高三数学二轮复习导学案(全)
- 格式:doc
- 大小:7.44 MB
- 文档页数:72
高三二轮立体几何求空间角问题(讲案)【教学目标】一、直线与平面所成角求解直线与平面所成的角解题的一般思路为:首先建立适当的空间直角坐标系并正确写出各点的空间坐标,并求出平面的法向量,最后运用公式即可得出结果. 利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.【例题讲解】★☆☆例1:如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABEF⊥平面ABCD.(1)若G点是DC的中点,求证:FG∥平面AED;(2)求证:平面DAF⊥平面BAF;(3)若AE=AD=1,AB=2,求直线AC与平面BCF成角的正弦值.★☆☆练1:已知多面体P﹣ABCD中,AB∥CD,∠BAD=∠PAB=90°,AB=PA=DA=PD1=CD,M是2PB的中点.(1)求证:PA⊥CM;(2)求直线DB与平面PBC所成角的正弦值.★★☆例2:如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,AB=CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.★★☆练1:如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,AB ∥CD ,且CD =2,AB =1,1BC PA ==, AB ⊥BC ,N 为PD 的中点. (1)求证:AN ∥平面PBC ;(2)求平面PAD 与平面PBC 所成锐二面角的余弦值;(3)在线段PD 上是否存在一点M ,使得直线CM 与平面PBC 所成角的正弦值为26,若存在,求出DMDP的值;若不存在,说明理由.★★☆例3:如图,四棱锥P ﹣ABCD 中,底面四边形ABCD 是直角梯形,PC ⊥底面ABCD ,AB ∥CD ,∠ BAD =90°,AD =CD =1,∠ABC =45°,E 为PB 的中点. (1)求证:BC ⊥平面PAC ;(2)若直线PB 与平面PAC P ﹣AC ﹣E 的余弦值.★★☆练1:如图,半圆弧AB 所在平面与平面ABCD 垂直,M 是AB 上异于A ,B 的动点,∠BAD =∠ADC=90°,AB=AD=2DC(1)证明:MB⊥平面MAD;(2)当直线MB与平面ABCD所成的角为45°时,求二面角D﹣MA﹣C的正弦值.【题型知识点总结】二、二面角所成角的求解【例题讲解】★★☆例1:如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,PD=4,M为PD的中点,E为AM的中点,点F在线段PB上,且PF=3FB.(Ⅰ)求证EF∥平面ABCD;(Ⅱ)若平面PDC⊥底面ABCD,且PD⊥DC,求平面PAD与平面PBC所成锐二面角的余弦值.★★☆练1:如图,四棱锥P ﹣ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,△PAB 是等边三角形,DA =AB =2,PD =12BC AD =,E 为线段AB 中点. (1)求证:平面PAB ⊥平面ABCD ; (2)求二面角A ﹣PD ﹣E 余弦值.★★☆例2:如图,已知长方形ABCD 中,AB =2,AD =1,M 为DC 的中点.将△ADM 沿AM 折起,使 得平面ADM ⊥平面ABCM . (1)求证:AD ⊥BM ;(2)若点E 是线段DB 上的一动点,问点E 在何位置时,二面角E ﹣AM ﹣D★★☆练1:已知直四棱柱ABCD ﹣A 1B 1C 1D 1的棱长均相等,且∠BAD =60°,M 是侧棱DD 1的中点,N 是棱C 1D 1上的点.(1)求异面直线BD 1与AM 所成角的余弦值; (2)若二面角M ﹣AC ﹣N 的大小为4π,试确定点N 的位置.★★☆例3:如图,在四棱锥P ﹣ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC 12=AD =1,CD = (1)求证:平面PQB ⊥平面PAD ;(2)若二面角M ﹣BQ ﹣C 为30°,设PM =tMC ,试确定t 的值.★★☆练1:如图,在四棱锥P ﹣ABCD 中,PA ⊥底面ABCD ,四边形ABCD 是菱形,点E 在线段PC 上. (1)证明:平面EBD ⊥平面PAC ;(2)若∠ABC =60°,二面角B ﹣PC ﹣D 的余弦值为45-,求ABPA的值.★★☆例4:直四棱柱ABCD﹣A1B1C1D1被平面A1ECD所截得到如图所示的五面体,CD⊥CE,CD⊥AD.(1)求证:BC∥平面A1AD;(2)若BC=CD=BE1=AD=1,求二面角B﹣A1E﹣C的余弦值.3★★☆练1:已知四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD为正三角形,M是PC的中点,过M的平面α平行于平面PAB,且平面α与平面PAD的交线为ON,与平面ABCD的交线为OE.(1)在图中作出四边形MNOE(不必说出作法和理由);(2)若PC=,求平面α与平面PBC形成的锐二面角的余弦值.★★☆例5:如图,在斜三棱柱ABC﹣A1B1C1中,AB⊥侧面BB1C1C,BC=2,BB1=4,AB=∠BCC1 =60°.(Ⅰ)求证:平面A1C1B⊥平面ABC;(Ⅱ)若E为CC1中点,求二面角A﹣EB1﹣C1的正切值.★★☆练1:如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DBCE为平行四边形,F是CD的中点(1)证明:OF∥平面ADE;(2)若四边形DBCE为矩形,且四边形DBCE所在的平面与圆O所在的平面互相垂直,AB=2AC=2,AE与圆O所在的平面的线面角为60°.求二面角D﹣AE﹣B的平面角的余弦值.【题型知识点总结】1. 在求二面角时,需要求出两个面的法向量,往往只需要求一个面的法向量即可,另一个面的垂直向量一般在题目中已经得到,可直接设法向量为此向量,可节约时间.2. 在求解二面角的时候,结果有可能是锐角,也有可能是钝角,因此要学会判定,我们知道二面角和两个面法向量的夹角之间的关系为互补或相等,最简单的方法是观察立体图像,直接看出成的是锐二面角还是钝二面角,如果不易看出的,可以观察法向量的方向去判定【课后练习】【巩固练习】★★☆1:在平面多边形ABCDEF 中,四边形ABFE 是边长为2的正方形,四边形DCFE 为等腰梯形,G 为CD 的中点,DC =2FE ,DE =CF =EF ,现将梯形DCFE 沿EF 折叠,使面DCFE ⊥面ABFE . (1)求证:EG ⊥面BDF ;(2)求CB 与平面GEB 成角的正弦值.★★☆2:如图,长方体ABCD ﹣A 1B 1C 1D 1的底面为正方形,AB =1,AA 1=3,BE =21EB ,1A M =2MA , N 是棱C 1D 1的中点,平面AEC 1与直线DD 1相交于点F . (1)证明:直线MN ∥平面AEC 1F . (2)求二面角E ﹣AC ﹣F 的正弦值.★★☆3:如图所示,PA ⊥平面ABC ,点C 在以AB为直径的O Θ上,30CBA ∠=︒,2PA AB ==,点E 为线段PB 的中点,点M在弧AB 上,且//OM AC .(1)求证:平面平面; (2)求证:平面平面;(3)设二面角的大小为,求的值.★★☆4:如图,在五面体ABCDEF 中,四边形ABCD 为矩形,ADE ∆ 为等边三角形,且平面ADE ⊥平面CDEF,AB .(1)证明:平面ADE ⊥平面ABCD ; (2)若BF DF ⊥,求二面角--F BC D 的余弦值.★★☆5:在如图所示的几何体中,四边形ABCD 是等腰梯形, //AB CD ,60DAB FC ∠=︒⊥,平面ABCD ,//ED FC ,CB CD CF ==.//MOE PAC PAC ⊥PCB M BP C --θcosθ(1)求证: ;(2)求二面角的余弦值.【拔高练习】★★☆1: 已知四棱柱ABCD ﹣A 1B 1C 1D 1中,AA 1⊥平面ABCD ,底面ABCD 为菱形,∠DAB =120°,AA 1 =AB =3AF =3,1A E =λ1A D (0<λ<1).(1)若CE ∥面BDF ,求λ的值.(2)求直线CF 与平面BDF 所成角的正弦值.★★☆2:如图所示,在三棱锥S ﹣BCD 中,平面SBD ⊥平面BCD ,A 是线段SD 上的点,△SBD 为等边三 角形,∠BCD =30°,CD =2DB =4.(Ⅰ)若SA =AD ,求证:SD ⊥CA ;(Ⅱ)若直线BA 与平面SCD,求AD 的长.AD BE ⊥F BD C --★★★3:如图,在四棱锥E ﹣ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE =EC ⊥BD .(1)求证:平面BED ⊥平面ABCD ;(2)设线段AE 的中点为M ,线段AB 的中点为N ,且P 在线段MN 上运动,求直线DP 与平面ABE 所成角的正弦值的最大值.★★★4:如图,在四棱锥-P ABCD 中,//AD BC ,ADC 90PAB ∠=∠=︒,12BC CD AD ==.E 为边AD 的中点,异面直线PA 与CD 所成的角为90︒.(1)在平面PAB 内找一点M ,使得直线//CM 平面PBE ,并说明理由;(2)若二面角--P CD A 的大小为45︒,求直线PA 与平面PCE 所成角的正弦值.★★★5:如图,四面体ABCD 中,ABC ∆是正三角形,ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =.(1)证明:平面ACD 平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角--D AE C的余弦值.。
三角函数第1课时 任意角和弧度制、三角函数的概念【学习目标】1.了解任意角的概念会用公式求扇形弧长、面积;2.会用三角函数定义求值,能判断三角函数在各象限的符号. 【教学过程】 一、基础自测1.下列与角9π4的终边相同的角的表达式中正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z )C.k ·360°-315°(k ∈Z )D.k π+5π4(k ∈Z )2.一扇形的圆心角α=︒60,半径R =10 cm ,该扇形的面积为 .3.若角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (-1,2),则sin α-cos α+tan α=________.4.已知点P (tan α,cos α)在第三象限,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限[必备知识] 1.角的概念(1)定义: .(2)分类: (3)终边相同的角: . 2.弧度制的定义和公式(1)定义: .(2)公式: . 3.设角α终边上异于原点的任意一点P (x ,y ),r =x 2+y 2.三角函数 定义 定义域第一象限符号 第二象限符号 第三象限符号 第四象限符号sin αcos αtan α角度 ︒0 ︒30 ︒45 ︒60 ︒90 ︒120 ︒135 ︒150 ︒180弧度 sin αcos α tan α二、典例精讲例1(1)已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m4,则cos α=________,tan α=________. (2)若α为第二象限角,则cos 2α,cos α2,1sin 2α中,其值必为正的有( )A.0个B.1个C.2个D.3个归纳:巩固练习1:(1)已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( )A.-12B.-32C.12D.32(2)设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角例2.扇形周长为20 cm ,这个扇形的面积最大时,扇形的圆心角α为 弧度归纳:巩固练习2(多选)已知扇形的周长是6 cm ,面积是2 cm 2,下列选项可能正确的有( ) A.圆的半径为2 B.圆的半径为1 C.圆心角的弧度数是1 D.圆心角的弧度数是2三、达标检测1.若扇形的面积为3π8、半径为1,则扇形的圆心角为( )A.3π2B.3π4C.3π8D.3π162.已知角α的终边经过点(3,-4),则sin α+1cos α等于( )A.-15B.3715C.3720D.13153.(多选)角α的终边在第一象限,则sinα2⎪⎪⎪⎪sin α2+cos α2⎪⎪⎪⎪cos α2+tan α2⎪⎪⎪⎪tan α2的值为( )A.-1B.1C.-3D.34.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.5.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限; (2)若角α的终边上一点M ),53(m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.思维导图 三角 函数任意角与弧度制任意角的三角函数角定义弧度制符号角度与弧度互化 特殊角弧度数 扇形弧长、面积三角函数第2课时同角三角函数基本关系与诱导公式【学习目标】1.会用同角基本关系式解决给值求值问题;2.熟记诱导公式并会用诱导公式化简求值. 【教学过程】 二、基础自测1.若sin α=55,π2<α<π,则αcos = tan α=2.若sin(π+α)=12,α∈02π⎛⎫- ⎪⎝⎭,,则tan(π-α)等于( ) A .-12B 3C 3D 33.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则()tan α-=( )A .–2B .2C .13- D .134.sin 1 050°等于( ) A.12 B .-12 C.32 D .-32 [必备知识]1.同角三角函数的基本关系平方关系: 商数关系: 2.公式 角 正弦 余弦 正切 口诀① 2k π+α(k ∈Z )奇变偶不变,符号看象限② -α ③ π-α ④ π+α⑤ π2-α⑥ π2+α⑦ 32π+α⑧ 32π-α三、典例精讲例1(1)已知tan α=2,则3sin α-cos αsin α+2cos α等于( )A.54 B .-54 C.53 D .-53(2)已知sin θ+cos θ=43,θ∈)4,0(π,则sin θ-cos θ的值为 .归纳:巩固练习1:(1)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 .(2)已知sin θ+cos θ=713,θ∈(0,π),则sin θ-cos θ= ,tan θ= . 例2.(1)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),则sin )22021(πα-等于( ) A .-45 B .-35 C.35 D.45(2)已知sin )3(απ+=1213,则cos )6(απ-等于( )A.513B.1213 C .-513 D .-1213 归纳:巩固练习2:(1)已知α∈(0,π),且cos α=-1517,则sin )2(απ+·tan(π+α)等于( )A .-1517 B.1517 C .-817 D.817(2)sin )12(πα-=13,则cos )1271(πα+= .四、达标检测1.已知α是第四象限角,tan α=-815,则sin α等于( )A.1517 B .-1517 C.817 D .-8172.已知(0,)απ∈,若2cos 6πα⎛⎫-= ⎪⎝⎭5sin 6πα⎛⎫+ ⎪⎝⎭的值为( )A .14B 2C .2D 143.(多选)在△ABC 中,下列结论正确的是( )A .sin(A +B )=sinC B .sin B +C 2=cos A2 C .tan(A +B )=-tan C )2(π≠C D .cos(A +B )=cos C4.sin 4π3·cos 5π6·tan )34(π-的值是 .5.已知-π2<α<0,且函数f (α)=cos )23(απ+-sin α·1+cos α1-cos α-1.(1)化简f (α); (2)若f (α)=15,求sin αcos α和sin α-cos α的值.思维导图三角函数第3课时 两角和与差的正弦、余弦、正切公式【学习目标】1.会用两角和与差的正弦、余弦、正切公式化简求值;2.会用辅助角公式化简求值. 【教学过程】 三、基础自测1.(多选)下面各式中,正确的是( )A.cos π12=cos π3-cos π4B.cos 5π12=22sin π3-cos π4cos π3C.cos )12(π-=cos π4cos π3+64 D.3sin α+cos α=2sin )3(πα+2.已知tan θ=2,则tan )4(πθ-= .3.cos 17°cos 77°+cos 73°cos 13°=4.tan 10°+tan 50°+3tan 10°tan 50°= . [必备知识]两角和与差的余弦、正弦、正切公式(1)公式C α-β:cos(α-β)= ;(2)公式C α+β:cos(α+β)= ; (3)公式S α+β:sin(α+β)= ;(4)公式S α-β:sin(α-β)= ; (5)公式T α+β:tan(α+β)= ;(6)公式T α-β:tan(α-β)= . (7)(辅助角公式)a sin α+b cos α= .五、典例精讲例1(1)若cos α=-45,α是第三象限角,则sin )4(πα+等于( )A.-210B.210C.-7210D.7210(2)已知534cos 23sin 23=+αα,则4sin 3απ⎛⎫+ ⎪⎝⎭的值为( ) A .23B 23C .45-D .45归纳:巩固练习1:(1)已知sin α=35,α∈),2(ππ,tan(π-β)=12,则tan(α-β)的值为( )A.-211B.211C.112D.-112(2)若3sin s 2a a +=,则tan()πα+=( )A 3B 2C 2D 3例2.已知sin α=255,sin(β-α)=-1010,α,β均为锐角,则β等于( )A.5π12B.π3C.π4D.π6归纳:巩固练习2:已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β= ..六、达标检测1.-sin 133°cos 197°-cos 47°cos 73°等于( ) A.12 B.33 C.22 D.322.已知α,β∈⎝⎛⎭⎫-π2,π2,tan α,tan β是方程x 2+12x +10=0的两根,则tan(α+β)等于( ) A.43 B.-2或12 C.12D.-2 3.(多选)已知3cos α-3sin α=23cos(α+φ),则φ的值可能为( )A.π6 B.613π C. 6π- D.611π 4.已知cos ⎝⎛⎭⎫α+π6=3cos α,tan β=33,则tan(α+β)= . 5.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.思维导图 辅助角公式 a sin α+b cos α=a 2+b 2sin(α+φ),其中sin φ=b a 2+b 2,cos φ=aa 2+b 2三角函数第4课时 三角恒等变换【学习目标】1.熟记正弦、余弦、正切倍角公式;2.会用正弦、余弦、正切倍角公式、半角公式化简求值. 【教学过程】 四、基础自测1.sin 15°cos 15°等于( )A.-14B.14C.-12D.122.已知α,β为锐角,tan α=43,则cos 2α等于( )A.725B.-725C.2425D.-24253.计算:4tanπ123tan 2π12-3等于( )A.233B.-233C.239D.-239[必备知识]二倍角的正弦、余弦、正切公式(1)公式S 2α:sin 2α= .(2)公式C 2α:cos 2α= = = . (3)公式T 2α:tan 2α= .(4)(降幂公式)sin 2α= ,cos 2α= . (5)(半角公式)=2sinα,=2cosα.七、典例精讲例1(1)(2020·全国Ⅰ)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α等于( )A.53B.23C.13D.59正用、逆用公式变形正弦:正余余正符号同余弦:余余正正符号异(2)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4= .归纳:巩固练习1:(1)(2019·全国Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α等于( ) A.15 B.55 C.33 D.255(2)已知()5sin 26cos 0απα+-=,0,2πα⎛⎫∈ ⎪⎝⎭,则2cos 24απ⎛⎫ +⎪⎝⎭=( )A .15-B .15C .35D .45例2.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α 等于 . 归纳:巩固练习2:若1010)6cos(=+πθ,则)322cos(πθ- 等于 . 八、达标检测1.已知sin α-cos α=43,则sin 2α等于( )A.-79B.-29C.29D.792.计算:1-cos 210°cos 80°1-cos 20°等于( )A.22B.12C.32D.-223.(多选)已知函数f (x )=sin x ·sin ⎝⎛⎭⎫x +π3-14,则f (x )的值不可能是( ) A.-12 B.12C.-2D.24.若α∈⎝⎛⎭⎫π2,π,sin α=31010,则tan 2α= . 5.已知sin ⎝⎛⎭⎫α+π4=210,α∈⎝⎛⎭⎫π2,π.求: (1)cos α的值;(2)sin ⎝⎛⎭⎫2α-π4的值思维导图。
城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
魏桥中学2011级高三数学 二轮复习 导学案NO. 编制人: 乔丹 备课组长签字: 包科领导签字: 时间: 班级: 小组: 姓名: 评价:
圆锥曲线知识梳理
一、椭圆
1、椭圆的第一定义: 的动点M 的轨迹叫做椭圆;
即122MF MF a += ( )
2、椭圆的第二定义:
3、填表:
几何性质 焦点在x 轴上
焦点在y 轴上
图象
方程
范围 对称性 离心率 焦点 顶点 准线方程
二、双曲线
1、双曲线定义: ,这两个定点叫做
双曲线的 ,两焦点间的距离叫做 ,即
注:在这个定义中要注意条件122a F F <,这一条件可以用“两边之差小于第三边”加以理解:若122a F F =,则这个动点的轨迹是 ,若122a F F >,则
2、填表:双曲线的标准方程及几何性质
几何性质 焦点在x 轴上
焦点在y 轴上
图象
方程
焦点 焦距 离心率 范围
对称性 轴 顶点
准线方程 渐近线
三、抛物线
1、抛物线定义:
2、抛物线的标准方程及几何性质: 标准方程
图形
焦点坐标 准线方程 开口方向
轴 范围 顶点 离心率。
基本初等函数、函数与方程【考纲要求】1.掌握基本初等函数的定义、图像和性质并加以应用。
2.掌握函数零点概念和存在定理,会用函数与方程的思想。
【学习目标】1.指数、对数函数和五个幂函数的图形和性质。
2.能判断函数零点个数和所在区间。
【学法指导及使用说明】1.先复习一遍教材选修1第二、三章,用红色笔进行勾画;再根据预习案二次阅读并回答;2.若预习完可对合作探究部分认真审题,做不完的正课时再做,找出自己的疑惑和需要讨论的问题准备课上讨论质疑。
3.复习指导:建议复习课本和完成学案用时25-35分钟【教学过程】【预习案】知识梳理:1.基本初等函数(1)比较指数函数和幂函数的区别,体会指数的对数的联系。
(2)基本初等函数的图像和性质指数函数对数函数幂函数一般式图像性质2014山东文20 已知函数11ln)(+-+=xxxaxf,其中a为常数(1)若0=a,求曲线)(xfy=在点))1(,1(f处的切线方程【预习自测】1 (2014全国)设函数()113,1,,1,xe xf xx x-⎧<⎪=⎨⎪≥⎩则使得()2f x≤成立的x的取________.2 (2014安徽)设,8.0,2,7log3.33===cba则()A.cab<< B.bac<< C.abc<< D.bca<<3 给出下列命题:①在区间(0,+∞)上,函数y=x-1,y=x12,y=(x-1)2,y=x3中有三个是增函数;②若logm3<log n3<0,则0<n<m<1;③若函数f(x)是奇函数,则f(x-1)的图象关于点(1,0)对称;④若函数f(x)=3x-2x-3,则方程f(x)=0有两个实数根,其中正确命题的个数为( )A.1 B.2C.3 D.4【探究案】探究点一 基本初等函数例1:(1)(2014天津)设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >>拓展提升 (2014重庆)R a ∈,且曲线)(x f y =在点))1(,1(f 处的切线垂直于 (1)求a 的值;(2)求函数)(x f 的单调区间和极值。
高考数学第二轮复习计划一、指导思想高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。
强化高中数学主干知识的复习,形成良好知识网络。
整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。
第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.“二轮看水平”概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试大纲》的理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法.二、时间安排:1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月10——4月30日。
2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为5月1日——5月25日。
3.最后阶段学生自我检查阶段,时间为5月25日——6月6日。
三、怎样上好第二轮复习课的几点建议:(一).明确“主体”,突出重点。
第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.因此,每位教师要研究2009-2010湖南对口高考试题.第二轮复习的形式和内容1.形式及内容:分专题的形式,具体而言有以下八个专题。
高三数学二轮复习教学案——立体几何(2)班级__________姓名_____________学号_________【基础训练】1. 如图,正方体ABCD A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.2.三棱锥P -ABC 中,三条侧棱两两垂直,且长度都为1,点E 为BC 上一点,则截面PAE 面积的最小值为_____________.3、已知a 、b 、c 是三条不重合直线,α、β、γ是三个不重合的平面,下列命题:⑴a ∥c ,b ∥c ⇒a ∥b ;⑵a ∥γ,b ∥γ⇒a ∥b ;⑶c ∥α,c ∥β⇒α∥β;⑷γ∥α,β∥α⇒γ∥β;⑸a ∥c ,α∥c ⇒a ∥α;⑹a ∥γ,α∥γ⇒a ∥α。
其中正确的命题是 。
4、已知正方体ABCD -A'B'C'D',则该正方体的体积、四棱锥C'-ABCD 的体积以及该正方体的外接球的体积之比为 _________________.5.. 如图,四棱锥P -ABCD 的底面是边长为3的正方形,侧棱PA ⊥平面ABCD ,点E 在侧棱PC 上,且BE ⊥PC ,若6=BE ,则四棱锥P -ABCD 的体积为 _________ .6. 由曲线22x y =,2||=x 围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足422≤+y x ,1)1(22≥-+y x ,1)1(22≥++y x 的点组成的图形绕y 轴旋转一周所得的旋转体的体积为2V ,则1V :2V = .【典型例题】7. 已知三棱锥P —ABC 中,PC ⊥底面ABC ,AB=BC ,D 、F 分别为AC 、PC 的中点,DE ⊥AP 于E .(1)求证:AP ⊥平面BDE ;(2)求证:平面BDE ⊥平面BDF ;(3)若AE ∶EP=1∶2,求截面BEF 分三棱锥P —ABC 所成两部分的体积比.8. 如图,四棱锥P -ABCD 中,底面ABCD 是一个边长为2的正方形,PA⊥平面ABCD ,且24=PC .M 是PC 的中点,在DM 上有点G ,过G 和AP作平面交平面BDM 于GH .(1)求四棱锥P -ABCD 的体积;(2)求证:AP ∥GH .9. 如图,在棱长均为4的三棱柱111ABC A B C -中,D 、1D分别是BC 和11B C 的中点. (1)求证:11A D ∥平面1AB D ;(2)若平面ABC ⊥平面11BCC B ,160B BC ∠= ,求三棱锥1B ABC -的体积.10. 如图一简单几何体的一个面ABC 内接于圆O ,G ,H 分别是AE ,BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .(1)求证:GH //平面ACD ;(2)证明:平面ACD ⊥平面ADE ;(3)若AB =2,BC =1,23tan =∠EAB ,试求该几何体的体积V .。
高三数学二轮复习教学案——数列综合一、【填空】1. 已知数列{}n a 对任意*,p q N ∈,有p q p q a a a ++=,若119a =,则36a = . 2.已知,,ab a b +成等差数列,,,a b ab 成等比数列,则通项为282n a an bn =+的数列{}n a 的数列{}n a 的前n 项和为 .3. 函数2(0)y x x =>的图象在点2(,)k ka a 处的切线与x 轴的交点的横坐标为1k a +,其中k ∈N *.若116a =,则123a a a ++的值是________.4.数列{}n a 的通项222(cos sin )33n n n a n ππ=-,其前n 项的和为n S ,则30S 为 . 5.设数列{}n a 为各项均为1的无穷数列.若在数列{}n a 的首项1a 后面插入1,隔2项,即3a 后面插入2,再隔2项,即6a 后面插入3,……,这样得到一个新数列{}n b ,则数列{}n b 前2010项的和为 .6.{},543212,a a a a a a n an a n n<<<<+=若满足的数列通项公式为 且1+>n n a a 对8≥n 恒成立,则实数a 的取值范围是 .二、【解答】7.在各项均为正数的等比数列{}n a 中,已知2123a a =+,且23a ,4a ,35a 成等差数列.(1)求数列{}n a 的通项公式;(2)设3log n n b a =,求数列{}n n a b 的前n 项和n S .8. 设数列{}n a 的前n 项和为n S ,11=a ,且对任意正整数n ,点()n n S a ,1+在直线022=-+y x 上. (1)求数列{}n a 的通项公式;(2)是否存在实数λ,使得数列⎭⎬⎫⎩⎨⎧+⋅+n n n S 2λλ为等差数列?若存在,求出λ的值;若不存在,则说明理由.(3)求证:21)1)(1(26111<++≤∑=+-n k k k k a a .9.已知函数()(0,1)x f x a b a a =+>≠的图像如图所示,数列{}n a 的前n 项的和1n n S a b +=+,n T 为数列{}n b 的前n 项的和,且22,11062,2n n T n n n =⎧=⎨--+≥⎩. (1)求数列{}n a 、{}n b 的通项公式;(2)找出所有满足:80n n a b ++=的自然数n 的值(不必证明);(3)若不等式0n n S b k ++≥对于任意的*n N ∈,2n ≥恒成立,求实数 k 的最小值,并求出此时相应的n 的值.10.在直角坐标平面上有一点列 ),(,),(),,(222111n n n y x P y x P y x P ,对一切正整数n ,点n P 位于函数4133+=x y 的图象上,且n P 的横坐标构成以25-为首项,1-为公差的等差数列{}n x 。