最大似然估计
- 格式:doc
- 大小:17.37 KB
- 文档页数:1
分布函数与概率密度函数的参数估计方法在概率统计学中,分布函数和概率密度函数是用来描述随机变量的性质的重要工具。
而参数估计则是根据给定的样本数据,通过某种方法对分布函数和概率密度函数中的未知参数进行估计的过程。
本文将介绍分布函数与概率密度函数的参数估计方法,包括最大似然估计、矩估计以及贝叶斯估计。
最大似然估计(Maximum Likelihood Estimation,MLE)是一种常用的参数估计方法。
其核心思想是选择使得给定数据样本出现概率最大的参数值作为估计值。
对于给定的样本数据x1,x2,…,xn,假设其分布函数为F(x;θ),其中θ为未知参数。
最大似然估计的目标是找到使得样本数据出现概率最大的参数值θ^。
具体来说,最大似然估计通过对似然函数L(θ)=∏(i=1)^n f(xi;θ)(其中f(x;θ)为概率密度函数)取对数,并对参数θ进行求导来求解参数值θ^。
矩估计(Method of Moments,MoM)是另一种常用的参数估计方法。
其基本原理是利用样本矩与理论分布矩的对应关系进行参数估计。
对于给定的样本数据x1,x2,…,xn,假设其概率密度函数为f(x;θ),其中θ为未知参数。
矩估计的目标是使样本矩与理论矩之间的差异最小化,即找到使得原始矩和样本矩最接近的参数值θ^。
除了最大似然估计和矩估计之外,贝叶斯估计(Bayesian Estimation)是一种基于贝叶斯理论的参数估计方法。
其核心思想是将未知参数视为一个随机变量,并基于先验分布和样本数据来求得后验分布。
贝叶斯估计不仅考虑了样本数据的信息,还考虑了先验信息的影响,因此对于样本数据较少或者不确定性较高的情况下,贝叶斯估计能够提供更稳健的参数估计结果。
总结起来,分布函数与概率密度函数的参数估计方法主要包括最大似然估计、矩估计和贝叶斯估计。
最大似然估计通过最大化样本数据出现的概率来估计参数,矩估计通过比较样本矩和理论矩之间的差异来估计参数,而贝叶斯估计则综合考虑了先验分布和样本数据来求得后验分布。
抽样分布t分布中⼼极限定理点估计矩估计最⼤似然法⽣物统计与实验设计-统计学基础-2&区间估计-1正态分布参数:均值和⽅差其中,选择1d是因为好算;通常,95%区分⼤概率事件和⼩概率事件,当总体是正态分布时,可以利⽤常⽤抽样分布估计出样本参数:抽样分布是样本估计量是样本的⼀个函数,在统计学中称作统计量(这就是说,统计量由样本值计算得到),因此抽样分布也是指统计量的分布。
以下是当总体满⾜正态分布时,样本均值也满⾜正态分布(抽样分布是样本均值的分布,此处是正态分布)样本均值的均值与⽅差和总体参数之间的关系:如上式,若得到⼀次实验的样本,样本容量就是n,计算所有样本会得到⼀次实验的样本均值,多次实验会得到多次实验的样本均值,假如有600次实验则会得到600个样本均值,再对这600个样本均值进⾏计算,计算出样本均值的均值和⽅差,这个样本均值的均值和⽅差与总体参数满⾜上式,根据上式关系即可估算出总体均值和总体⽅差。
当总体不是正态分布,可利⽤中⼼极限定理估计出总体参数:中⼼极限定理:n⾜够⼤则认为样本呈正态分布,因此其样本均数也呈正态分布。
如今,为了精确计算样本均数,存在三种常见的抽样分布(抽样分布是指统计量的分布,以上例为例,就是样本均值的分布),这⾥的计算是为了得到右边的参数部分。
最为常⽤的是t分布,它的特点是对于样本含量没有要求:化简之后是下式:t分布的期望和⽅差如下:由以上期望和⽅差可知,t分布只与⾃由度有关系,与其他⽆关。
使⽤t分布作为抽样分布⽽不使⽤正态分布的理由是:对于⼤样本,当n⾜够⼤时,t分布和标准正态分布的曲线⼏乎重合;对于⼩样本,此时⾃由度为n-1,并不等同于正态分布(其实若样本容量⽐较⼩⽐如25,样本均值分布很⼤可能不是正态分布),⽽t分布在此时因为⾃由度的控制,使得曲线并⾮正态分布,⽐较符合客观事实,所以可以控制系统误差,⽐标准正态分布更准确。
若不使⽤t分布,则可以先使⽤特定数(⽐如30为界限,此处具体值依据具体问题)判断是⼤样本或是⼩样本,再选择分布:当总体分布为正态分布,则样本指标的分布也采⽤正态分布,即⽤Z分布来进⾏统计推断。
数理统计7:矩法估计(MM)、极⼤似然估计(MLE),定时截尾实验在上⼀篇⽂章的最后,我们指出,参数估计是不可能穷尽讨论的,要想对各种各样的参数作出估计,就需要⼀定的参数估计⽅法。
今天我们将讨论常⽤的点估计⽅法:矩估计、极⼤似然估计,它们各有优劣,但都很重要。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:矩法估计矩法估计的重点就在于“矩”字,我们知道矩是概率分布的⼀种数字特征,可以分为原点矩和中⼼矩两种。
对于随机变量X⽽⾔,其k阶原点矩和k阶中⼼矩为a_k=\mathbb{E}(X^k),\quad m_k=\mathbb{E}[X-\mathbb{E}(X)]^k,特别地,⼀阶原点矩就是随机变量的期望,⼆阶中⼼矩就是随机变量的⽅差,由于\mathbb{E}(X-\mathbb{E}(X))=0,所以我们不定义⼀阶中⼼矩。
实际⽣活中,我们不可能了解X的全貌,也就不可能通过积分来求X的矩,因⽽需要通过样本(X_1,\cdots,X_n)来估计总体矩。
⼀般地,由n个样本计算出的样本k阶原点矩和样本k阶中⼼矩分别是a_{n,k}=\frac{1}{n}\sum_{j=1}^{n}X_j^k,\quad m_{n,k}=\frac{1}{n}\sum_{j=1}^{n}(X_j-\bar X)^k.显然,它们都是统计量,因为给出样本之后它们都是可计算的。
形式上,样本矩是对总体矩中元素的直接替换后求平均,因此总是⽐较容易计算的。
容易验证,a_{n,k}是a_k的⽆偏估计,但m_{n,k}则不是。
特别地,a_{n,1}=\bar X,m_{n,2}=\frac{1}{n}\sum_{j=1}^{n}(X_j-\bar X)^2=\frac{n-1}{n}S^2\xlongequal{def}S_n^2,⼀阶样本原点矩就是样本均值,⼆阶样本中⼼矩却不是样本⽅差,⽽需要经过⼀定的调整,这点务必注意。
第六章习题1.设是取自总体X的一个样本,在下列情形下,试求总体参数的矩估计与最大似然估计:(1),其中未知,;(2),其中未知,。
2.设是取自总体X的一个样本,其中X服从参数为的泊松分布,其中未知,求3.设是取自总体X的一个样本,其中X服从区间的均匀分布,其中未知,求的矩估计。
4.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计。
5.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计和最大似然估计。
6.设是取自总体X的一个样本,总体X服从参数为的几何分布,即,其中未知,,求的最大似然估计。
7. 已知某路口车辆经过的时间间隔服从指数分布,其中未知,现在观测到六个时间间隔数据(单位:s):1.8,3.2,4,8,4.5,2.5,试求该路口车辆经过的平均时间间隔的矩估计值与最大似然估计值。
8.设总体X的密度函数为,其中未知,设是取自这个总体的一个样本,试求的最大似然估计。
9. 在第3题中的矩估计是否是的无偏估计?解故的矩估计量是的无偏估计。
10.试证第8题中的最大似然估计是的无偏估计。
11. 设为总体的样本,证明都是总体均值的无偏估计,并进一步判断哪一个估计有效。
12.设是取自总体的一个样本,其中未知,令,试证是的相合估计。
13.某车间生产滚珠,从长期实践中知道,滚珠直径X服从正态分布,从某天生产的产品中随机抽取6个,量得直径如下(单位:mm):14.7,15.0,14.9,14.8,15.2,15.1,求的0.9双侧置信区间和0.99双侧置信区间。
14.假定某商店中一种商品的月销售量服从正态分布,未知。
为了合理的确定对该商品的进货量,需对和作估计,为此随机抽取七个月,其销售量分别为:64,57,49,81,76,70,59,试求的双侧0.95置信区间和方差的双侧0.9置信区间。
15.随机地取某种子弹9发作试验,测得子弹速度的,设子弹速度服从正态分布,求这种子弹速度的标准差和方差的双侧0.95置信区间。
点估计和区间估计公式统计学中,点估计和区间估计是两个重要的概念。
点估计是指通过样本数据来估计总体参数的值,而区间估计则是通过样本数据来估计总体参数的值所在的区间。
本文将详细介绍点估计和区间估计的公式及其应用。
一、点估计公式点估计是通过样本数据来估计总体参数的值。
在统计学中,常用的点估计方法有最大似然估计和矩估计。
最大似然估计是指在给定样本数据的情况下,选择使得样本出现的概率最大的总体参数值作为估计值。
矩估计是指通过样本矩来估计总体矩,从而得到总体参数的估计值。
点估计的公式如下:最大似然估计:设总体参数为θ,样本数据为x1,x2,…,xn,样本概率密度函数为f(x;θ),则总体参数的最大似然估计为:θ^=argmaxθL(θ;x1,x2,…,xn)=argmaxθ∏i=1nf(xi;θ)其中,L(θ;x1,x2,…,xn)为似然函数,θ^为总体参数的最大似然估计值。
矩估计:设总体参数为θ,样本数据为x1,x2,…,xn,样本矩为μ1,μ2,…,μk,则总体参数的矩估计为:θ^=g(μ1,μ2,…,μk)其中,g为函数,θ^为总体参数的矩估计值。
二、区间估计公式区间估计是通过样本数据来估计总体参数的值所在的区间。
在统计学中,常用的区间估计方法有置信区间估计和预测区间估计。
置信区间估计是指通过样本数据来估计总体参数的值所在的区间,使得该区间内的真实总体参数值的概率达到一定的置信水平。
预测区间估计是指通过样本数据来估计未来观测值的区间,使得该区间内的未来观测值的概率达到一定的置信水平。
区间估计的公式如下:置信区间估计:设总体参数为θ,样本数据为x1,x2,…,xn,样本均值为x̄,样本标准差为s,置信水平为1-α,则总体参数的置信区间为:x̄±tα/2,n−1×s/√n其中,tα/2,n−1为自由度为n-1、置信水平为1-α的t分布的上分位数。
预测区间估计:设总体参数为θ,样本数据为x1,x2,…,xn,样本均值为x̄,样本标准差为s,置信水平为1-α,则未来观测值的预测区间为:x̄±tα/2,n−1×s×√1+1/n其中,tα/2,n−1为自由度为n-1、置信水平为1-α的t分布的上分位数。
二项分布的矩估计量和最大似然估计量
二项分布的矩估计量和最大似然估计量是对于二项分布参数的估计方法。
矩估计量是通过对随机变量的矩进行估计来得到参数的估计值。
对于二项分布,它有两个参数:试验次数n和成功概率p。
设随机变量X服从二项分布B(n,p),则X的矩估计量可以通过样本
观测值的矩来计算。
例如对于二项分布的第一矩(均值)E(X) = np,可以通过样本均值的估计值来估计参数p。
最大似然估计量是基于样本数据的概率分布模型来计算参数。
对于二项分布,最大似然估计量通过最大化给定样本的似然函数来找到参数的估计值。
似然函数是样本中观测值的联合概率密度函数(或质量函数)关于参数的函数。
对于二项分布,似然函数可以表示为L(p) = (n choose x) * p^x * (1-p)^(n-x),其中n是试验次数,x是成功的观测值次数。
最大似然估计量就是找到
能使似然函数取得最大值的参数值。
总结起来,矩估计量是通过样本观测值的矩计算参数的估计值,而最大似然估计量是通过最大化给定样本的似然函数来计算参数的估计值。
两种方法在实际应用中经常被使用,具体选择哪种方法取决于具体情况和假设的合理性。
韦伯分布参数估计引言韦伯分布(Weibull distribution )是一种常见的概率分布,广泛应用于可靠性工程、生物学、工业工程等领域。
它具有灵活性和适应性强的特点,在数据建模和分析中发挥着重要的作用。
韦伯分布的参数估计是使用已观测到的数据计算韦伯分布的参数,从而对未来的事件进行预测和分析。
韦伯分布的定义韦伯分布是一种连续概率分布,其概率密度函数由下式给出:f (x;λ,k )={(k λ)(x λ)k−1e −(x λ)k,x ≥0;0,x <0.其中,x 是随机变量的取值,λ 是形状参数,k 是尺度参数。
韦伯分布参数估计方法对于韦伯分布的参数估计,常用的方法有最大似然估计法和矩估计法。
1. 最大似然估计法最大似然估计法是一种常用的参数估计方法,其思想是寻找参数值,使得观测到的数据在该参数值下的似然函数取得最大值。
对于韦伯分布,最大似然估计法的步骤如下:1. 建立似然函数。
假设有n 个观测值 x 1,x 2,...,x n ,则似然函数定义为:L (λ,k )=∏[k λ(x i λ)k−1e −(x i /λ)k ]ni=1 2. 对似然函数取对数。
对数似然函数的形式为:lnL (λ,k )=∑[lnk −lnλ+(k −1)ln (x i /λ)−(x i /λ)k ]ni=13.求解对数似然函数的偏导数为零的方程,得到参数的估计值。
对参数λ和k分别求偏导数,并令偏导数为零,可以得到方程组:{∂∂λlnL(λ,k)=∑[kλ2(x iλ)k−1−k(k−1)λ(x iλ)k]ni=1=0∂∂k lnL(λ,k)=∑[1k−ln(x i/λ)k2−ln(x i/λ)+(x iλ)kln(x i/λ)]ni=1=0通过求解以上方程组,可以得到参数λ和k的最大似然估计值。
2. 矩估计法矩估计法是另一种常用的参数估计方法,其基本思想是通过样本矩与理论矩的等值性对参数进行估计。
对于韦伯分布,矩估计法的步骤如下:1.计算样本矩。
经典参数估计方法:普通最小二乘(OLS)、最大似然(ML)和矩估计(MM)普通最小二乘估计(Ordinary least squares,OLS)1801年,意大利天文学家朱赛普.皮亚齐发现了第一颗小行星谷神星。
经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。
随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。
时年24岁的高斯也计算了谷神星的轨道。
奥地利天文学家海因里希.奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。
高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。
法国科学家勒让德于1806年独立发现“最小二乘法”,但因不为世人所知而默默无闻。
勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。
1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-莫卡夫定理。
最大似然估计(Maximum likelihood,ML)最大似然法,也称最大或然法、极大似然法,最早由高斯提出,后由英国遗传及统计学家费歇于1912年重新提出,并证明了该方法的一些性质,名称“最大似然估计”也是费歇给出的。
该方法是不同于最小二乘法的另一种参数估计方法,是从最大似然原理出发发展起来的其他估计方法的基础。
虽然其应用没有最小二乘法普遍,但在计量经济学理论上占据很重要的地位,因为最大似然原理比最小二乘原理更本质地揭示了通过样本估计总体的内在机理。
计量经济学的发展,更多地是以最大似然原理为基础的,对于一些特殊的计量经济学模型,最大似然法才是成功的估计方法。
对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据;而对于最大似然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该是使得从模型中抽取该n组样本观测值的概率最大。
从总体中经过n次随机抽取得到的样本容量为n的样本观测值,在任一次随机抽取中,样本观测值都以一定的概率出现。
矩估计与最大似然估计
矩估计和最大似然估计是统计学中常用的两种参数估计方法。
矩估计是利用样本矩来估计总体参数,最大似然估计是选择使得样本观测的概率最大的参数作为总体参数的估计值。
在矩估计中,我们首先计算出样本的一阶、二阶甚至更高阶矩,然后将这些矩代入总体参数的矩方程中,解出未知参数的值。
矩估计方法简单易用,但其估计结果的精度可能不如最大似然估计。
在最大似然估计中,我们假设总体参数服从某个已知的分布,然后根据样本观测的概率密度函数,选择使得此概率密度函数取到最大值的参数作为总体参数的估计值。
最大似然估计方法能够最大化样本观测的概率,其估计结果通常更加准确。
总之,矩估计和最大似然估计是两种常用的参数估计方法。
在选择使用哪种方法时,需要根据具体的问题、数据样本和已知条件来进行判断。
- 1 -。