复变函数与积分变换a
- 格式:doc
- 大小:131.50 KB
- 文档页数:6
复变函数与积分变换复变函数与积分变换是复变函数理论中的一个重要部分,在计算机科学、物理学和数学等领域都具有重要的理论意义和实际应用意义。
复变函数是一类复多元函数,可以用来描述和解释实际问题中出现的特定变化规律。
积分变换是一种重要的数学工具,它可以用来求解不可积的复变函数,从而实现某些抽象的概念的具体数学表示。
一、复变函数复变函数是一类复多元函数,它从一维到多维可以描述复杂的数学模型,研究复变函数在计算机科学、物理学和数学等领域都具有重要的理论意义和实际应用意义。
其中包括实变函数、复变函数、级数函数、拓展函数和表达式函数等。
复变函数具有取值性质,可以用来描述和解释实际问题中出现的特定变化规律。
例如,可以用复变函数来描述某种变化的速率,以及某类物理过程的流程等。
它可以用来解决一些复杂的数学问题,如空间几何、拓扑学和动力学等。
二、积分变换积分变换是一种重要的数学工具,可以用来求解不可积的复变函数。
它允许用户使用基础数学知识,将复杂的抽象概念转化为具体的数学表示。
通过积分变换,用户可以提取出某类复变函数的主要特性,从而更好地理解复变函数的行为特征。
与普通的积分不同,积分变换的计算过程更加复杂,它需要对复变函数进行复杂的数学分解和变换,以获得新函数的表达式以及其对应积分的具体表述。
一般来说,积分变换可以用来解决函数反函数、微分方程和复变函数等问题。
三、复变函数与积分变换的应用复变函数与积分变换在计算机科学、物理学和数学等领域都具有重要的理论意义和实际应用意义。
在计算机科学领域中,复变函数可以帮助计算机系统搜索出满足特定条件的函数,从而解决一些复杂的计算问题。
积分变换则可以帮助计算机系统模拟物理系统的运动过程,优化动力学系统的性能,帮助我们更好地理解复变函数的行为特征。
在物理学领域,复变函数可以用来描述物理系统中描述某种变化的速率,以及某类物理过程的流程,进而实现更准确地物理系统模拟。
此外,积分变换还可以帮助我们更好地理解物理过程的内部机理,从而更好地应用于物理系统中。
哈尔滨工程大学本科生考试试卷( 2010-2011 年 第一 学期)2011-01-04得分评卷人选择题(每小题2分,共10分)一、1、00Im Im limz z z z z z →-=- ( ).A.i B.i - C.0 D.不存在2、若0(1)n n n a z ∞=-∑在3z =发散,则它在 ( ).A . 1z =-收敛 B.2z =收敛 C . 2z i =发散 D . 均不正确3、已知函数212()1cos f z z z=--,则0z =,z =∞分别是()f z 的 ( ).A.二阶极点、孤立奇点 B.二阶极点、非孤立奇点 C.可去奇点、孤立奇点 D.可去奇点、非孤立奇点4、映射3z iw z i-=+在02z i =处的旋转角为 ( ). A./2π- B.0 C ./2π D . π5、下列命题或论断中,正确的个数是 ( ).I :Ln z Ln z =Ⅱ:设()(,)(,)f z u x y iv x y =+解析,则u -是v 的共轭调和函数III :()(,)(,)f z u x y iv x y =+的导数()f z '存在的充要条件是,u v 的偏导数分别存在Ⅳ:()tan(1/)f z z =在任意圆环域0z R <<不能展开为洛朗级数A.0 B.1 C.2 D.3得分评卷人填空题(每小题2分,共10分)二、6、设z i e i =,则Re z = .7、若函数32(,)v x y x axy =+为某一解析函数的虚部,则常数=a .8、设函数cos ze z 的泰勒展开式为∑∞=0n n n z c ,则它的收敛半径为 .9、设信号()(1)f t t δ=-,则通过Fourier 变换得到的频谱函数()F ω= .10、设1()(1)F s s s =-,则通过Laplace 逆变换得到()f t = . 得分评卷人计算题Ⅰ(每小题5分,共25分)三、11、函数33()23f z x i y =+在何处可导?何处解析?12、设()(,)(,)f z u x y iv x y =+是解析函数,且22()(4)u v x y x xy y -=-++,求()f z .13、计算积分()n Cz z dz +⎰,其中:1C z =为负向,n 为整数.14、计算积分(21)(2)C zdzz z +-⎰,其中:3C z =为正向.15、利用留数定理计算定积分201cos d πθθ+⎰.得分评卷人计算题Ⅱ(每小题6分,共18分)四、16、求函数23()32z f z z z -=-+在下列要求下的级数(泰勒或者洛朗级数)展开:(1) 圆1z <内;(2) 环12z <<内;(3) 环11z <-<∞内.17、设2321sin (),:32C e f z d C z iz ξξξξπξξ=-=-⎰正向,试求:(1) ()f z 在复平面上除去3z =的点处的函数表达式; (2) ()f i '及()f i π.18、按照要求逐步完成下列有关保形映射的问题.(1) Z 平面阴影部分是角形区域/6arg /6z ππ-<<,如下图所示。
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
机 密★启用前大连理工大学网络教育学院2014年3月份《复变函数与积分变换》课程考试模 拟 试 卷考试形式:闭卷 试卷类型:(A )☆ 注意事项:本考卷满分共:100分;考试时间:90分钟。
学习中心______________ 姓名____________ 学号____________一、单项选择题(本大题共10小题,每小题2分,共20分)1、已知iii z +--=131,则=z Re ( )A 、0B 、21-C 、23-D 、无法确定2、下列函数中,为解析函数的是( ) A 、xyi y x 222--B 、xyi x +2C 、)2()1(222x x y i y x +-+-D 、33iy x +3、设2,3z i z =+=ω,则=ωarg ( )A 、3π B 、6π C 、6π-D 、3π-4、2)1()1()31(-+--=i i i z 的模为( )A 、0B 、1C 、2D 、25、=-⎰=-dz z e z z1|2|2( ) A 、e 2B 、e π2C 、22e πD 、i e 22π6、C 为正向圆周:2||=z ,则=-⎰dz z z e C z2)1(( )A 、i πB 、i π2C 、i π-D 、i π47、将点1,,1-=i z 分别映射为点0,1,-∞=ω的分式线性变换为( ) A 、11-+=z z ω B 、zz -+=11ω C 、zz e i-+=112πωD 、112-+=z z eiπω 8、0=z 是3sin zz的极点,其阶数为( ) A 、1B 、2C 、3D 、49、以0=z 为本性奇点的函数是( ) A 、zzsin B 、2)1(1-z zC 、ze 1D 、11-z e 10、设)(z f 的罗朗展开式为 +-++-+-+----nz n z z z z )1()1(2)1(11)1(222,则 =]1),([Re z f s ( )A 、-2B 、-1C 、1D 、2二、填空题(本大题共10小题,每小题3分,共30分)1、=-i33____________________________________2、设C 为正向单位圆周在第一象限的部分,则积分=⎰zdz z C3)(_________。
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换公式汇总一、复变函数的基本概念和性质1. 复数集的定义:复数集是由实数和虚数构成的集合,形式为a + bi,其中a和b都是实数,i是虚数单位,满足i² = -12. 复变函数的定义:设有一个定义在平面上的函数f(z),其中z = x + yi是平面上的点,x和y是实数。
如果对任意给定的z都有唯一确定的复数w与之对应,那么称函数f(z)是复数域上的一个函数。
3.复变函数的连续性:如果在z0处存在一个复数A,使得当z趋于z0时,函数f(z)趋于复数A,则称函数f(z)在点z0处连续。
4.复变函数的可导性:如果函数f(z)在z0处连续,并且当z趋于z0时,函数f(z)的导数存在有一个有限的极限L,则称函数f(z)在z0处可导,并记为f'(z0)=L。
二、复变函数的常用公式1. 欧拉公式:e^(iθ) = cosθ + isinθ2. 增补公式:sinh(x + iy) = sinh(x)cos(y) + isin(y)cosh(x)3.多项式的根公式:设P(z)=aₙzⁿ+aₙ₋₁zⁿ⁻¹+…+a₀是一个非常数多项式,aₙ≠0,则P(z)=0在复数域存在n个根。
4.共轭根公式:如果z是复数P(z)=0的根,则z^*也是复数P(z)=0的根。
5. 辐角公式:对于复数z = x + yi,其中x和y是实数,辐角θ = arctan(y/x),其中-π < θ ≤ π。
6. 复数的模公式:对于复数z = x + yi,其中x和y是实数,模,z,= √(x² + y²)。
7. 三角和指数函数的关系:sinθ = (e^(iθ) - e^(-iθ))/(2i),cosθ = (e^(iθ) + e^(-iθ))/28. 三角函数和指数函数的关系:sin(ix) = i sinh(x),cos(ix) = cosh(x)。
三、复变函数的常用积分变换公式1.度量积分变换:对于复变函数f(z),定义如下的度量积分变换公式:∫(f(z)dz) = ∫(f(z₁)dz₁ + f(z₂)dz₂ + … + f(zₙ)dzₙ),(z₁,z₂,…,zₙ)为路径连续的点。
机 密★启用前大连理工大学网络教育学院2014年8月份《复变函数与积分变换》课程考试 模拟试卷答案考试形式:闭卷 试卷类型:A一、单项选择题(本大题共10小题,每小题2分,共20分)1、B2、C3、C4、D5、B6、D7、B8、A9、C10、A二、填空题(本大题共10小题,每小题3分,共30分)1、)]5sin(ln )5[cos(ln 5ln i e +2、k ek (22ππ--为整数)3、3,2,1,0)]216sin()216[cos(28=+++k k i k ,ππππ4、2ln5、e i 2-和e i26、07、28、i π29、i π2 10、sin 2三、计算题(本大题共5小题,每小题8分,共40分)1、先把括号中的两个复数化成三角式:)3sin 3(cos231ππi i +=+(1分) ))3sin()3(cos(231ππ-+-=-i i (1分) 再由复数的除法和求乘幂的方法,得1010))3sin()3(cos(2)3sin 3(cos 23131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+=⎪⎪⎭⎫⎝⎛-+ππi i i i (2分)10)33sin()33cos(⎥⎦⎤⎢⎣⎡+++=ππππi (2分)ππ320sin 320cos i +=i 2321+-=(2分) 2、22221211)1)(1()1(11n nin n ni ni ni ni ni z n +++-=+-+=-+=(2分)22212,11nn y n n x n n +=+-=(2分) 而0lim ,1lim =-=∞→∞→n n n n y x (2分)因此1lim -=∞→n n z ,即复数列niniz n -+=11收敛于-1(2分) 3、因zz z1sin 1cos1cot =,在πk z =1处,即0),,2,1(1=±±==z k k z kπ处z 1cot 不解析(4分),且 0lim =∞→k k z ,故0不为z1cot 的孤立奇点。
吉林师范成人教育期末考试试卷《复变函数与积分变换》A 卷年级 专业 姓名 分数一、填空题(每空2分,共16分)1.复数-2是复数________的一个平方根。
2.设y 是实数,则sin(iy)的模为________。
3.设a>0,则Lna=________。
4.记号Res z=af(z)表示________。
5.设f(z)=u(x,y)+iv(x,y),如果________,则称f(z)满足柯西—黎曼条件。
6.方程z=t+i t(t 是实参数)给出的曲线为________。
7.设幂级数∑c z a n n n ()-=+∞∑0,在圆K:|z-a|<R 上收敛于f(z),则c n =______(n=0,1,…)。
8.cosz 在z=0的幂级数展式为________。
二、判断题(判断下列各题,正确的在题干后面的括号内打“√”,错误的打“×”。
每小题2分,共14分)1.lim z 0→e z =∞.( ) 2.设z 0为围线C 内部的一点,则∫c dz z z -0=2πi.( ) 3.若函数f(z)在围线C 上解析,则∫c f(z)dz=0.( )4.z=0是函数124-e z x的4级极点。
( )5.若z 0是f(z)的本性奇点,则z 0是f(z)的孤立奇点。
( )6.若f(z)在|z|≤1上连续,在|z|<1内解析,而在|z|=1上取值为1,则当|z|≤1时f(z)≡1.( )7.若f(z)与f(z)都在区域D 内解析,则f(z)在D 内必为常数。
( )三、完成下列各题(每小题5分,共30分)1.求复数z=1-i 1+i的实部、虚部、模和辐角。
2.试证:复平面上三点a+bi,0,1-a +bi 共直线。
3.计算积分∫c (x-y+ix 2)dz,积分路径C 是连接由0到1+i 的直线段。
4.说明函数f(z)=|z|在z 平面上任何点都不解析。
5.将函数z +1z (z -1)2在圆环1<|z|<+∞内展为罗朗级数。