高三物理圆周运动课堂练习
- 格式:doc
- 大小:116.00 KB
- 文档页数:3
高考物理生活中的圆周运动的技巧及练习题及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤3.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C 点再落回到水平面,重力加速度为g .求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或 EP≥mgR .4.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
高考物理生活中的圆周运动的技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
高考物理生活中的圆周运动专项训练100(附答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。
高考物理高考物理生活中的圆周运动解题技巧( 超强) 及练习题 ( 含答案 )一、高中物理精讲专题测试生活中的圆周运动1.如下图,倾角为45的粗拙平直导轨与半径为r 的圆滑圆环轨道相切,切点为b,整个轨道处在竖直平面内 . 一质量为速下滑进入圆环轨道,接着小滑块从最高点m的小滑块从导轨上离地面高为H=3ra 水平飞出,恰巧击中导轨上与圆心的d 处无初O 等高的c 点 . 已知圆环最低点为 e 点,重力加快度为g,不计空气阻力. 求:(1)小滑块在 a 点飞出的动能;()小滑块在 e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果能够保存根号)【答案】( 1)142 mgr ;()′;()2=6mg2F314【分析】【剖析】【详解】(1)小滑块从 a 点飞出后做平拋运动:水平方向: 2r v a t竖直方向: r1gt 22解得:v a gr小滑块在 a 点飞出的动能E k1mv a21mgr22(2)设小滑块在 e 点时速度为v m,由机械能守恒定律得:1mv m21mv a2mg 2r22在最低点由牛顿第二定律:F mg mv m2r由牛顿第三定律得:F′=F解得: F′ =6mg(3) bd 之间长度为L,由几何关系得:L 2 2 1 r从 d 到最低点 e 过程中,由动能定理mgHmg cos L1mv m22解得42142.如下图,水平桌面上有一轻弹簧,左端固定在 A 点,自然状态时其右端位于B点. D 点位于水平桌面最右端,水平桌面右边有一竖直搁置的圆滑轨道MNP,其形状为半径R=0.45m 的圆环剪去左上角 127 °的圆弧, MN 为其竖直直径, P 点到桌面的竖直距离为R, P 点到桌面右边边沿的水平距离为 1.5R.若用质量 m1= 0.4kg 的物块将弹簧迟缓压缩到C 点,开释后弹簧恢还原长时物块恰停止在 B 点,用同种资料、质量为m2= 0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点后其位移与时间的关系为x= 4t﹣ 2t 2,物块从 D 点飞离桌面后恰巧由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为 m2的物块在 D 点的速度;(2)判断质量为m2=0.2kg 的物块可否沿圆轨道抵达M 点:(3)质量为 m2= 0.2kg 的物块开释后在桌面上运动的过程中战胜摩擦力做的功.【答案】( 1) 2.25m/s (2)不可以沿圆轨道抵达 M 点( 3) 2.7J【分析】【详解】(1)设物块由 D 点以初速度 v D做平抛运动,落到P 点时其竖直方向分速度为:v y2gR 2 10 0.45 m/s=3m/sv y tan53 °4v D3因此: v D= 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg=m v2,R解得: v gR 3 2m/s 2物块抵达P 的速度:v P v D2v2y32 2.252m/s = 3.75m/s若物块能沿圆弧轨道抵达M 点,其速度为v M,由D 到M 的机械能守恒定律得:1m2v M21m2v P2m2g 1 cos53R22可得: v M20.3375 ,这明显是不行能的,因此物块不可以抵达M 点(3)由题意知x= 4t - 2t2,物块在桌面上过 B 点后初速度v B= 4m/s ,加快度为:a 4m/s2则物块和桌面的摩擦力:m2 g m2 a可得物块和桌面的摩擦系数 :0.4质量 m1= 0.4kg 的物块将弹簧迟缓压缩到 C 点,开释后弹簧恢还原长时物块恰停止在B 点,由能量守恒可弹簧压缩到 C 点拥有的弹性势能为:E p m1gx BC 0质量为 m2=0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点时,由动能定理可得:E p m2 gx BC 1m2v B2 2可得, x BC2m在这过程中摩擦力做功:W1m2gx BC 1.6J 由动能定理, B 到 D 的过程中摩擦力做的功:W 21m2v D21m2v02 22代入数据可得:W2= - 1.1J质量为 m2=0.2kg 的物块开释后在桌面上运动的过程中摩擦力做的功W W1W2 2.7J即战胜摩擦力做功为 2.7 J.3.如下图 ,半径 R=2.5m 的竖直半圆圆滑轨道在 B 点与水平面光滑连结,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一刹时冲量使滑块以必定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经丈量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数,重力加快度.求 :(1)滑块经过 C 点时的速度大小;(2)滑块刚进入圆轨道时,在 B 点轨道对滑块的弹力;(3)滑块在 A 点遇到的刹时冲量的大小.【答案】( 1)(2) 45N(3)【分析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块经过 B 点时的速度为v B,依据机械能守恒定律mv B2= mv c2+2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为解得: N=45NN,依据牛顿第二定律: N-mg=m(3)设滑块从 A 点开始运动时的速度为 v A2B2- mv A 2,依据动能定理; -μ mgs= mv解得: v A=16.1m/s设滑块在 A 点遇到的冲量大小为I,依据动量定理I=mv A解得: I=8.1kg?m/s ;【点睛】此题综合考察动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意剖析物体运动的过程,选择正确的物理规律求解.4.如下图,在竖直平面内有一半径为R的1圆滑圆弧轨道 AB,与水平川面相切于B 4点。
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
高考物理生活中的圆周运动的技巧及练习题及练习题( 含答案 ) 含分析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的圆滑圆弧轨道ABC 和水平轨道PA 在 A 点相切. BC 为圆弧轨道的直径.3O 为圆心, OA 和 OB 之间的夹角为α, sin α=,一质量为 m5的小球沿水平轨道向右运动,经 A 点沿圆弧轨道经过C点,落至水平轨道;在整个过程中,除遇到重力及轨道作使劲外,小球还向来遇到一水平恒力的作用,已知小球在 C 点所受协力的方向指向圆心,且此时小球对轨道的压力恰巧为零.重力加快度大小为g.求:(1)水平恒力的大小和小球抵达C 点时速度的大小;(2)小球抵达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【答案】( 1)5gR (2) m23gR (3) 35R225g【分析】试题剖析本题考察小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动及其有关的知识点,意在考察考生灵巧运用有关知识解决问题的的能力.分析( 1)设水平恒力的大小为F0,小球抵达C点时所受协力的大小为F.由力的合成法例有F0tan①mgF 2(mg )2F02②设小球抵达 C 点时的速度大小为v,由牛顿第二定律得v2F m③R由①②③式和题给数据得F03mg ④4v5gR ⑤2(2)设小球抵达 A 点的速度大小为v1,作CD PA ,交PA于D点,由几何关系得DA R sin⑥CD R(1 cos)⑦由动能定理有mg CD F0DA 1 mv21mv12⑧22由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为p mv1m23gR ⑨2(3)小球走开 C 点后在竖直方向上做初速度不为零的匀加快运动,加快度大小为g.设小球在竖直方向的初速度为v ,从 C 点落至水平轨道上所用时间为t .由运动学公式有v t1gt 2CD ⑩2v vsin由⑤⑦⑩式和题给数据得35Rtg5点睛小球在竖直面内的圆周运动是常有经典模型,本题将小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动有机联合,经典创新.2.有一水平搁置的圆盘,上边放一劲度系数为 k 的弹簧,如下图,弹簧的一端固定于轴 O 上,另一端系一质量为 m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω多大时,物体 A 开始滑动?(2)当转速迟缓增大到 2 ω时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g3mgl ( 2)4 mgl kl【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0 .(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力提供向心力.( 1)当圆盘转速为 n 0 时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:2μmg = ml ω0 ,解得: ω0=g .l即当 ω0g时物体 A 开始滑动.=l( 2)当圆盘转速达到 2 ω0 时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即: μmg +k △x = mr ω12, r=l+△x解得: Vx =3 mglkl 4 mg【点睛】当物体有关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.本题重点是剖析物体的受力状况.3. 如下图,在竖直平面内有一绝缘“ ”型杆放在水平向右的匀强电场中,此中 AB 、 CD水平且足够长,圆滑半圆半径为R ,质量为 m 、电量为 +q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速 v 0 开始向左运动.已知小球运动中电量不变,小球与 AB 、 CD 间动摩擦因数分别为 μ,电场力 Eq=3mg/4,重力加快度为1=0.25、 μ2=0.80g , sin37 =0°.6, cos37 °=0.8.求:( 1)若小球初速度 v 0=4 gR ,则小球运动到半圆上 B 点时遇到的支持力为多大;( 2)小球初速度 v 0 知足什么条件能够运动过 C 点;(3)若小球初速度 v=4 gR ,初始地点变成x=4R ,则小球在杆上静止时经过的行程为多大.【答案】( 1) 5.5mg ( 2) v 0 4 gR ( 3) 44R【分析】 【剖析】 【详解】(1)加快到 B 点: - 1mgx qEx1 mv2 1mv 0222v2在 B 点:N mg mR 解得 N=5.5mg(2)在物理最高点qE F:tanmg解得α=370;过 F 点的临界条件: v F=0从开始到 F 点:-1mgx qE (x R sin)mg ( R R cos ) 01mv02 2解得v0 4 gR可见要过 C 点的条件为:v04gR(3)因为 x=4R<5.75R,从开始到 F 点战胜摩擦力、战胜电场力做功均小于(2)问,到 F 点时速度不为零,假定过 C 点后行进 x1速度变成零,在 CD 杆上因为电场力小于摩擦力,小球速度减为零后不会返回,则:-1mgx2 mgx1-qE( x-x1 ) mg2R01mv02 2s x R x1解得: s(44)R4.如下图,圆滑轨道“”D 处入、出口不重合,CDEF 是一过山车的简化模型,最低点E 点是半径为 R 0.32m 的竖直圆轨道的最高点,DF 部分水平,尾端 F 点与其右边的水平传递带光滑连结,传递带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m.物块B 静止在水平面的最右端 F 处.质量为m A1kg 的物块A从轨道上某点由静止开释,恰巧经过竖直圆轨道最高点 E ,而后与B发生碰撞并粘在一同.若 B 的质量是 A 的 k 倍, A、B 与传递带的动摩擦因数都为0.2 ,物块均可视为质点,物块 A 与物块B的碰撞时间极短,取 g10m / s2.求:(1)当k 3 时物块 A、B 碰撞过程中产生的内能;(2)当 k=3 时物块A、B在传递带上向右滑行的最远距离;(3)议论k在不一样数值范围时,A、B 碰撞后传递带对它们所做的功W 的表达式.【答案】(1) 6J( 2) 0.25m( 3)①W 2 k 1 J②W k 22k15 2 k1【分析】(1)设物块 A 在 E 的速度为v ,由牛顿第二定律得:m A g m A v02①,0R设碰撞前A的速度为 v1.由机械能守恒定律得:2m gR1m v21 m v2② ,A2A02A1联立并代入数据解得:v14m / s③;设碰撞后 A、B 速度为v2,且设向右为正方向,由动量守恒定律得m A v1m A m2 v2④;解得: v2m Av114 1m / s ⑤;m A m B13由能量转变与守恒定律可得:Q 1m A v121m A m B v22⑥,代入数据解得Q=6J⑦;22(2)设物块 AB 在传递带上向右滑行的最远距离为s,由动能定理得:m A m B gs 1m A m B v22⑧,代入数据解得s0.25m ⑨;2(3)由④式可知:v2m A v14m / s ⑩;m A m B1k (i )假如 A、 B 能从传递带右边走开,一定知足1m A m B v22m A m B gL ,2解得: k< 1,传递带对它们所做的功为:W m A m B gL 2 k 1 J;(ii )( I)当v2v 时有:k 3 ,即AB返回到传递带左端时速度仍为v2;由动能定理可知,这个过程传递带对AB 所做的功为: W=0J,(II)当0 k时, AB 沿传递带向右减速到速度为零,再向左加快,当速度与传递带速度相等时与传递带一同匀速运动到传递带的左边.在这个过程中传递带对AB 所做的功为W1m A m B v21m A m B v22,22解得 W k 22k152k1;【点睛】本题考察了动量守恒定律的应用,剖析清楚物体的运动过程是解题的前提与重点,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意议论,不然会漏解. A 恰巧经过最高点E,由牛顿第二定律求出 A 经过 E 时的速度,由机械能守恒定律求出 A 与 B 碰撞前的速度, A、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.依据A、B 速度与传送带速度间的关系剖析AB 的运动过程,依据运动过程应用动能定理求出传递带所做的功.5.如下图,在竖直平面内固定有两个很凑近的齐心圆形轨道,外圆ABCD圆滑,内圆的上半部分 B′C′粗D糙′,下半部分 B′A′光D滑.一质量′m=0.2kg 的小球从轨道的最低点 A 处以初速度 v0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m,取g=10m/s2.(1)若要使小球一直紧贴着外圆做完好的圆周运动,初速度v0起码为多少?(2)若 v0=3m/s ,经过一段时间小球抵达最高点,内轨道对小球的支持力F C=2N,则小球在这段时间内战胜摩擦力做的功是多少?(3)若 v0=3.1m/s ,经过足够长的时间后,小球经过最低点 A 时遇到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保存三位有效数字)【答案】( 1)v0= 10m/s(2) 0.1J ( 3) 6N; 0.56J【分析】【详解】(1)在最高点重力恰巧充任向心力mg mv C2R从到机械能守恒2mgR1mv02 -1mv C222解得v010m/s(2)最高点mv C'2mg - F C从 A到 C用动能定理R-2mgR - W f 1mv C'2-1mv02 22得 W f =0.1J(3)由v0=3.1m/s< 10m/s于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,因为摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做来去运动.设此时小球经过最低点的速度为v A,遇到的支持力为F A12mgR mv Amv2AF A - mg得 F A =6N整个运动过程中小球减小的机械能RE 1mv02 - mgR 2得 E =0.56J6.如图甲所示,轻质弹簧原长为2L,将弹簧竖直搁置在水平川面上,在其顶端将一质量为 5m 的物体由静止开释,当弹簧被压缩到最短时,弹簧长度为L.现将该弹簧水平搁置,如图乙所示.一端固定在A 点,另一端与物块P接触但不连结.是长度为 5 的水平轨AB L道, B端与半径为L 的圆滑半圆轨道 BCD相切,半圆的直径BD在竖直方向上.物块P与AB间的动摩擦因数0.5,用外力推进物块P,将弹簧压缩至长度为L 处,而后开释P,P 开始沿轨道运动,重力加快度为g .(1)求当弹簧压缩至长度为L 时的弹性势能E p;(2)若P的质量为m,求物块走开圆轨道后落至AB上的地点与 B点之间的距离;(3)为使物块P滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)E P mgL(2)S 22L(3)5m M5m 5#32【分析】【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设 P 抵达 B 点时的速度大小为,由能量守恒定律得:设 P 抵达 D 点时的速度大小为,由机械能守恒定律得:物体从 D 点水平射出,设 P 落回到轨道 AB 所需的时间为S 2 2L( 3)设 P 的质量为 M ,为使 P 能滑上圆轨道,它抵达 B 点的速度不可以小于零得 5mgL4 MgLM5 m2要使 P 还能沿圆轨道滑回, P 在圆轨道的上涨高度不可以超出半圆轨道的中点C ,得1Mv B 2 MgL2E p1Mv B 2 4 MgL2A B 两球质量均为 m ,用一长为 l 的轻绳相连, A球中间有孔套在圆滑的足7. 如下图, 、 够长的水平横杆上,两球处于静止状态.现给 B 球水平向右的初速度 v 0,经一段时间后 B 球第一次抵达最高点,此时小球位于水平横杆下方l/2 处.(忽视轻绳形变)求:(1)B 球刚开始运动时,绳索对小球 B 的拉力大小 T ;(2)B 球第一次抵达最高点时, A 球的速度大小v 1;(3)从开始到 B 球第一次抵达最高点的过程中,轻绳对 B 球做的功 W . 【答案】( 1) mg+mv 02( 2)v 1v 02gl ( 3)mgl mv 02l24【分析】 【详解】(1) B 球刚开始运动时, A 球静止,因此 B 球做圆周运动对 B 球: T-mg=m v 02 l得:T=mg+m v2l(2) B 球第一次抵达最高点时,A、 B 速度大小、方向均同样,均为v1以 A、B 系统为研究对象,以水平横杆为零势能参照平面,从开始到点,依据机械能守恒定律,B 球第一次抵达最高1mv02mgl 1mv121mv12mgl2222得:v1v02gl2(3)从开始到 B 球第一次抵达最高点的过程,对 B 球应用动能定理W-mg l1mv121mv02 222得: W= mglmv0248.如下图,竖直平面内固定有一半径R=1m的1 圆滑圆轨道AB 和一倾角为45°且高4为 H= 5m的斜面CD,两者间经过一水平圆滑平台BC相连,B 点为圆轨道最低点与平台的切点.现将质量为m 的一小球从圆轨道 A 点正上方h 处( h 大小可调)由静止开释,巳知重力加快度g= 10m/s 2,且小球在点 A 时对圆轨道的压力总比在最低点 B 时对圆轨道的压力小 3mg .(1)若 h= 0,求小球在 B 点的速度大小;(2)若 h= 0.8m ,求小球落点到 C 点的距离;(结果可用根式表示)(3)若在斜面中点竖直立一挡板,使得不论h 为多大,小球不是越可是挡板,就是落在水平川面上,则挡板的最小长度 l为多少 ?【答案】(1)2 5m / s( 2)61m (3)1.25m【分析】【剖析】【详解】(1)从开释小球至 A 点依据速度与位移关系有v A 2=2gh在 A 点,依据牛顿第二定律2 F N1mv AR在 B 点,依据牛顿第二定律2 F N 2mg mv BR依据题意有F N 2 F N1 3mg故v B 2 g(Rh)若 h 0 ,则小球在B 点的速度v 12gR2 5m/s ;(2)小球从 B 至 C 做匀速直线运动,从 C 点滑出后做平抛运动,若恰能落在D 点则水平方向xvt竖直方向yH1 gt 22又因为斜面倾角为 45°,则x = y解得v 0=5m/s对应的高度h 0 0.25m若 h0.8m 0.25m ,小球将落在水平川面上,而小球在B 点的速度v 2= 2g( R h) 6m/s小球做平抛运动竖直方向H1gt 2 2得t 1s则水平方向x1 v2 t 6m故小球落地址距 C 点的距离s x12H 261m ;(3)若要求不论h 为多大,小球不是打到挡板上,就是落在水平川面上,临界状况是小球擦着挡板落在 D 点,经前方剖析可知,此时在 B 点的临界速度:v35m/s则从 C 点至挡板最高点过程中水平方向x ' v3t '竖直方向y H l1gt '222又Hx2解得l 1.25m .点睛:本题研究平抛运动与圆周运动想联合的问题,注意剖析题意,找出相应的运动过程,注意方程式与数学知识向联合即可求解.9.三维弹球( DPmb1D是 Window 里面附加的一款使用键盘操作的电脑游戏,小明同学受此启迪,在学校组织的兴趣班会上,为大家供给了一个近似的弹珠游戏.如下图,将一质量为 0.1kg 的小弹珠(可视为质点)放在O点,用弹簧装置将其弹出,使其沿着圆滑的半圆形轨道 OA和 AB运动, BC段为一段长为L=5m的粗拙水平面,与一倾角为45°的斜面CD相连,圆弧OA和 AB的半径分别为r =0.49m, R=0.98m,滑块与BC段的动摩擦因数为μ=0.4,C点离地的高度为H=3.2m,g取10m/s2,求(1) 要使小弹珠恰巧不离开圆弧轨道运动到 B 点,在 B 地点小滑块遇到半圆轨道的支持力的大小;(2)在 (1) 问的状况下,求小弹珠落点到C点的距离?(3)若在斜面中点竖直立一挡板,在不离开圆轨道的前提下,使得不论弹射速度多大,小弹珠不是越可是挡板,就是落在水平川面上,则挡板的最小长度d 为多少?【答案】 (1)44.1 m/s,(2) 6.2m;(3) 0.8m【分析】【详解】(1)弹珠恰巧经过最高点 A 时,由牛顿第二定律有:mg = mv A 2r从 A 点到 B 点由机械能守恒律有:mg ×2R = 1mv B21mv A 22 2在 B 点时再因为牛顿第二定律有: F N ﹣ mg = mv B 2R联立以上几式可得: F N 5.5N , v B 44.1 m/s ,= =(2)弹珠从 B 至 C 做匀速直线运动,从 C 点滑出后做平抛运动,若恰能落在 D 点则水平方向: x = v ′Bt竖直方向: y =H = 1 gt 22又: x = y解得: v ′ 4m/sB =而 v B > v ′B = 4m/s ,弹珠将落在水平川面上,弹珠做平抛运动竖直方向:H = 1gt 2 ,得 t =0.8s242 10 m则水平方向: x = v B t =25故小球落地址距 c 点的距离: s = x 2 H 2解得: s = 6.2m(3)临界状况是小球擦着挡板落在 D 点,经前方剖析可知,此时在B 点的临界速度: v ′B =4m/s则从 C 点至挡板最高点过程中水平方向:x'= v ′Bt'竖直方向: y ′= H﹣ d = 1gt 2又: x'=2 2H2解得: d = 0.8m10. 如下图, AB是倾角为 θ BCD 是圆滑的圆弧轨道, AB 恰幸亏 B点与 的粗拙直轨道, 圆弧相切,圆弧的半径为 R .一个质量为 m 的物体(能够看作质点)从直轨道上与圆弧的圆心 O 等高的 P 点由静止开释,结果它能在两轨道间做来回运动.已知物体与轨道 AB 间的动摩擦因数为μ,重力加快度为 g .试求:(1)物体开释后,第一次抵达 B 处的速度大小,并求出物体做来回运动的整个过程中在AB 轨道上经过的总行程s;(2)最后当物体经过圆弧轨道最低点E时,对圆弧轨道的压力的大小;(3)为使物体能顺利抵达圆弧轨道的最高点D(E、 O、D 为同一条竖直直径上的点),开释点距 B 点的距离 L 应知足什么条件.3 个【答案】( 1)v B2gR(sin cos ) ;L Rmg(3 2cos ) ;(2)F Ntan(3)L(3 2cos )R2(sin cos )【分析】【剖析】【详解】(1)设物体开释后,第一次抵达 B 处的速度为v1,依据动能定理可知:mgRcosmg cos R cos 1mv12sin2解得:2gR(sin cos)v B tan物体每达成一次来回运动,在AB 斜面上能上涨的高度都减少一些,最后当它达 B 点时,速度变成零,对物体从P 到 B 全过程用动能定理,有mgRcos mgL cos0得物体在 AB 轨道上经过的总行程为RL(2)最后物体以 B 为最高点在圆弧轨道底部做来回运动,设物体从 B 运动到 E 时速度为v2v,由动能定理知:mgR(1cos )1mv222在 E 点,由牛顿第二定律有mv22F N mgR解得物体遇到的支持力F N mg(32cos)依据牛顿第三定律,物体对轨道的压力大小为F N F N mg(3 2cos ) ,方向竖直向下.(3)设物体恰巧抵达 D 点时的速度为vD 此时有mgmv D2R解得:v D gR设物体恰巧经过 D 点时开释点距 B 点的距离为L0,有动能定理可知:mg[ L0 sin R(1cos)]mgcos L01mv D2 2联立解得:L0(32cos) R2(sin cos)则:(32cos)RLcos)2(sin答案:( 1)v B 2gR(sin cos); L R(2)F mg(3 2cos ) ;(3)tan N(3 2cos) R Lcos ) 2(sin。
高考物理生活中的圆周运动的技巧及练习题及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤4.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N ; (2)线断裂时小球运动的线速度为5m/s ; (3)落地点离桌面边缘的水平距离2m . 【解析】 【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg 、桌面弹力F N 和细线的拉力F ,重力mg 和弹力F N 平衡,线的拉力提供向心力,有: F N =F =mω2R ,设原来的角速度为ω0,线上的拉力是F 0,加快后的角速度为ω,线断时的拉力是F 1,则有: F 1:F 0=ω2: 20ω=9:1, 又F 1=F 0+40N ,所以F 0=5N ,线断时有:F 1=45N .(2)设线断时小球的线速度大小为v ,由F 1=2v m R,代入数据得:v =5m /s .(3)由平抛运动规律得小球在空中运动的时间为:t =220.810h s g ⨯==0.4s , 则落地点离桌面的水平距离为:x =vt =5×0.4=2m .5.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤6.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C与B点的水平距离;(2)小球通过管道上B点时对管道的压力大小和方向.【答案】(1)0.9m;(2)1N【解析】【分析】(1)根据平抛运动时间求得在C点竖直分速度,然后由速度方向求得v,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B点应用牛顿第二定律求得支持力N B的大小和方向.【详解】(1)根据平抛运动的规律,小球在C点竖直方向的分速度v y=gt=10m/s水平分速度v x=v y tan450=10m/s则B点与C点的水平距离为:x=v x t=10m(2)根据牛顿运动定律,在B点N B+mg=m2 v R解得 N B=50N根据牛顿第三定律得小球对轨道的作用力大小N, =N B=50N方向竖直向上【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.7.如图所示,质量m=3kg的小物块以初速度秽v0=4m/s水平向右抛出,恰好从A点沿着圆弧的切线方向进入圆弧轨道。
第六章圆周运动专题强化练3圆周运动的动力学问题一、选择题1.(2020广东深圳高级中学高三上测试,)转笔是一项深受广大中学生喜爱的休闲活动,其中也包含了许多的物理知识。
如图所示,假设某同学将笔套套在笔杆的一端,在转笔时让笔杆绕其手指上的某一点O在竖直平面内做匀速圆周运动,则下列叙述中正确的是( )A.笔套做圆周运动的向心力是由笔杆对它的摩擦力提供的B.笔杆上离O点越近的点,做圆周运动的向心加速度越大C.当笔杆快速转动时,笔套有可能被甩走D.由于匀速转动笔杆,笔套受到的摩擦力大小不变2.(2020天津静海一中高一上期末,)如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动且未相对滑动。
当圆筒以较大的角速度ω匀速旋转以后,下列说法正确的是( )A.物体受到4个力的作用,其中弹力增大,摩擦力也增大了B.物体受到4个力的作用,其中弹力增大,摩擦力减小了C.物体受到3个力的作用,其中弹力和摩擦力都减小了D.物体受到3个力的作用,其中弹力增大,摩擦力不变3.(2020河北鸡泽一中高一下测试,)(多选)质量均为m的小球A、B分别固定在一长为L的轻杆的中点和一端点,如图所示。
当轻杆绕另一端点O在光滑水平面上做角速度为ω的匀速圆周运动时,则( )A.处于中点的小球A的线速度为LωB.处于中点的小球A的加速度为Lω2C.处于端点的小球B所受的合外力为mω2LD.轻杆OA段中的拉力与AB段中的拉力之比为3∶24.(2020福建厦门六中高三上模拟,)如图所示,A、B、C三个物体放在水平旋转平台上随平台一起做匀速圆周运动,三个物体与旋转平台间的动摩擦因数均为μ,已知A的质量为2m,B、C的质量均为m,A、B离转轴的距离均为R,C距离转轴2R,以下说法正确的是( )A.若转速加快,A最先相对平台滑动B.若转速加快,C一定不会最先相对平台滑动C.若都没相对平台滑动,则向心加速度a A=a C>a BD.若都没相对平台滑动,则摩擦力f A=f C>f B5.(2020浙江东阳中学高三上月考,)如图所示,金属环M、N用不可伸长的细线连接,分别套在水平粗糙细杆和竖直光滑细杆上,当整个装置以竖直杆为轴、以不同大小的角速度匀速转动时,两金属环一直相对杆不动,下列判断正确的是( )A.转动的角速度越大,细线中的拉力越大B.转动的角速度越大,环M与水平杆之间的弹力越大C.转动的角速度越大,环N与竖直杆之间的弹力越大D.转动的角速度不同,环M与水平杆之间的摩擦力大小可能相等二、非选择题6.(2020天津静海一中高一上期末,)如图所示,水平圆盘中心放一质量为M的物块,一根细绳一端连接物块,另一端绕过光滑的圆盘边缘后连接一个质量为m的小球,圆盘以角速度ω匀速转动时,小球随着一起转动,此时小球距圆盘中轴线的距离为r,物块恰好没有滑动,重力加速度大小为g。
圆周运动课堂对应练习 姓名____________班级_______学号_____
练1.如图在光滑的圆锥顶用长为l 的细线悬挂一质量为m 的小球,圆锥体固定在水平面上不动,其轴线沿竖直方向,母线与轴线之间的夹角为30°,物体以速率v 绕圆锥体轴线做水平匀速圆周运动。
⑴当 时,求绳对物体的拉力。
⑵当
时,求绳对物体的拉力。
练2.在游乐场中有一种旋转软梯,如图,在半径为R 的平台边缘固定着长为L 的软梯的一端。
另一端则由小朋友乘坐,当平台绕其中心轴转动
时,软梯 与竖直方向夹角为θ,求此时平台旋转的
周期?
练3.飞球调速器的构造如图,球C 、D 的质量均为4kg,B 为可以
沿光滑轴上下滑动的重物,它的质量为10kg,四根连杆长度均为
25cm 。
连杆与轴的夹角都是30°,设连杆重量及各处摩擦不计,
问轴的角速度ω为多在时连杆刚好将重物B 提起。
练5、如图所示,将一根光滑的细金属棒折成V 形,顶角为2θ,其
对称轴竖直,在其中一边套上一个金属环P 。
当两棒绕其对称轴以每
秒n 转匀速转动时,小环离轴的距离为( )
6/1gl v =2/32
gl v =
例 6.一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球.考虑小球由静止开始运动到最低位置的过程( )
A.小球在水平方向的速度逐渐增大
B.小球在竖直方向的速度逐渐增大
C.到达最低位置时小球线速度最大
D.到达最低位置时绳子的拉力等于小球重力
例7.长度为0.5m的轻质细杆,A端有一质量为3kg的小球,以O
点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高
点时的速度为2m/s,取g=10m/s2,则此时轻杆OA将()
A.受到6.0N的拉力B.受到6.0N的压力
C.受到24N的拉力D.受到54N的拉力
练6.用钢管做成半径为R=0.5m的光滑圆环(管径远小于R)竖直
放置,一小球(可看作质点直径略小于管径)质量为m=0.2kg在环
内做圆周运动,求:小球通过最高点A时,下列两种情况下球对管壁
的作用力. 取g=10m/s2
(1) A的速率为1.0m/s (2) A的速率为4.0m/s
练8.如图所示,在质量为M的物体内有光滑的圆形轨道,有一
质量为m的小球在竖直平面内沿圆轨道做圆周运动,A与C两点分别道的最高点和最低点,
B、D两点与圆心O在同一水平面上。
在小球运动过程中,物
体M静止于地面,则关于物体M对地面的压力N和地面对物
体M的摩擦力方向,下列正确的说法是( )
A.小球运动到B点时,N>Mg,摩擦力方向向左
B.小球运动到B点时,N=Mg,摩擦力方向向右
C.小球运动到C点时,N=(M+m)g,地面对M无摩擦
D.小球运动到D点时,N=(M+m)g,摩擦力方向向右
练10.如图所示是一个设计“过山车”的试验装置的原理示意
图,光滑斜面AB与竖直面内的圆形轨道在B点平滑连接,圆形轨道半径为R。
一个质量为m的小车(可视为质点)从距地面h高处的A点由静止释放沿斜面滑下。
已知重力加速度为g。
(1)求当小车进入圆形轨道第一次经过B点时对轨道
的压力;
(2)假设小车恰能通过最高点C完成圆周运动,求小
车从B点运动到C克服摩擦阻力做的功。
圆周运动课堂对应练习参考答案 练1, 练2, 练3,12.7rad/s
练5, 例6, AC 例7 , B
练6,
(1) 对内壁1.6N 向下的压力
(2)对外壁4.4N 向上的压力.
练8, B
练10
gl v 630=mg mg T 2T 6/)331(21=+=θθπgtg L R T sin 2+=2)2(n gctg r πθ=。