2018年中考数学专题复习《反比例函数》模拟演练含答案
- 格式:doc
- 大小:330.26 KB
- 文档页数:9
中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
一、反比例函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴= =3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y= (x>0)(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB= ×3×3+ ×(1+3)×6+ ×1×1=17,∴四边形OCDB的面积是17【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.2.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.3.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.4.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.【答案】(1)解:由题意得1= ,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点A作x轴的垂线交x轴于点C.在Rt△AOC中,OC= ,AC=1,∴OA= =2,∠AOC=30°,∵将线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOC=60°.过点B作x轴的垂线交x轴于点D.在Rt△BOD中,BD=OB•sin∠BOD= ,OD= OB=1,∴B点坐标为(﹣1,),将x=﹣1代入y=﹣中,得y= ,∴点B(﹣1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,∴m( m+6)=﹣,∴m2+2 m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n).∵△OQM的面积是,∴OM•QM= ,∵m<0,∴mn=﹣1,∴m2n2+2 mn2+n2=0,∴n2﹣2 n=﹣1,∴n2﹣2 n+9=8.【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.5.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.6.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是________;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若 = ,则b的值是________.【答案】(1)﹣2(2)3【解析】【解答】解:(1)设点P的坐标为(m,n),则点Q的坐标为(m﹣1,n+2),依题意得:,解得:k=﹣2.故答案为:﹣2.(2)∵BO⊥x轴,CE⊥x轴,∴BO∥CE,∴△AOB∽△AEC.又∵ = ,∴ = = .令一次函数y=﹣2x+b中x=0,则y=b,∴BO=b;令一次函数y=﹣2x+b中y=0,则0=﹣2x+b,解得:x= ,即AO= .∵△AOB∽△AEC,且 = ,∴.∴AE= AO= b,CE= BO= b,OE=AE﹣AO= b.∵OE•CE=|﹣4|=4,即 b2=4,解得:b=3 ,或b=﹣3 (舍去).故答案为:3 .【分析】(1)设出点P的坐标,根据平移的特性写出Q点的坐标,由点P,Q均在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,即可得出关于k,m,n,b的四元次一方程组,两式作差即可求出k的值;(2)由BO⊥x轴,CE⊥x轴,找出△AOB∽△AEC.再由给定图形的面积比即可求出==,根据一次函数的解析式可以用含b的式子表示出OA,OB,由此即可得出线段CE,AE 的长,利用OE=AE﹣AO求出OE的长,再借助反比例函数K的几何意义得出关于b的一元二次方程,解方程即可得出结论。
中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,一次函数1y ax b (a ,b 为常数,且0a ≠)与反比例函数2m y x=(m 为常数,且0m ≠)的图象交于点()2,1A -和()1,B n .(1)求反比例函数与一次函数的解析式.(2)连接OA 、OB ,求△AOB 的面积.(3)直接写出当12y y <时,自变量x 的取值范围.2.定义:在平面直角坐标系中,如果一个点的纵坐标等于它的横坐标的三倍,则称该点为“纵三倍点”.例如()()()1,3,2,6,2,32--都是“纵三倍点”. (1)下列函数图象上只有一个“纵三倍点”的是______;(填序号)△21y x =-+;△21y x=;△21y x x =++. (2)已知抛物线2y x mx n =++(,m n 均为常数)与直线4y x =+只有一个交点,且该交点是“纵三倍点”,求抛物线的解析式;(3)若抛物线232y ax bx (,a b 是常数,0a >)的图象上有且只有一个“纵三倍点”,令226w b b a =-+,是否存在一个常数t ,使得当1t b t ≤≤+时,w 的最小值恰好等于t ,若存在,求出t 的值;若不存在,请说明理由.3.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ⊥轴于点B ,且24OB AB ==.(1)求反比例函数的解析式; (2)点C 在这个反比例函数图象上,连接AC 并延长交x 轴于点D ,且45ADO ∠=︒,求点C 的坐标. 4.如图,在平面直角坐标系中,一次函数3yx 的图象与反比例函数(0)k y x x=>的图象交于点(,4)A a ,求此反比例函数的表达式.5.如图,一次函数()10y mx n m =+≠的图象与反比例函数()20k y k x=≠的图象交于(),1A a -,()1,3B -两点,且一次函数的图象交x 轴于点C ,交y 轴于点D .(1)求一次函数和反比例函数的解析式;(2)在第四象限的反比例图象上有一点P ,使得4=△△OCP OBD S S ,请求出点P 的坐标;(3)对于反比例函数()20k y k x=≠,当3y ≤时,直接写出x 的取值范围. 6.如图,已知反比例函数11k y x =的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.7.如图,在平面直角坐标系中,一次函数1y k x b =+(10k ≠)的图象与反比例函数2k y x=(20k ≠)的图象相交于()3,4A ,()4,B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求:ABO ABD S S △△.8.如图,一次函数5y x =-+的图象与函数(0,0)n y n x x=>>的图象交于点(4,)A a 和点B .(1)求n 的值;(2)若0x >,根据图象直接写出当5n x x-+>时x 的取值范围; (3)点P 在线段AB 上,过点P 作x 轴的垂线,交函数n y x =的图象于点Q ,若POQ △的面积为1,求点P 的坐标.9.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()2,3A 和(),1B a -,设直线AB 交x 轴于点C .(1)求反比例函数和一次函数的表达式;(2)若点P 是反比例函数图象上的一点,且POC △是以OC 为底边的等腰三角形,求P 点的坐标. 10.如图,在平面直角坐标系xOy 中,一次函数1152y x =+和22y x =-的图象相交于点A ,反比例函数3k y x =的图象经过点A .(1)则反比例函数的表达式为________;(2)当13y y <时,x 的取值范围为________.(3)求AOB 的面积.11.如图,已知反比例函数k y x=的图象与一次函数y mx =图象的一个交点为()4,,A m AB x ⊥轴,且AOB 的面积为4.(1)求k 和m 的值;(2)若两函数图象的另一交点为C ,直接写出点C 的坐标__________.12.已知 ()()4428A B --,,,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式;(2)求AOC 的面积;(3)结合图象直接写出不等式m kx b x +>的解集. 13.如图,直线32y x =与双曲线(0)k y k x=≠交于A ,B 两点,点A 的坐标为(,3)m -,点C 是双曲线第一象限分支上的一点,连结BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值,并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连结GB ,GC ,求GB GC +的最小值和点G 坐标;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14.如图,直线3y x b =+与x 轴交于点()1,0A -,与反比例函数()0ky x x=>的图象相交于点()1,B m .(1)求反比例函数的表达式;(2)C 是反比例函数()0k y x x=>的图象上的一点,连接AC ,若45CAO ∠=︒,求直线BC 的函数表达式. 15.如图,一次函数1=y ax b +的图象过点()40A -,,与y 轴交于点B ,与反比例函数(2>0)k y x x =的图象交于点C .D 为AB 的中点,过点D 作x 轴的平行线,交反比例函数的图象于点E ,连接OE .(1)当=3OB ,=6DE 时,求k 的值;(2)若635OB OE ==,,求一次函数的解析式和点C 的坐标.参考答案: 1.(1)2y x=- =1y x -- (2)1.5(3)20x -<<或1x >2.(1)△△(2)238y x x =-+(3)1t =3.(1)8y x= (2)()4,2C4.反比例函数的表达式为4y x =. 5.(1)一次函数的解析式为12y x =-+;(2)点P 的坐标为3,44⎛⎫- ⎪⎝⎭(3)1x ≤-或0x >6.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.7.(1)一次函数的关系式为1y x =+;40x -<<或3x >(2)1:68.(1)4(2)14x <<(3)(2,3)P 或(3,2)9.(1)6y x = 122y x =+(2)()2,3P --10.(1)38y x =-(2)8x <-或20x -<<(3)1511.(1)18,2k m ==(2)()4,2--12.(1)16y x = 24y x =+(2)8(3)40x -<<或2x >13.(1)623k B =,,(2)217(3)存在,点P 的坐标为1302⎛⎫ ⎪⎝⎭, 或1303⎛⎫⎪⎝⎭,14.(1)反比例函数的表达式为6y x =;(2)直线BC 的函数表达式为39y x =-+.15.(1)6k =(2)162y x =+,点C 的坐标为()29,。
中考数学《反比例函数》专项复习综合练习题-附含答案一、单选题1.已知反比例函数y=- 12x,则()A.y随x的增大而增大B.当x>-3且x≠0时,y>4C.图象位于一、三象限D.当y<-3时,0<x<42.甲、乙、丙三位同学分别正确指出了某一个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:每第一个象限内 y值随x值的增大而减小.根据他们的描述这个函数表达式可能是()A.y=2x B.y= 2x C.y=﹣1xD.y=2x23.反比例函数y=kx(k>0)在第一象限内的图象如图,点M是图象上一点 MP垂直x轴于点P 如果△MOP 的面积为1 那么k的值是( )A.1 B.2 C.4 D.√24.如图,反比例函数y=kx(x<0)交边长为10的等边△ OAB的两边于C、D两点,OC=3BD,则k的值()A.−9√3B.9√3C.-10√3D.10√35.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y= a+b+cx在同一坐标系内的图象大致为()A.B.C.D.√3 6.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=√3∠BDC=120°S△BCD=92 (x<0)的图象经过C、D两点,则k的值是()若反比例函数y=kxA.−6√3B.-6 C.−12√3D.-127.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=1(x<0)图象上一点,AO的延长x(x>0 k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x 线交函数y=k2x轴的对称点为C′,交于x轴于点B 连结AB AA′、 A′C′.若△ABC的面积等于6,则由线段AC CC′C′A′ A′A所围成的图形的面积等于()A.8 B.10 C.3√10D.4√68.如图,反比例函数y=kx与一次函数y=kx﹣k+2在同一直角坐标系中的图象相交于A B两点其中A(﹣1 3)直线y=kx﹣k+2与坐标轴分别交于C D两点下列说法:①k<0;②点B的坐标为(3 ﹣1);③当x<﹣1时kx <kx﹣k+2;④tan∠OCD=﹣1k其中正确的是()A.①③B.①②④C.①③④D.①②③④二、填空题9.已知反比例函数y=﹣2x若y≤1,则自变量x的取值范围是.10.在平面直角坐标系中若一条平行于x轴的直线l分别交双曲线y=﹣6x 和y= 2x于A B两点 P是x轴上的任意一点,则△ABP的面积等于11.如图,在平面直角坐标系中正方形ABCD的面积为20 顶点A在y轴上顶点C在x轴上顶点D在双曲线y=kx(x>0)的图象上边CD交y轴于点E 若CE=ED,则k的值为.12.如图,点 P 是反比例函数图象上的一点 过点 P 向 x 轴作垂线 垂足为 M 连结 PO 若阴影部分面积为 6 ,则这个反比例函数的关系式是 .13.如图,已知A ( 12 y 1) B (2 y 2)为反比例函数y = 1x 图象上的两点 动点P (x 0)在x 轴正半轴上运动 当线段AP 与线段BP 之差达到最大时 点P 的坐标是 .三、解答题14.如图,反比例函数y =kx (x >0)的图像分别交正方形OABC 的边AB 、BC 于点D 、E 若A 点坐标为(1,0) 若△ODE 是等边三角形 求k 的值.15.某水果生产基地在气温较低时 用装有恒温系统的大棚栽培一种新品种水果 如图是试验阶段的某天恒温系统从开启到关闭后 大棚内的温度y(℃)与时间x(ℎ)之间的函数关系 其中线段AB 、BC 表示恒温系统开启后阶段 双曲线的一部分CD 表示恒温系统关闭阶段........... 请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y(℃)与时间x(ℎ)之间的函数表达式;(3)若大棚内的温度低于10℃时 蔬菜会受到伤害.问:这天内恒温系统最多可以关闭多少小时 才能避免水果生长受到影响?16.如图,已知点A在反比函数y=kx(k<0)的图象上点B在直线y=x−3的图象上点B的纵坐标为-1 AB⊥x轴且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=kx(k<0)的图象上点Q在直线y=x−3的图象上P、Q两点关于y轴对称设点P的坐标为(m,n)求nm +mn的值.17.如图,点A在反比例函数y=kx(x>0)的图象上AB⊥x轴于点B AB的垂直平分线PD交双曲线与点P.(1)若点A的坐标为(1 8),则点P的坐标为.(2)若AP⊥BP点A的横坐标为m.①求k与m之间的关系式;②连接OA OP若△AOP的面积为6 求k的值.18.如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2 m) B(n ﹣2)两点.过点B作BC⊥x轴垂足为C 且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件请直接写出不等式k1x+b>k2x的解集;(3)若P(p y1) Q(﹣2 y2)是函数y=k2x 图象上的两点且y1≥y2求实数p的取值范围.答案1.D 2.B 3.B 4.A 5.D 6.C 7.B 8.C9.x ≤﹣2或x >0 10.4 11.4 12.y =−12x 13.(52, 0)14.解:由题意可得△OAD ≅△OCE 设AD =x ,则:DB =EB =1−x 因为OD 2=x 2+1 且△ODE 是等边三角形所以 x 2+1=(1−x)2+(1−x)2 x 1=2+√3 x 2=2−√3 2+√3>1舍去 所以x =2−√3则K =1∗(2−√3)=2−√315.(1)解:设线段AB 表达式为y =kx +b(k ≠0) ∵线段AB 过点(0,10) (2,14)∴{b =102k +b =14解得{b =10k =2∴线段AB 的表达式为:y =2x +10(0≤x ≤5) 当x =5时 y =2×5+10=20 ∴恒定温度为:20℃; (2)解:由(1)可知:线段AB 的表达式为:y =2x +10(0≤x ≤5) B 坐标为(5,20) ∴根据图象可知线段BC 的表达式为:y =20(5<x ≤10)设双曲线CD 解析式为:y =m x(m ≠0)∵C(10,20)∴可得:m10=20 解得:m =200∴双曲线CD 的解析式为:y =200x(10<x ≤24)∴y 关于x 的函数表达式为:y ={2x +10(0≤x ≤5)20(5<x ≤10)200x (10<x ≤24);(3)解:把y =10代入y =200x中得10=200x解得:x =20∴20−10=10(小时)∴恒温系统最多可以关闭10小时. 16.(1)解:由题意B(2,−1)∵12×2×AB =4 ∴AB =4∵AB//y 轴∴A(2,−5)∵A(2,−5)在y =kx 的图象上 ∴k =−10.(2)解:设P(m ,−10m ),则Q(−m ,−10m ) ∵点Q 在y =x −3上∴−10m=−m −3 整理得:m 2+3m −10=0 解得m =−5或2 当m =−5 n =2时 n m +m n =−2910 当m =2 n =−5时 nm +m n=−2910故n m +m n=−2910.17.(1)(2 4)(2)解:①由题意得 点A 的纵坐标为km 即AB =km ∵PD 垂直平分AB ∴PA =PB ∵AP ⊥BP∴△PAB 是等腰直角三角形 ∴∠PAB =∠PBA =45° ∵PD ⊥AB∴△DAP 和△DBP 是等腰直角三角形 ∴DA =DB =DP =k2m ∴P (m +k2m ,k 2m )将P (m +k2m ,k2m )代入y =kx 可得:(m +k2m )⋅k2m =k 整理得:k =2m 2;②过点P 作PC ⊥x 轴于点C ,则四边形PABC 是梯形∵S △AOB =S △POC =k2 ∴S △AOE =S 四边形PEBC ∴S △AOP =S 梯形PABC =6 ∴(k 2m +k m )⋅k2m2=6 整理得:k 2=16m 2∵k =2m 2 ∴k 2=8k解得:k =8或k =0(舍去) ∴k =8.18.(1)把 A(2,m) B(n ,−2) 代入 y =k 2x得: k 2=2m =−2n即m=−n则A(2,−n)过A作AE⊥x轴于E过B作BF⊥y轴于F延长AE、BF交于D ∵A(2,−n)B(n,−2)∴BD=2−n AD=−n+2BC=|−2|=2∵SΔABC=12·BC·BD∴12×2×(2−n)=5解得:n=−3即A(2,3)B(−3,−2)把A(2,3)代入y=k2x得:k2=6即反比例函数的解析式是y=6x;把A(2,3)B(−3,−2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b解得:k1=1b=1即一次函数的解析式是y=x+1;(2)∵A(2,3)B(−3,−2)∴不等式k1x+b>k2x的解集是−3<x<0或x>2;(3)分为两种情况:当点P在第三象限时要使y1⩾y2实数p的取值范围是p⩽−2当点P在第一象限时要使y1⩾y2实数p的取值范围是p>0即P的取值范围是p⩽−2或p>0。
专题26.29《反比例函数》中考常考考点专题(1)(基础篇)(专项练习)一、单选题【知识点一】反比例函数定义的理解【考点一】反比例函➽➸描述性定义✮✮定义判断1.(2022·湖北宜昌·中考真题)已知经过闭合电路的电流I (单位:A )与电路的电阻R (单位:Ω)是反比例函数关系.根据下表判断a 和b 的大小关系为()/A I 5…a………b…1/R Ω2030405060708090100A .a b >B .a b≥C .a b<D .a b≤2.(2021·北京石景山·一模)下列两个变量之间的关系为反比例关系的是()A .圆的周长与其半径的关系B .平行四边形面积一定时,其一边长与这边上的高的关系C .销售单价一定时,销售总价与销售数量的关系D .汽车匀速行驶过程中,行驶路程与行驶时间的关系【考点二】反比例函➽➸定义✮✮参数3.(2022·辽宁抚顺·二模)下列函数中,y 是x 的反比例函数的是()A .2xy =-B .21y x =C .13y x=D .12y x=-4.(2018·黑龙江哈尔滨·中考真题)已知反比例函数y =23k x-的图象经过点(1,1),则k 的值为()A .﹣1B .0C .1D .2【考点三】反比例函➽➸自变量✮✮因变量5.(2020·广西贺州·中考真题)在反比例函数2y x=中,当=1x -时,y 的值为()A .2B .2-C .12D .12-6.(2022·河南·郸城县光明学校二模)已知点A (x 1,﹣1),B (x 2,2),C (x 3,3)都在反比例函数y 1x=-的图象上,那么x 1,x 2,x 3的大小关系是()A .x 1>x 2>x 3B .x 1>x 3>x 2C .x 3>x 2>x 1D .x 2>x 3>x 1【知识点二】反比例函数的图象和性质【考点四】反比例函数的图象和性质➽➸图象✮✮解析式7.(2020·青海·中考真题)若0ab <,则正比例函数y ax =与反比例函数by x=在同一平面直角坐标系中的大致图像可能是()A .B .C .D .8.(2022·贵州黔西·中考真题)在平面直角坐标系中,反比例函数()0ky k x=≠的图象如图所示,则一次函数2y kx =+的图象经过的象限是()A .一、二、三B .一、二、四C .一、三、四D .二、三、四【考点五】反比例函数的图象和性质➽➸对称性9.(2018·浙江湖州·中考真题)如图,已知直线y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是()A .(﹣1,﹣2)B .(﹣1,2)C .(1,﹣2)D .(﹣2,﹣1)10.(2008·江苏连云港·中考真题)已知某反比例函数的图象经过点()m n ,,则它一定也经过点()A .()m n -,B .()n m ,C .()m n -,D .()m n ,【考点六】反比例函数的图象和性质➽➸位置✮✮参数11.(2021·山东济南·中考真题)反比例函数()0ky k x=≠图象的两个分支分别位于第一、三象限,则一次函数y kx k =-的图象大致是()A .B .C .D .12.(2020·黑龙江大庆·中考真题)已知正比例函数1y k x =和反比例函数2k y x=,在同一直角坐标系下的图象如图所示,其中符合120k k ⋅>的是()A .①②B .①④C .②③D .③④【考点七】反比例函数的图象和性质➽➸增减性✮✮参数13.(2021·贵州黔西·中考真题)对于反比例函数y =﹣5x,下列说法错误的是()A .图象经过点(1,﹣5)B .图象位于第二、第四象限C .当x <0时,y 随x 的增大而减小D .当x >0时,y 随x 的增大而增大14.(2013·浙江衢州·中考真题)若函数2m y x+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是A .m <﹣2B .m <0C .m >﹣2D .m >0【考点八】反比例函数的图象和性质➽➸增减性✮✮比较大小15.(2020·天津·中考真题)若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x=的图象上,则123,,x x x 的大小关系是()A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<16.(2020·山西·中考真题)已知点()11,A x y ,()22,B x y ,()33,C x y 都在反比例函数ky x=()0k <的图像上,且1230x x x <<<,则1y ,2y ,3y 的大小关系是()A .213y y y >>B .321y y y >>C .123y y y >>D .312y y y >>【考点九】反比例函数的图象和性质➽➸比例系数✮✮特殊图形面积17.(2022·吉林长春·中考真题)如图,在平面直角坐标系中,点P 在反比例函数ky x=(0k >,0x >)的图象上,其纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM .若点M 也在该反比例函数的图象上,则k 的值为()AB C .D .418.(2021·甘肃兰州·中考真题)如图,点A 在反比例函数()0ky x x=>图象上,AB x ⊥轴于点B ,C 是OB 的中点,连接AO ,AC ,若AOC 的面积为2,则k =()A.4B.8C.12D.16【考点十】反比例函数的图象和性质➽➸面积✮✮(比例系数)解析式19.(2020·贵州黔东南·中考真题)如图,点A是反比例函数y6x(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=2x的图象于点B,点P是x轴上的动点,则△PAB的面积为()A.2B.4C.6D.820.(2016·山东菏泽·中考真题)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36B.12C.6D.3二、填空题【知识点一】反比例函数定义的理解【考点一】反比例函➽➸描述性定义✮✮定义判断21.(2022·河南·柘城县实验中学一模)从1,2,3中任取一个数作为x,从4,6中任取一个数作为y ,则点(,)x y 在反比例函数12y x=图象上的概率为_________.22.(2019·黑龙江绥化·中考模拟)矩形的面积是240m ,设它的一边长为x (单位:m ),则矩形的另一边长y (单位:m )与x 的函数关系是__________.【考点二】反比例函➽➸定义✮✮参数23.(2012·山东滨州·中考真题)下列函数:①y=2x-1;②5y=x -;③y=x 2+8x-2;④22y=x;⑤1y=2x ;⑥a y=x中,y 是x 的反比例函数的有______(填序号)24.(2014·湖南邵阳·中考真题)若反比例函数的图象经过点(﹣1,2),则k 的值是_____【考点三】反比例函➽➸自变量✮✮因变量25.(2022·黑龙江哈尔滨·中考真题)已知反比例函数6y x=-的图象经过点()4,a ,则a的值为___________.26.(2022·北京石景山·一模)在平面直角坐标系xOy 中,点()2,A m ,(),3B n 都在反比例函数6y x=的图象上,则mn 的值为______.【知识点二】反比例函数的图象和性质【考点四】反比例函数的图象和性质➽➸图象✮✮解析式27.(2020·山东菏泽·中考真题)从1-,2,3-,4这四个数中任取两个不同的数分别作为a ,b 的值,得到反比例函数aby x=,则这些反比例函数中,其图象在二、四象限的概率是______.28.(2012·湖南益阳·中考真题)反比例函数ky=x的图象与一次函数y=2x+1的图象的一个交点是(1,k ),则反比例函数的解析式是____.【考点五】反比例函数的图象和性质➽➸对称性29.(2020·北京·中考真题)在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_______.30.(2019·北京·中考真题)在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2ky x =上,则12k k +的值为______.【考点六】反比例函数的图象和性质➽➸位置✮✮参数31.(2015·湖北黄石·中考真题)反比例函数21a y x-=的图象有一支位于第一象限,则常数a 的取值范围是______.32.(2022·四川成都·二模)有6张正面分别标有数字﹣2,﹣1,0,1,2,3的卡片,他们除了数字不同外,其余全部相同.现将他们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为k ,则使反比例函数y =1kx-的图象分布在第二、四象限的概率为_____.【考点七】反比例函数的图象和性质➽➸增减性✮✮参数33.(2021·湖南郴州·中考真题)在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则m 的取值范围是________.34.(2021·甘肃武威·中考真题)若点()()123,,4,A y B y --在反比例函数21a y x+=的图象上,则1y ____2y (填“>”或“<”或“=”)【考点八】反比例函数的图象和性质➽➸增减性✮✮比较大小35.(2022·青海·中考真题)如图,一块砖的A ,B ,C 三个面的面积之比是5:3:1,如果A ,B ,C 三个面分别向下在地上,地面所受压强分别为1P ,2P ,3P ,压强的计算公式为FP S=,其中P 是压强,F 是压力,S 是受力面积,则1P ,2P ,3P 的大小关系为______(用小于号连接).36.(2022·山东滨州·中考真题)若点123(1,)(2,)(3,)A y B y C y --,,都在反比例函数6y x=的图象上,则123,,y y y 的大小关系为_______.【考点九】反比例函数的图象和性质➽➸比例系数✮✮特殊图形面积37.(2020·湖南株洲·中考真题)如图所示,在平面直角坐标系Oxy 中,四边形OABC为矩形,点A 、C 分别在x 轴、y 轴上,点B 在函数1ky x=(0x >,k 为常数且2k >)的图象上,边AB 与函数22(0)y x x=>的图象交于点D ,则阴影部分ODBC 的面积为________(结果用含k 的式子表示)38.(2009·黑龙江鸡西·中考真题)如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=_______.【考点十】反比例函数的图象和性质➽➸面积✮✮(比例系数)解析式39.(2022·广西河池·中考真题)如图,点P (x ,y )在双曲线ky x=的图象上,PA ⊥x 轴,垂足为A ,若S △AOP =2,则该反比例函数的解析式为_____.40.(2022·辽宁锦州·中考真题)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.三、解答题41.(2016·甘肃白银·中考真题)如图,函数y1=﹣x +4的图象与函数2ky x(x >0)的图象交于A (m ,1),B (1,n )两点.(1)求k ,m ,n 的值;(2)利用图象写出当x ≥1时,y1和y2的大小关系.42.(2013·云南德宏·中考真题)如图,是反比例函数m 5y x-=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m 的取值范围;(2)在这个函数图象的某一支上取点A (x 1,y 1)、B (x 2,y 2).如果y 1<y 2,那么x 1与x 2有怎样的大小关系?43.(2021·浙江杭州·中考真题)在直角坐标系中,设函数11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.②当12y y <时,直接写出x 的取值范围.(2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值.44.(2021·湖北随州·一模)已知一次12y x a =-+的图象与反比例函数()20k y k x=≠的图象相交.(1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k ,且25a k +=.①求2y 的函数表达式.②当0x >时,比较1y ,2y 的大小.45.(2019·江西吉安·中考模拟)已知,如图,正比例函数y =ax 的图象与反比例函数图象交于A 点(3,2),(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答:在第一象限内,当反比例函数值大于正比例函数值时x的取值范围?(3)M(m,n)是反比例函数上一动点,其中0大于m小于3,过点M作直线MN平行x轴,交y轴于点B.过点A作直线AC平行y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.参考答案1.A【分析】根据电流I与电路的电阻R是反比例函数关系,由反比例函数图像是双曲线,在同一象限内x 和y 的变化规律是单调的,即可判断解:∵电流I 与电路的电阻R 是反比例函数关系由表格:5,20I R ==;1,100I R ==∴在第一象限内,I 随R 的增大而减小∵204080100<<<∴51a b >>>故选:A【点拨】本题考查双曲线图像的性质;解题关键是根据表格判断出双曲线在第一象限,单调递减2.B【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:A.圆的周长与其半径是正比例关系,不符合题意,B.平行四边形面积一定时,其一边长与这边上的高成反比例关系,符合题意,C.销售单价一定时,销售总价与销售数量成正比例关系,不符合题意,D.汽车匀速行驶过程中,行驶路程与行驶时间成正比例关系,不符合题意,故选B .【点拨】本题主要考查成反比例函数关系的量,关键就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.D 【分析】根据反比例函数的定义即形如k y x =(k 是常数,且k ≠0)的函数,对各选项进行判断即可.解:A 选项中函数是正比例函数,故不符合题意;B 选项中函数不是反比例函数,故不符合题意;C 选项中函数是正比例函数,故不符合题意;D 选项中函数符合反比例函数的定义,故符合题意;故选:D .【点拨】本题考查了反比例函数的定义.解题的关键在于对反比例定义与形式的熟练掌握与灵活运用.4.D【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.解:∵反比例函数y =23k x-的图象经过点(1,1),∴代入得:2k -3=1×1,解得:k =2,故选D .【点拨】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k 的方程是解此题的关键.5.B【分析】把x=-1代入函数解析式可得y 的值.解:把=1x -代入2y x=得:=2y -,故选:B .【点拨】本题主要考查了反比例函数图象上点的坐标特征,图象上点的坐标适合解析式是关键.6.B【分析】根据函数解析式算出三个点的横坐标,再比较大小.解:∵点A (x 1,﹣1),B (x ,2),C (x 3,3)都在反比例函数y 1x =-的图象上,∴x 1=﹣1÷(﹣1)=1,x 2=﹣1÷212=-,x 3=﹣1÷313=-.∴x 1>x 3>x 2,故选:B .【点拨】本题考查反比例函数图象上点的坐标特征,熟练掌握根据函数析式,求点坐标.7.B【分析】由0ab <,得,a b 异号,若图象中得到的,a b 异号则成立,否则不成立.解:A.由图象可知:0,0a b >>,故A 错误;B.由图象可知:0,0a b <>,故B 正确;C.由图象可知:0,0a b ><,但正比例函数图象未过原点,故C 错误;D.由图象可知:0,0a b <<,故D 错误;故选:B .【点拨】本题考查了根据已知参数的取值范围确定函数的大致图象的问题,熟知参数对于函数图象的影响是解题的关键.8.B【分析】由图可知,反比例函数位于二、四象限,则根据反比例函数的性质可知k <0,再结合一次函数的图象和性质即可作答.解:由图可知,反比例函数位于二、四象限,∴k <0,∴y =kx +2经过一、二、四象限.故选:B .【点拨】本题主要考查了反比例函数的图象和性质以及一次函数的图象和性质,熟练掌握反比例函数和一次函数的图象和性质是解题的关键.9.A【分析】直接利用正比例函数的性质得出M ,N 两点关于原点对称,进而得出答案.解:∵直线y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点,∴M ,N 两点关于原点对称,∵点M 的坐标是(1,2),∴点N 的坐标是(-1,-2).故选A .【点拨】此题主要考查了反比例函数与一次函数的交点问题,正确得出M ,N 两点位置关系是解题关键.10.B解:设反比例函数解析式为为y =k x .∵反比例函数的图象经过点(m ,n ),∴k=mn ,满足条件的是B .11.D【分析】根据题意可得0k >,进而根据一次函数图像的性质可得y kx k =-的图象的大致情况.解: 反比例函数()0k y k x =≠图象的两个分支分别位于第一、三象限,0k ∴>∴一次函数y kx k =-的图象与y 轴交于负半轴,且经过第一、三、四象限.观察选项只有D 选项符合.故选D【点拨】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得0k >是解题的关键.12.B【分析】根据正比例函数和反比例函数的图象逐一判断即可.解:观察图像①可得120,0k k >>,所以120k k >,①符合题意;观察图像②可得120,0k k <>,所以120k k <,②不符合题意;观察图像③可得120,0k k ><,所以120k k <,③不符合题意;观察图像④可得120,0k k <<,所以120k k >,④符合题意;综上,其中符合120k k ⋅>的是①④,故答案为:B .【点拨】本题考查的是正比例函数和反比例函数的图像,当k >0时,正比例函数和反比例函数经过一、三象限,当k <0时,正比例函数和反比例函数经过二、四象限.13.C【分析】可以判断各个选项中的说法是否正确,从而可以解答本题.解:反比例函数y =﹣5x,A 、当x =1时,y =﹣51=﹣5,图像经过点(1,-5),故选项A 不符合题意;B 、∵k =﹣5<0,故该函数图象位于第二、四象限,故选项B 不符合题意;C 、当x <0时,y 随x 的增大而增大,故选项C 符合题意;D 、当x >0时,y 随x 的增大而增大,故选项D 不符合题意;故选C .【点拨】本题考查的是反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.14.A【分析】根据反比例函数的增减性列出关于的不等式,求出的取值范围即可.解:∵函数2m y x +=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,∴m +2<0,解得:m <﹣2.故选A .【点拨】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.15.C【分析】因为A ,B ,C 三点均在反比例函数上,故可将点代入函数,求解123,,x x x ,然后直接比较大小即可.解:将A ,B ,C 三点分别代入10y x=,可求得1232,5,2x x x =-==,比较其大小可得:132x x x <<.故选:C .【点拨】本题考查反比例函数比较大小,解答本类型题可利用画图并结合图像单调性判别,或者直接代入对应数值求解即可.16.A【分析】首先画出反比例函数k y x=()0k <,利用函数图像的性质得到当1230x x x <<<时,1y ,2y ,3y 的大小关系.解: 反比例函数k y x =()0k <,∴反比例函数图像在第二、四象限,观察图像:当1230x x x <<<时,则213y y y >>.故选A .【点拨】本题考查的是反比例函数的图像与性质,掌握反比例函数的图像与性质是解题的关键.17.C【分析】作MN ⊥x 轴交于点N ,分别表示出ON 、MN ,利用k 值的几何意义列式即可求出结果.解:作MN ⊥x 轴交于点N ,如图所示,∵P 点纵坐标为:2,∴P 点坐标表示为:(2k ,2),PQ =2,由旋转可知:QM =PQ =2,∠PQM =60°,∴∠MQN =30°,∴MN =112QM =,QN ∴ON MN k = ,即:2k k =,解得:k =故选:C .【点拨】本题主要考查的是k 的几何意义,表示出对应线段是解题的关键.18.B【分析】根据三角形中线的性质得出4AOB S =△,然后根据反比例函数k 的几何意义得解.解:∵点C 是OB 的中点,AOC 的面积为2,∴4AOB S =△,∵AB x ⊥轴于点B ,∴142AB OB ⋅=,∴8AB OB ⋅=,∴8k =,故选:B .【点拨】本题考查了反比例函数k 的几何意义以及三角形中线的性质,熟知反比例函数k 的几何意义是解本题的关键.19.A【分析】连接OA 、OB 、PC .由于AC ⊥y 轴,根据三角形的面积公式以及反比例函数比例系数k 的几何意义得到S △APC =S △AOC =3,S △BPC =S △BOC =1,然后利用S △PAB =S △APC ﹣S △APB 进行计算.解:如图,连接OA 、OB 、PC .∵AC ⊥y 轴,∴S △APC =S △AOC =12×|6|=3,S △BPC =S △BOC =12×|2|=1,∴S △PAB =S △APC ﹣S △BPC .故选:A .【点拨】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.20.D【分析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a +b ,a ﹣b ).∵点B 在反比例函数6y x =的第一象限图象上,∴(a +b )×(a ﹣b )=a 2﹣b 2=6.∴S△OAC﹣S△BAD=12a2﹣12b2=12(a2﹣b2)=12×6=3.故选D.【点拨】本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.21.1 3【分析】画树状图可得所有xy的积的等可能结果,由点(x,y)在反比例函数12 yx=图象上可得xy=12,进而求解.解:画树状图如下,2×6=12,3×4=12,∵共有6种等可能的结果,点P在反比例函数12yx=的图象上的有2种情况,∴点(x,y)在反比例函数12yx=图象上的概率为2163=.故答案为:1 3.【点拨】本题考查反比例函数与概率的结合,解题关键是掌握反比例函数的性质,画树状图求概率的方法.22.40 yx =【分析】根据矩形面积等于矩形两邻边之积即可列出函数关系式.解:∵矩形的一边长为xm,另一边长ym,面积是240m,∴40xy=,即:40 yx =.故答案为40 yx =.【点拨】本题考查了列反比列函数关系式.从题中找出相等关系是解题的关键. 23.②⑤.解:反比例函数的定义.【分析】根据反比例函数的定义逐一作出判断:①y=2x ﹣1是一次函数,不是反比例函数;②5y=x-是反比例函数;③y=x 2+8x ﹣2是二次函数,不是反比例函数;④22y=x 不是反比例函数;⑤1y=2x 是反比例函数;⑥a y=x中,a≠0时,是反比例函数,没有此条件则不是反比例函数.故答案为②⑤.24.﹣2解:试题分析:解:∵图象经过点(﹣1,2),∴k=xy=﹣1×2=﹣2.故答案为﹣2考点:待定系数法求反比例函数解析式25.32-【分析】把点的坐标代入反比例函数解析式,求出a 的值即可.解:把点()4,a 代入6y x=-得:6342a =-=-.故答案为:32-.【点拨】本题考查了反比例函数图像上点的坐标特征,明确函数图像经过一个点,这个点的坐标就符合函数解析式是解题关键.26.32【分析】把()2,A m ,(),3B n 代入反比例函数6y x =,求出m 、n 的值即可.解:∵点()2,A m ,(),3B n 都在反比例函数6y x=的图象上∴6263m n ⎧=⎪⎪⎨⎪=⎪⎩,解得32m n =⎧⎨=⎩∴32 mn=故答案为:3 2.【点拨】本题考查反比例函数解析式,把坐标代入解析式是解题的关键.27.23【分析】从1-,2,3-,4中任取两个数值作为a,b的值,表示出基本事件的总数,再表示出其积为负值的基础事件数,按照概率公式求解即可.解:从1-,2,3-,4中任取两个数值作为a,b的值,其基本事件总数有:共计12种;其中积为负值的共有:8种,∴其概率为:82 123=故答案为:2 3.【点拨】本题结合反比例函数图象的性质,考查了概率的计算,能准确写出基本事件的总数,和满足条件的基本事件数,是解题的关键.28.3 y= x解:将(1,k)代入一次函数y=2x+1得,k=2+1=3,则反比例函数解析式为3 y= x29.0【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.解:∵正比例函数和反比例函数均关于坐标原点O对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴120y y+=,故答案为:0.【点拨】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.30.0.【分析】由点A (a ,b )(a >0,b >0)在双曲线1k y x=上,可得k 1=ab ,由点A 与点B 关于x 轴的对称,可得到点B 的坐标,进而表示出k 2,然后得出答案.解:∵点A (a ,b )(a >0,b >0)在双曲线1k y x=上,∴k 1=ab ;又∵点A 与点B 关于x 轴的对称,∴B (a ,-b )∵点B 在双曲线2k y x =上,∴k 2=-ab ;∴k 1+k 2=ab+(-ab )=0;故答案为0.【点拨】考查反比例函数图象上的点坐标的特征,关于x 轴对称的点的坐标的特征以及互为相反数的和为0的性质.31.12a >【分析】由反比例函数的图象与性质可得210a ->,从而可得a 的取值范围.解:∵反比例函数的图象有一支位于第一象限,∴210a ->,解得:12a >.故答案为:12a >.【点拨】本题考查了反比例函数的图象与性质,掌握性质:对于反比例函数(0)k y k x=≠,当k >0时,函数图象位于第一、三象限,是解答的关键.32.13【分析】若双曲线y =1k x-过二、四象限,利用反比例函数的性质得出k >1,求得符合题意的数字为2,3,再利用随机事件的概率=事件可能出现的结果数÷所有可能出现的结果数即可求出结论.解:∵双曲线y =1k x -过二、四象限,∴1-k <0,即k >1∴符合题意的数字为2,3,∴该事件的概率为2163=,故答案为:13.【点拨】本题考查了概率公式,利用反比例函数的性质,找出使得事件成立的k 的值是解题的关键.33.m <3【分析】根据反比例函数的增减性,列出关于m 的不等式,进而即可求解.解:∵在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,∴m -3<0,即:m <3.故答案是:m <3.【点拨】本题主要考查反比例函数的性质,掌握反比例函数k y x =,在反比例函数的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则k <0,是解题的关键.34.<【分析】先确定21a y x+=的图像在一,三象限,且在每一象限内,y 随x 的增大而减小,再利用反比例函数的性质可得答案.解:21a + >0,∴21a y x+=的图像在一,三象限,且在每一象限内,y 随x 的增大而减小,3- >4,-1y ∴<2,y 故答案为:<【点拨】本题考查的是反比例函数的性质,掌握利用反比例函数的图像与性质比较函数值的大小是解题的关键.35.123P P P <<【分析】先根据这块砖的重量不变可得压力F 的大小不变,且0F >,再根据反比例函数的性质(增减性)即可得.解: 这块砖的重量不变,∴不管,,A B C 三个面中的哪面向下在地上,压力F 的大小都不变,且0F >,P ∴随S 的增大而减小,,,A B C 三个面的面积之比是5:3:1,123P P P ∴<<,故答案为:123P P P <<.【点拨】本题考查了反比例函数的性质,熟练掌握反比例函数的增减性是解题关键.36.y 2<y 3<y 1【分析】将点A (1,y 1),B (-2,y 2),C (-3,y 3)分别代入反比例函数6y x =,并求得y 1、y 2、y 3的值,然后再来比较它们的大小.解:根据题意,得当x =1时,y 1=661=,当x =-2时,y 2=632=--,当x =-3时,y 3623==--;∵-3<-2<6,∴y 2<y 3<y 1;故答案是y 2<y 3<y 1.【点拨】本题考查了反比例函数图象与性质,此题比较简单,解答此题的关键是熟知反比例函数的性质及平面直角坐标系中各象限内点的坐标特点,属较简单题目.37.1k -【分析】根据反比例函数k 的几何意义可知:△AOD 的面积为1,矩形ABCO 的面积为k ,从而可以求出阴影部分ODBC 的面积.解:∵D 是反比例函数22(0)y x x=>图象上一点∴根据反比例函数k 的几何意义可知:△AOD 的面积为122⨯=1,∵点B 在函数1k y x=(0x >,k 为常数且2k >)的图象上,四边形OABC 为矩形,∴根据反比例函数k 的几何意义可知:矩形ABCO 的面积为k ,∴阴影部分ODBC 的面积=矩形ABCO 的面积-△AOD 的面积=k-1.故答案为:k-1.【点拨】本题考查反比例函数k的几何意义,解题的关键是正确理解k的几何意义,本题属于中等题型.38.4解:∵点A、B是双曲线3yx=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=3,∴S1+S2=3+3-1×2=4.故答案为:439.4 yx =-【分析】根据反比例函数比例系数的几何意义,即可求解.解:根据题意得:122AOPS k==,∴4k=,∵图象位于第二象限内,∴4k=-,∴该反比例函数的解析式为4 yx =-.故答案为:4 yx =-【点拨】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系数的几何意义是解题的关键.40.2【分析】作A过x轴的垂线与x轴交于C,证明△ADC≌△BDO,推出S△OAC=S△OAB=1,由此即可求得答案.解:设A(a,b),如图,作A过x轴的垂线与x轴交于C,则:AC=b,OC=a,AC∥OB,∴∠ACD=∠BOD=90°,∠ADC=∠BDO,∴△ADC≌△BDO,∴S△ADC=S△BDO,∴S△OAC=S△AOD+S△ADC=S△AOD+S△BDO=S△OAB=1,∴12×OC×AC=12ab=1,∴ab=2,∵A(a,b)在y=kx上,∴k=ab=2.故答案为:2.【点拨】本题考查了反比例函数的性质,三角形的面积公式,全等三角形的判定和性质等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线进行解题.41.(1)m=3,k=3,n=3;(2)当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.【分析】(1)把A与B坐标代入一次函数解析式求出m与n的值,将A坐标代入反比例解析式求出k的值;(2)利用图像,可知分x=1x=3,1<x<3与x>3三种情况判断出y1和y2的大小关系即可.解:(1)把A(m,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入y=kx得:k=3,把B(1,n)代入一次函数解析式得:n=﹣1+4=3;(2)∵A(3,1),B(1,3),∴根据图像得当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.42.(1)函数图象位于第二、四象限,m<5.(2)①当y1<y2<0时,x1<x2;②当0<y1<y2,x1<x2.解:试题分析:(1)根据反比例函数图象的对称性可知,该函数图象位于第二、四象限,则m﹣5<0,据此可以求得m的取值范围;(2)根据函数图象中“y值随x的增大而增大”进行判断.。
中考数学总复习《反比例函数》专项测试卷及答案(测试时长:60分钟;总分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共8小题,共40分)1.已知点(﹣2,a)(2,b)(3,c)在函数y=kx(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a2.已知反比例函数6yx=,则下列描述不正确的是()A.图象位于第一,第三象限B.图象必经过点3 4,2⎛⎫ ⎪⎝⎭C.图象不可能与坐标轴相交D.y随x的增大而减小3.在反比例函数2yx=中,当1x=-时,y的值为()A.2 B.2-C.12D.12-4.反比例函数y=kx 与一次函数y=815x+1615的图形有一个交点B(12,m),则k的值为()A.1 B.2 C.23D.435.如图,在同一平面直角坐标系中,直线y=t(t为常数)与反比例函数y14x=,y21x=-的图象分别交于点A,B,连接OA,OB,则△OAB的面积为()A.5t B.52tC.52D.56.关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(1,1)-;乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大.则这个函数表达式可能是( ) A .y x =-B .1y x=C .2yx D .1y x=-7.如图,O 是坐标原点,点B 在x 轴上,在OAB 中,AO =AB =5,OB =6,点A 在反比例函数y =kx(k ≠0)图象上,则k 的值( )A .﹣12B .﹣15C .﹣20D .﹣308.如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x(x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .4二、填空题(本题共5小题,每空3分,共15分)9.如图,在平面直角坐标系中,点A 的坐标为()3,2,AB x ⊥轴于点B ,点C 是线段OB 上的点,连结AC .点P 在线段AC 上,且2=AP PC .函数()0k y x x=>的图象经过点P .当点C 在线段OB 上运动时,k 的取值范围是_________.10.已知点()1,A a y ,()21,B a y +在反比例函数21m y x+=(m是常数)的图象上,且12y y <,则a 的取值范围是__________.11.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D ,则正方形ABCD 的面积是_________.12.如图,在平面直角坐标系中,O 是坐标原点,在OAB 中,,AO AB AC OB =⊥于点C ,点A 在反比例函数(0)ky k x=≠的图象上,若OB =4,AC =3,则k 的值为__________.13.如图,在直角坐标系xOy 中,点A ,B 分别在x 轴和y 轴,=.∠AOB 的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数y=的图象过点C .当以CD 为边的正方形的面积为时,k 的值是_________.三、解答题(本题共4小题,共45分)14.一次函数y 1=k 1x +b(k 1≠0)的图象与反比例函数y 2=k 2x(k 2≠0)的图象相交于点A(2,−1),B(1,n)两点.(1)分别求出一次函数和反比例函数的解析式,并在给出的平面直角坐标系中,直接画出一次函数和反比例函数的图象;(2)连接AO 并延长交双曲线于点C ,连接BC ,求△ABC 的面积; (3)直接写出当y 1>y 2时,x 的取值范围.15.如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点.(1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP △的面积; (3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集.16.如图,一次函数()1y kx b k 0=+≠的图象与反比例函数()2my m 0x=≠的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4,请直接写出点P 的坐标.17.如图,在平面直角坐标系xoy 中,函数(0)ky x x=<的图象经过点(-6,1),直线y mx m =+与y 轴交于点(0,-2).(1)求k ,m 的值;(2)过第二象限的点P(n ,-2n )作平行于x 轴的直线,交直线y =mx+m 于点A ,交函数(0)ky x x=<的图象于点B . ①当n =-1时,判断线段PA 与PB 的数量关系,并说明理由; ②若PB ≥2PA ,结合函数的图象,直接写出n 的取值范围.参考答案:1.C2.D3.B4.C5.C6.D7.A8.C9.232k ≤≤10.10a -<< 11.12 12.6 13.714.(1)解:把A(2,−1)代入y 2=k 2x得k =−2∴反比例函数的解析式为y 2=−2x . 当x=1时,y =−2; ∴B(1,−2)把A(2,−1),B(1,−2)代入y 1=k 1x +b 得{2k 1+b =−1k 1+b =−2解得{k 1=1b =−3∴一次函数的解析式为y 1=x −3 图象如图所示(2)解:如图,设BC 交y 轴于点D ,连接AD∵A ,C 关于原点对称∴C(−2,1) ∵B(1,−2)设直线BC 的解析式为y =kx +b 则{−2=k +b 1=−2k +b 解得{k =−1b =−1∴直线BC 的解析式为y =−x −1 令x =0,则y =−1∴D(0,−1) ∵A(2,−1)∴AD ⊥x 轴∴S △ABC =S △ABD +S △ADC =12AD ×|y C −y B |=12×2×(1+2)=3(3)解:根据函数图象可知,当y 1>y 2时 15. (1)11y x =-+ 26y x=-;(2)152ABPS=;(3)20x -<<或3x > 16. (1)124y x =-+ 26y x=-;(2)(1,0)或(3,0) 17.解:(1)∵函数(0)ky x x=<图象经过点(-6,1) ∴k=-6×1=-6∵直线y mx m =+与y 轴交于点(0,-2) ∴m=-2;(2)①PB=2PA,理由如下:当n=-1时,点P坐标为(-1,2)∴点A坐标为(-2,-2),点B坐标为(-3,-2)∴PA=1,PB=2∴PB=2PA;②∵点P坐标为(n,-2n),PA平行于x轴把y=-2n分别代入6(0)y xx=-<和y=-2x-2得点B坐标为3,2nn⎛⎫-⎪⎝⎭,点A坐标为(n-1,-2n)∴PA=n-(n-1)=1,PB=3 nn -当PB=2PA时,则32 nn-=如图1,当32nn-=解得121,3x x=-=(不合题意,舍去)如图2,当32nn-=解得123,1x x=-=(不合题意,舍去)∴PB≥2PA时,3-10n n≤-≤<或.。
中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。
D.当y增大时,BE·DF的值不变。
8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。
中考数学专题练习:反比例函数(含答案)1.(·海南)已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于( )A.二、三象限B.一、三象限C.三、四象限D.二、四象限2.(·哈尔滨)已知反比例函数y=2k-3x的图象经过点(1,1),则k的值为( )A.-1 B.0 C.1 D.23.(·湖州)如图,已知直线y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的图象交于M,N两点,若点M的坐标是(1,2),则点N的坐标是( )A.(-1,-2) B.(-1,2)C.(1,-2) D.(-2,-1)4.(·临沂)如图,正比例函数y1=k1x与反比例函数y2=k2x的图象相交于A、B两点,其中点A的横坐标为1,当y1<y2时,x的取值范围是( )A.x<-1或x>1B.-1<x<0或x>1 C.-1<x<0或0<x<1 D.x<-1或0<x<15.(·无锡)已知点P(a,m)、Q(b,n)都在反比例函数y=-2x的图象上,且a<0<b,则下列结论一定成立的是( ) A .m +n<0B .m +n>0C .m<nD .m>n6.(原创)如图是反比例函数y =kx图象的一支,则一次函数y =-kx +k 的图象大致是( )7.(·怀化)函数y =kx -3与y =kx(k≠0)在同一坐标系内的图象可能是( )8.(·安庆一模)对于反比例函数y =2x ,下列说法不正确...的是( ) A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限 C .当x >0时,y 随x 的增大而增大 D .当x <0时,y 随x 的增大而减小9.(·郴州) 如图,A,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .110.(·嘉兴) 如图,点C 在反比例函数y =kx (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A 、B,且AB =BC,△AOB 的面积为1.则k 的值为( )A .1B .2C .3D .411.(·台州)如图,点 A,B 在反比例函数y =1x (x>0)的图象上,点 C,D 在反比例函数y =kx (k>0)的图象上, AC∥BD∥y 轴. 已知点 A,B 的横坐标分别为 1,2,△OAC 与△ABD 的面积之和为32,则 k 的值为( )A .4B .3C .2D. 3212.(·重庆B 卷)如图,菱形ABCD 的边AD⊥y 轴,垂足为点E,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y =kx (k≠0,x >0)的图象同时经过顶点C,D.若点C 的横坐标为5,BE=3DE,则k 的值为( )A.52B.3 C.154D.513.(·南京)已知反比例函数y=kx的图象经过点(-3,-1),则k=________.14.(·云南省卷)已知点P(a,b)在反比例函数y=2x的图象上,则ab=________.15.(·宜宾)已知:点P(m,n)在直线 y=-x+2上,也在双曲线 y =-1x上,则m2+n2的值为________.16.(·随州)如图,一次函数y=x-2的图象与反比例函数y=kx(k>0)的图象相交于A、B两点,与x轴交于点C,若tan∠AOC=13,则k的值为________.17.(·泰安)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=mx的图象经过点E,与AB交于点F.(1)若点B的坐标为(-6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF-AE=2,求反比例函数的表达式.18.(·杭州)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时). (1)求v 关于t 的函数表达式;(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?19.(·山西)如图,一次函数y 1=k 1x +b(k 1≠0)的图象分别与x 轴,y 轴相交于点A,B,与反比例函数y 2=k 2x (k 2≠0)的图象相交于点C(-4,-2),D(2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.20.(·甘肃省卷)如图,一次函数y=x+4的图象与反比例函数y=kx(k为常数且k≠0)的图象交于A(-1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =32S△BOC,求点P的坐标.21.(·绵阳)如图,一次函数y=-12x+52的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM的面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点的坐标.22.(·改编)某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:年度2014 2015 2016 2017投入技改资金x(万元) 2.5 3 4 4.5产品成本y(万元/件) 7.2 6 4.5 4(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其表达式;(2)按照这种变化规律,若2018年已投入资金5万元. ①预计生产成本每件比2017年降低多少万元?②若打算在2018年把每件产品成本降低到3.2万元,则还需要投入资金多少万元?(结果精确到0.01万元).1.(·瑶海区二模)如图,已知点A 是反比例函数y =1x (x>0)的图象上的一个动点,连接OA,OB⊥OA ,且OB =2OA.那么经过点B 的反比例函数图象的表达式为( )A .y =-2xB .y =2xC .y =-4xD .y =4x2.(·宿迁)如图,在平面直角坐标系中,反比例函数y=2x(x>0)的图象与正比例函数y=kx,y=1kx(k>1)的图象分别交于点A,B.若∠AOB=45°,则△AOB的面积是________.3.(·北京)在平面直角坐标系xOy中,函数y=kx(x>0)的图象G经过点A(4,1),直线l:y=14x+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=-1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.4.(·杭州)设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(-1,-1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值;(3)已知点C(x 1,y 1),D(x 2,y 2)在该一次函数图象上,设m =(x 1-x 2)(y 1-y 2),判断反比例函数y =m +1x 的图象所在的象限,说明理由.参考答案【基础训练】1.D 2.D 3.A 4.D 5.D 6.A 7.B 8.C 9.B 10.D 11.B 12.C13.3 14.2 15.6 16.317.解:(1)∵B(-6,0),AD =3,AB =8,E 为CD 的中点, ∴E(-3,4),A(-6,8).∵反比例函数的图象过点E(-3,4), ∴m=-3×4=-12.设图象经过A 、E 两点的一次函数表达式为:y =kx +b,∴⎩⎨⎧-6k +b =8,-3k +b =4,解得⎩⎨⎧k =-43,b =0,∴y=-43x ;(2)∵AD=3,DE =4,∴AE=5. ∵AF-AE =2,∴AF=7.∴BF=1.设E 点坐标为(a,4),则F 点坐标为(a -3,1). ∵E ,F 两点在y =mx的图象上,∴4a=a -3,解得a =-1.∴E(-1,4),∴m=-4,∴y=-4x .18.解:(1)根据题意,得vt =100 (t>0),所以v =100t (t>0);(2)由题意知,v =100t (0<t ≤5),而100>0,所以当t>0 时,v 随着t 的增大而减小,当0<t≤5时,v≥1005=20,所以平均每小时至少要卸货20吨.19.解:(1)∵一次函数y 1=k 1x +b(k 1≠0)的图象经过点C(-4,-2),D(2,4),∴⎩⎨⎧-2=-4k 1+b 4=2k 1+b ,解得:⎩⎨⎧k1=1b =2,∴一次函数的表达式为:y 1=x +2.∵反比例函数y 2=k 2x (k 2≠0)的图象经过点D(2,4),∴4=k 22,即k 2=8,∴反比例函数的表达式为:y 2=8x ;(2)令y 1=x +2中y 1>0,即x +2>0,解得x >-2,∴当x >-2时,y 1>0;(3)由图象可知:当x <-4或0<x <2时,y 1<y 2.20.解:(1)把点A(-1,a)代入y =x +4,得a =3,∴ A(-1,3).把A(-1,3)代入反比例函数y =k x ,得k =-3,∴ 反比例函数的表达式为y =-3x ;(2)联立两个函数表达式得 ⎩⎨⎧y =x +4,y =-3x , 解得⎩⎨⎧x =-1,y =3,⎩⎨⎧x =-3,y =1.∴ 点B 的坐标为B(-3,1).当y =x +4=0时,得x =-4.∴ 点C(-4,0).设点P 的坐标为(x,0).∵S △ACP =32S △BOC ,∴12×3×|x-(-4)|=32×12×4×1.即|x +4|=2,解得 x 1=-6,x 2=-2.∴ 点P(-6,0)或(-2,0).21.解:(1)∵△AOM 的面积为1,∴12||k =1,∵k>0,∴k=2.∴y=2x ;(2)如解图,作点A 关于y 轴的对称点C,连接BC 交y 轴于P 点.∵A ,B 是两个函数图象的交点,第21题解图∴⎩⎪⎨⎪⎧y =2x ,y =-12x +52,解得:⎩⎨⎧x 1=1,y 1=2,⎩⎨⎧x 2=4,y 2=12.∴A(1,2),B(4,12).∴C(-1,2).设y BC =kx +b,则⎩⎨⎧-k +b =2,4k +b =12, 解得⎩⎪⎨⎪⎧k =-310,b =1710,∴y=-310x +1710,∴P(0,1710),∴PA+PB =BC =52+(32)2=1092.22.解:(1)∵2.5×7.2=18,3×6=18,4×4.5=18,4.5×4=18,∴x 与y 的乘积为定值18,∴反比例函数能表示其变化规律,其表达式为y =18x ;(2)①当x =5时,y =3.6.4-3.6=0.4(万元),∴生产成本每件比2017年降低0.4万元.②当y =3.2时,3.2=18x ,x =5.625≈5.63,5.63-5=0.63(万元).∴还需投入0.63万元.【拔高训练】1.C 2.23.解:(1)∵点A(4,1)在y =kx (x>0)的图象上.∴k4=1,∴k=4.(2)① 3个.(1,0),(2,0),(3,0).② a.如解图1,当直线过(4,0)时:14×4+b =0,解得b =-1, b .如解图2,当直线过(5,0)时:14×5+b =0,解得b =-54,c .如解图3,当直线过(1,2)时,14×1+b =2,解得b =74, d .如解图4,当直线过(1,3)时14×1+b =3,解得b =114,∴综上所述:-54≤b<-1或74<b≤114. 4.解:(1)将A(1,3),B(-1,-1)的坐标分别代入y =kx +b,得⎩⎨⎧k +b =3,-k +b =-1,解得⎩⎨⎧k =2,b =1, 故一次函数的表达式为y =2x +1.(2)∵点(2a +2,a 2)在该一次函数图象上,∴a 2=2(2a +2)+1,∴a 2-4a -5=0,解得a1=5,a2=-1.(3)由题意知,y1-y2=(2x1+1)-(2x2+1)=2(x1-x2).∴m=(x1-x2)(y1-y2)=2(x1-x2)2≥0,∴m+1≥1>0,∴反比例函数y=m+1x的图象在第一、三象限.。
中考数学总复习《反比例函数》专项提升训练题(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,4A -是反比例函数()0ky k x=≠图象上一点,则常数k 的值为( ) A .4 B .14-C .4-D .142.函数6y x=的图象位于第( )象限 A .一、二 B .一、三 C .二、三 D .二、四3.已知反比例函数2y x =图象上有三点()14,A y ,()22,B y 和31,2C y ⎛⎫⎪⎝⎭,则1y 、2y 和3y 的大小关系为( ) A .y y y >>₁₂₃B .y y y >>₂₁₃C .y y y >>₃₂₁D .y y y >>₃₁₂4.已知二次函数2y x bx c =++的图象如图所示,则一次函数y bx c =+与反比例函数bcy x=的图象可能..是( )A .B .B .C .D .5.如图,点P ,Q 在反比例函数4y x=的图象上,点M 在x 轴上,点N 在y 轴上,下列说法正确的是( )A .图1、图2中阴影部分的面积分别为2,4B .图1、图2中阴影部分的面积分别为1,2C .图1、图2中阴影部分的面积之和为8D .图1、图2中阴影部分的面积之和为3 6.下列各点中,不在反比例函数6y x=图像上的点是( ) A .()1,6B .()6,1--C .()6,1D .()2,3-7.如图,OAB 是面积为4的等腰三角形,底边OA 在x 轴上,若反比例函数图象过点B ,则它的解析式为( )A .2y x=B .-2y x=C .4y x =D .4y x=-8.已知如图,一次函数14y x =+图象与反比例函数25y x=图象交于()1,A n ,()5,B m -两点,则12y y >时x 的取值范围是( )A .5x 0-<<或1x >B .5x <-或01x <<C .5x 0-<<或01x <<D .51x -<<二、填空题9.在平面直角坐标系中,将点()2,3A 向下平移5个单位长度得到点B ,若点B 恰好在反比例函数的图象上,则此反比例函数的表达式为 .10.已知点()()1221A yB y --,,,和()34C y ,都在反比例函数8y x=的图象上,则123y y y ,,的大小关系为 .(用“<”连接)11.如图,点A 是反比例函数2y x=-的图象上一点,过点A 向y 轴作垂线,垂足为点B ,点C 、D 在x 轴上,且BC AD ∥,则四边形ABCD 的面积为 .12.如图,直线6y x =-+与y 轴交于点A ,与反比例函数ky x=图象交于点C ,过点C 作CB x ⊥轴于点B ,3AO BO =,则k 的值为 .13.如图,已知点(3,3)A 和(3,1)B ,反比例函数(0)ky k x=≠图象的一支与线段AB 有交点,写出一个符合条件的k 的整数值: .三、解答题14.如图,在ABCD 中(1,0)A -,(2,0)B 和(0,2)D ,反比例函数ky x=在第一象限内的图象经过点C .(1)点C 的坐标为 . (2)求反比例函数的解析式.(3)点E 是x 轴上一点,若BCE 是直角三角形,请直接写出点E 的坐标.15.科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度()cm h 是液体的密度()3g /cm ρ的反比例函数,如图是该反比例函数的图象,且0ρ>.(1)求h 关于ρ的函数表达式;(2)当密度计悬浮在另一种液体中时25cm h =,求该液体的密度ρ.16.通过试验研究发现:一节40分钟的课堂,初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.如图,学生注意力指标y 随时间x (分钟)变化的函数图象,当010x ≤<和1020x ≤<时,图象是线段;当2040x ≤≤时,图象是反比例函数的一部分.(1)求反比例函数解析式和点A 、D 的坐标;(2)陈老师在一节课上讲解一道数学综合题需要16分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32?请说明理由.17.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x 元与日销售量y 之间满足某种函数关系. x (元)3 4 5 6y (个) 20 15 12 10(1)根据表中的数据请你写出请y 与x 之间的函数关系式;(2)设经营此贺卡的销售利润为w 元,试求出w 与x 之间的函数关系式,若物价局规定此贺卡的销售价每个最高不能超过10元,请你求出当日销售单价x 定为多少元时,才能使日销售获得最大利润?18.如图,一次函数()10y kx b k =+≠的图象与x 轴,y 轴分别交于点A ,B ,与反比例函数()20my x x=>的图象交于点()1,2C 和()2,D n .(1)分别求出两个函数的解析式; (2)当12y y >时,直接写出x 的取值范围. (3)连接OC ,OD ,求COD △的面积;(4)点P 是反比例函数上一点,PQ x ∥轴交直线AB 于Q ,且3PQ =请直接写出点P 的坐标.答案第1页,共1页参考答案:1.C 2.B 3.C 4.B 5.A 6.D 7.D 8.A9.4y x =-10.213y y y << 11.2 12.16-13.4(答案不唯一) 14.(1)()3,2 (2)6y x=(3)(3,0)或(7,0) 15.(1)20h ρ=(2)0.8ρ=16.(1)反比例函数的解析式为800y x=,()0,20A 和()40,20D (2)陈老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32 17.(1)60y x=(2)1018.(1)一次函数的解析式为13y x =-+,反比例函数的解析式为22y x=; (2)12x <<; (3)32; (4)()37,37P +-或()37,37P -+.。
中考数学反比例函数专题训练(含答案)一、反比例函数的图象与性质1.已知反比例函数的解析式为y=( |a|-2 ) / x,则a 的取值范围是( )A. a ≠2B. a ≠-2C. a ≠±2D. a=±22.反比例函数y=-3 / x,下列说法不正确的是( )A. 图象经过点(1,-3)B. 图象位于第二、四象限C. 图象关于直线y=x 对称D. y 随x 的增大而增大3.下列各点中,与点(-3,4) 在同一个反比例函数图象上的点的是( )A. (2,-3)B. (3,4)C. (2,-6)D. (-3,-4)4.点M(a,2a) 在反比例函数y=8 / x 的图象上,那么a 的值是( )A. 4B. -4C. 2D. ±25.如果反比例函数y=(a-2) / x ( a 是常数) 的图象在第一、三象限,那么a 的取值范围是( )A. a<0B. a>0C. a<2D. a>26.若点A(-3,y1),B(-2,y2),C(1,y3) 都在反比例函数y=-12 / x 的图象上,则y1,y2,y3 的大小关系是( )A. y2<y1<y3B. y3<y1<y2C. y1<y2<y3D. y3<y2<y17.反比例函数y=k / x 的图象经过点A(-1,2),则当x>1 时,函数值y 的取值范围是( )A. y>-1B. -1<y<0C. y<-2D. -2<y<08.若点A(a,b) 在反比例函数y=3 / x 的图象上,则代数式ab-1 的值为________.9.反比例函数y=(2m-1)xm2-2,x>0时,y 随着x 的增大而增大,则m 的值是________.10.已知一个反比例函数的图象位于第二、四象限内,点P(x0,y0) 在这个反比例函数的图象上,且x0y0>-4.请你写出这个反比例函数的表达式__________.(写出符合题意的一个即可)11.已知A(x1,y1),B(x2,y2) 都在反比例函数y=-2 / x 的图象上.若x1x2=-4,则y1y2 的值为________.12.已知A(1,m),B(2,n) 是反比例函数y=k/x 图象上的两点,若m-n=4,则k 的值为________.13.已知反比例函数的图象经过三个点A(-4,-3)、B(2m,y1)、C(6m,y2).若y1-y2=4,则m 的值为________.14.已知反比例函数y=m / x 在其所在象限内y 随x 的增大而减小,点P(2-m,m+1) 是该反比例函数图象上一点,则m 的值为________.15.已知A(x1,y1),B(x2,y2) 是反比例函数y=k / x 图象上的两点,且x1+x2=-2,x1·x2=2,y1+y2=-4/3,则k=________.16.已知点A(x1,y1)、B(x2,y2) 是反比例函数y=k/x 图象上的两点,且(x1-x2)(y1-y2)=9,3x1=2x2,则k 的值为________.17.在平面直角坐标系xOy 中,点A(a,b) (a>0,b>0) 在双曲线y=k1/x 上,点A 关于x 轴的对称点B 在双曲线y=k2/x 上,则k1+k2 的值为________.18.反比例函数y=k/x 的图象上有一点P(2,n),将点P 向右平移1 个单位,再向下平移1 个单位得到点Q,若点Q 也在该函数的图象上,则k=________.19.已知A、B 两点分别在反比例函数y=(2m-3) / x ( m ≠3/2 ) 和y=(3m-2) / x ( m ≠2/3) 的图象上,且点A 与点B 关于y 轴对称,则m 的值为________.【参考答案】二、反比例函数与几何图形或一次函数结合1.若一次函数y=ax+6 (a≠0) 的图象与反比例函数y=3/x 的图象只有一个交点,则a 的值为________.2.若直线y=-x+m 与双曲线y=n/x (x>0) 交于A(2,a),B(4,b) 两点,则mn 的值为________.3.一次函数y1=-x+6 与反比例函数y2=8/x (x>0) 的图象如图所示,当y1>y2 时,自变量x 的取值范围是________.4. 如图,在平面直角坐标系中,直线y=-x+2 与反比例函数y=1/x 的图象有唯一公共点.若直线y=-x+b 与反比例函数y=1/x 的图象没有公共点,则b 的取值范围是________.5.如图,过x 轴的正半轴上任意一点P,作y 轴的平行线,分别与反比例函数y=3/x (x>0),y=-6/x (x>0) 的图象相交于点A,B,若C 为y 轴上任意一点,连接AC,BC,则△ABC 的面积为________.6.如图,矩形ABCD 的顶点A,C 在反比例函数y=k/x (k>0,x>0) 的图象上,若点A 的坐标为(3,4),AB=2,AD∥x 轴,则点C 的坐标为________.7.如图,正方形ABCD 的边长为2,点B 与原点O 重合,与反比例函数y=k/x 的图象交于E、F 两点,若△DEF 的面积为9/8,则k 的值为________.8.如图,已知反比例函数y=4/x 的图象经过Rt△OAB 斜边OB 的中点D,与直角边AB 相交于点C,则△OBC 的面积为________.9.如图,反比例函数y=k/x 的图象经过平行四边形ABCD 对角线的交点P,已知点A、C、D 在坐标轴上,BD⊥DC,平行四边形ABCD 的面积为6,则k=________.10.如图,点A,C 分别是正比例函数y=x 的图象与反比例函数y=4/x 的图象的交点,过A 点作AD⊥x 轴于点D,过C 点作CB⊥x 轴于点B,则四边形ABCD 的面积为________.11.如图,点A 是反比例函数y=-8/x 图象上的一点,过点A 的直线与y 轴交于点B,与反比例函数y=k/x (x>0) 的图象交于点C、D.若AB=BC=CD,则k 的值为________.12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=k/x 在第一象限的图象经过点B,若OA2-AB2=8,则k 的值为________.【参考答案】。
中考专题复习模拟演练:反比例函数
一、选择题
1.下列函数中,y是x的反比例函数的是()
A. B. C. D.
【答案】B
2.在下图中,反比例函数的图象大致是()
A. B. C. D.
【答案】D
3.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为()
A. B. C. D.
【答案】D
4.已知点P(﹣1,4)在反比例函数(k≠0)的图象上,则k的值是()
A. B. C. 4 D. ﹣4
【答案】D
5.一次函数和反比例函数在同一直角坐标系中大致图像是()
A. B. C. D.
【答案】A
6.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y= 在同一坐标系中的图象大致是()
A. B. C. D.
【答案】C
7.如图,点C在反比例函数(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()
A. 1
B. 2
C. 3
D. 4
【答案】D
8.函数(a为常数)的图象上有三点(x1,﹣4),(x2,﹣1),(x3,2),则函数值x1,x2,x3的大小关系是()
A. x2<x3<x1
B. x3<x2<x1
C. x1<x2<x3
D. x3<x1<x2
【答案】D
9.如图,平行于x轴的直线与函数(k1>0,x>0),(k2>0,x>0)的图像分别交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为()
A. 8
B. -8
C. 4
D. -4
【答案】A
10.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数(,)的图
象上,横坐标分别为1,4,对角线轴.若菱形ABCD的面积为,则k的值为()
A. B. C. 4 D. 5
【答案】D
二、填空题
11.(2017•兰州)若反比例函数的图象经过点(﹣1,2),则k的值是________.
【答案】-2
12.已知点在直线上,也在双曲线上,则的值为________.
【答案】6
13.(2017•哈尔滨)已知反比例函数y= 的图象经过点(1,2),则k的值为________.
【答案】1
14.(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为________.
【答案】m<n
15. 已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为________.
【答案】y=
16.(2017•河池)如图,直线y=ax与双曲线y= (x>0)交于点A(1,2),则不等式ax>的解集是________.
【答案】x>1
17.(2017•毕节市)如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比
例函数y= (x>0)交于C点,且AB=AC,则k的值为________.
【答案】
18.如图,点A,B是反比例函数图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x
于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=________。
【答案】5
三、解答题
19. 如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函
数和一次函数的表达式.
【答案】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y= (x>0)的图象上,
∴.
解得:m=8,n=4.
∴反比例函数的表达式为y= .
∵m=8,n=4,
∴点B(2,4),(8,1).
过点P作PD⊥BC,垂足为D,并延长交AB与点P′.
在△BDP和△BDP′中,
∴△BDP≌△BDP′.
∴DP′=DP=6.
∴点P′(﹣4,1).
将点P′(﹣4,1),B(2,4)代入直线的解析式得:,
解得:.
∴一次函数的表达式为y= x+3
20.(2017•宁波)如图,正比例函数的图象与反比例函数的图象交于A、B两点,点C 在x轴负半轴上,AC=AO,△ACO的面积为12.
(1)求k的值;
(2)根据图象,当时,写出自变量的取值范围.
【答案】(1)解:如图,过点A作AD⊥OC于点D.
又∵AC=AO.
∴CD=DO.
∴S△ADO=S△ACO=6.
∴k=-12.
(2)解:由图像可知:χ<-2或0<χ<2.
21.(2017•苏州)如图,在中,,轴,垂足为.反比例函数()
的图像经过点,交于点.已知,.
(1)若,求的值;
(2)连接,若,求的长.
【答案】(1)解:过点C作CD⊥AB于E,
因为AC=BC,
所以AE=BE=2,
在Rt△BCE中,CE=,
则点C的横坐标为4-,
即C(,2)。
将点C(,2)代入y=,得[MISSING IMAGE: , ]
所以AD=
则D,C两点的坐标分别为(m,),(m-,2) .
因为点D,C都在y=的图象上,
所以,
所以m=6
所以点C的坐标为(,2)
作CF⊥x轴,垂足为F.在Rt△OCF中,
OC=.
22.设一次函数(是常数,)的图象过A(1,3),B(-1,-1)
(1)求该一次函数的表达式;
(2)若点(2a+2,a2)在该一次函数图象上,求a的值;
(3)已知点C(x1,y1),D(x2,y2)在该一次函数图象上,设m=(x1-x2)(y1-y2),判断反比例
函数的图象所在的象限,说明理由。
【答案】(1)根据题意,得,解得k=2,b=1
所以y=2x+1
(2)因为点(2a+2,a2)在函数y=2x+1的图像上,所以a2=4a+5
解得a=5或a=-1
(3)由题意,得y1-y2=(2x1+1)-(2x2+1)=2(x1-x2)所以m=(x1-x2)(y1-y2)=2(x1-x2)2≥0,
所以m+1>0
所以反比例函数的图像位于第一、第三象限
23.如图,一次函数的图像与反比例函数的图像交于A,B两点,过点A做x 轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标。
【答案】(1)解:(1)设A(x,y)
∵A点在反比例函数上,
∴k=xy,
又∵= .OM·AM= ·x·y= k=1,
∴k=2.
∴反比例函数解析式为:y= .
(2)解:作A关于y轴的对称点A′,连接A′B交y轴于点P,PA+PB的最小值即为A′B.
∴,
∴或.
∴A(1,2),B(4,),
∴A′(-1,2),
∴PA+PB=A′B= = . 设A′B直线解析式为:y=ax+b,
∴,
∴,
∴A′B直线解析式为:y=- x+ ,∴P(0,).。