高考数学一轮总复习 第五章 数列 第三节 等比数列练习 理
- 格式:doc
- 大小:326.01 KB
- 文档页数:5
第3讲 等比数列及其前n 项和 ,)1.等比数列的有关概念 (1)定义假如一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (q ≠0,n ∈N *). (2)等比中项假如a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).1.辨明三个易误点(1)由于等比数列的每一项都可能作分母,故每一项均不为0,因此q 也不能为0,但q 可为正数,也可为负数.(2)由a n +1=qa n ,q ≠0,并不能马上断言{a n }为等比数列,还要验证a 1≠0.(3)在运用等比数列的前n 项和公式时,必需留意对q =1与q ≠1分类争辩,防止因忽视q =1这一特殊情形而导致解题失误.2.等比数列的三种判定方法(1)定义法:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cqn -1(c 、q 均是不为零的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.3.求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中依据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)分类争辩思想:在应用等比数列前n 项和公式时,必需分类求和,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q;在推断等比数列单调性时,也必需对a 1与q 分类争辩.1.教材习题改编 等比数列{a n }中,a 3=12,a 4=18,则a 6等于( ) A .27 B .36 C .812D .54C 法一:由a 3=12,a 4=18,得⎩⎪⎨⎪⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32,所以a 6=a 1q 5=163×⎝ ⎛⎭⎪⎫325=812.故选C.法二:由等比数列性质知,a 23=a 2a 4,所以a 2=a 23a 4=12218=8,又a 24=a 2a 6,所以a 6=a 24a 2=1828=812.故选C.2.教材习题改编 设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63D .64C 由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C. 3.教材习题改编 在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 设该数列的公比为q ,由题意知, 243=9×q 3,得q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81. 27,814.教材习题改编 由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. log 2a 1+log 2a 2+…+log 2a 10 =log 2=log 2(a 3a 8)5=log 2225=25.255.教材习题改编 在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 由于a 5-a 1=15,a 4-a 2=6.所以a 1q 4-a 1=15,① a 1q 3-a 1q =6,②且q ≠1. ①②得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0, 所以q =2或q =12,当q =2时,a 1=1;当q =12时,a 1=-16(舍去).所以a 3=1×22=4. 4等比数列的基本运算(高频考点)等比数列的基本运算是高考的常考内容,题型既有选择题、填空题,也有解答题,属中、低档题. 高考对等比数列基本运算的考查主要有以下三个命题角度: (1)求首项a 1、公比q 或项数n ; (2)求通项或特定项; (3)求前n 项和.(2021·兰州模拟)设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n,求数列{b n }的前n 项和T n .【解】 (1)当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),所以a n =3a n -1.所以数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.(2)由于b n =1a n =⎝ ⎛⎭⎪⎫13n -2,所以{b n }是首项为3,公比为13的等比数列,所以T n =b 1+b 2+…+b n =3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=92⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .等比数列基本运算的解题技巧(1)求等比数列的基本量问题,其核心思想是解方程(组),一般步骤是:①由已知条件列出以首项和公比为未知数的方程(组);②求出首项和公比;③求出项数或前n 项和等其余量.(2)设元的技巧,可削减运算量,如三个数成等比数列,可设为a q,a ,aq (公比为q );四个数成等比数列且q >0时,设为a q 3,a q,aq ,aq 3.角度一 求首项a 1、公比q 或项数n1.(2021·高考全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.由于a 1=2,a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列. 又由于S n =126,所以2(1-2n)1-2=126,所以n =6.6角度二 求通项或特定项2.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 由于3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简,得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.3n -1角度三 求前n 项和3.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-310) B .19(1-3-10) C .3(1-3-10) D .3(1+3-10)C 由题意知数列{a n }为等比数列,设其公比为q ,则q =a n +1a n =-13,a 1=a 2q =4,因此其前10项和等于4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).等比数列的判定与证明(2022·高考全国卷丙)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.【解】 (1)由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0且λ≠1得a n ≠0, 所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列, 于是a n =11-λ(λλ-1)n -1.(2)由(1)得,S n =1-(λλ-1)n. 由S 5=3132得,1-(λλ-1)5=3132,即(λλ-1)5=132. 解得λ=-1.证明数列{a n }是等比数列常用的方法 一是定义法,证明a n a n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若推断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.已知数列{a n }是等差数列,a 3=10,a 6=22,数列{b n }的前n 项和是T n ,且T n +13b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.(1)设等差数列{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧a 1+2d =10,a 1+5d =22,解得a 1=2,d =4.所以a n =2+(n -1)×4=4n -2. (2)证明:由T n =1-13b n ,①令n =1,得T 1=b 1=1-13b 1.解得b 1=34,当n ≥2时,T n -1=1-13b n -1,②①-②得b n =13b n -1-13b n ,所以b n =14b n -1,所以b n b n -1=14.又由于b 1=34≠0, 所以数列{b n }是以34为首项,14为公比的等比数列.等比数列的性质(1)(2021·高考全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C .12D .18(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) A .31 B .36 C .42D .48(3)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________. 【解析】 (1)法一:由于a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又由于q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C.法二:由于a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1).将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31,故选A.(3)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132. 由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.【答案】 (1)C (2)A (3)-12等比数列常见性质的应用(1)在解决等比数列的有关问题时,要留意挖掘隐含条件,利用性质,特殊是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以削减运算量,提高解题速度.(2)等比数列性质的应用可以分为三类:①通项公式的变形;②等比中项的变形;③前n 项和公式的变形.依据题目条件,认真分析,发觉具体的变化特征即可找出解决问题的突破口.(3)在应用相应性质解题时,要留意性质成立的前提条件,有时需要进行适当变形.此外,解题时留意设而不求思想的运用.1.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A .18 B .-18C .578D .558A 由于a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.2.(2021·沈阳质量监测)数列{a n }是等比数列,若a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.设等比数列{a n }的公比为q ,由等比数列的性质知a 5=a 2q 3,求得q =12,所以a 1=4.a 2a 3=⎝ ⎛⎭⎪⎫12a 1⎝ ⎛⎭⎪⎫12a 2=14a 1a 2,a n a n +1=⎝ ⎛⎭⎪⎫12a n -1⎝ ⎛⎭⎪⎫12a n =14a n -1a n (n ≥2).设b n =a n a n +1,可以得出数列{b n }是以8为首项,以14为公比的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1为数列{b n }的前n 项和,由等比数列前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=323(1-4-n).323(1-4-n) ,)——分类争辩思想在等比数列中的应用已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为________.【解析】 设公比为q ,若q =1,则S 2m S m =2,与题中条件冲突,故q ≠1.由于S 2m S m =a 1(1-q 2m )1-q a 1(1-q m)1-q =q m+1=9,所以q m=8.所以a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,所以m =3,所以q 3=8,所以q =2. 【答案】 2(1)本题在利用等比数列的前n 项和公式表示S 2m 和S m 时,对公比q =1和q ≠1进行了分类争辩.(2)分类争辩思想在等比数列中应用较多,常见的分类争辩有: ①已知S n 与a n 的关系,要分n =1,n ≥2两种状况. ②等比数列中遇到求和问题要分公比q =1,q ≠1争辩.③项数的奇、偶数争辩.④等比数列的单调性的推断留意与a 1,q 的取值的争辩.在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .(1)由题意知(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2,所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)nn ·(n +1). 由于b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n 2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n=⎩⎪⎨⎪⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.,)1.(2021·太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4C . 2D .2 2B 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q2=a 4a 2=14, 所以q =12,a 1=a 2q=4.2.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( ) A .-13B .13C .-12D .12A 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a2,所以a =-13.3.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1) C .n (n +1)2D .n (n -1)2A 由于a 2,a 4,a 8成等比数列,所以a 24=a 2·a 8,所以(a 1+6)2=(a 1+2)·(a 1+14),解得a 1=2.所以S n =na 1+n (n -1)2×2=n (n +1).故选A.4.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4D .3C 设数列{a n }的首项为a 1,公比为q ,依据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎪⎨⎪⎧a 1=16125,q =52.所以a n =a 1qn -1=16125×⎝ ⎛⎭⎪⎫52n -1=2×⎝ ⎛⎭⎪⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝ ⎛⎭⎪⎫4×52=4.5.(2021·莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017D 由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.6.(2021·唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1B .4n-1 C .2n -1D .2n-1D 设{a n}的公比为q ,由于⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,所以⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①②可得1+q2q +q 3=2,所以q =12,代入①得a 1=2,所以a n =2×⎝ ⎛⎭⎪⎫12n -1=42n , 所以S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n , 所以S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n-1,选D.7.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________. 设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,所以⎩⎪⎨⎪⎧a 1=1,q =2,所以S n =1-2n1-2=2n-1.2n-18.(2021·郑州其次次质量猜测)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3=________.由题可知{a n }为等比数列,设首项为a 1,公比为q ,所以a 3=a 1q 2,a 6=a 1q 5,所以27a 1q 2=a 1q 5,所以q =3,由S n =a 1(1-q n )1-q,得S 6=a 1(1-36)1-3,S 3=a 1(1-33)1-3,所以S 6S 3=a 1(1-36)1-3·1-3a 1(1-33)=28.289.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________. T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.1510.在各项均为正数的等比数列{a n }中,已知a 2a 4=16,a 6=32,记b n =a n +a n +1,则数列{b n }的前5项和S 5为________.设数列{a n }的公比为q ,由a 23=a 2a 4=16得,a 3=4,即a 1q 2=4,又a 6=a 1q 5=32,解得a 1=1,q =2,所以a n =a 1qn -1=2n -1,b n =a n +a n +1=2n -1+2n =3·2n -1,所以数列{b n }是首项为3,公比为2的等比数列,所以S 5=3(1-25)1-2=93.9311.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. (1)证明:依题意S n =4a n -3(n ∈N *), 当n =1时,a 1=4a 1-3,解得a 1=1. 由于S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1, 公比为43的等比数列.(2)由于a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3·⎝ ⎛⎭⎪⎫43n -1-1(n ≥2),当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝ ⎛⎭⎪⎫43n -1-1.12.(2021·衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n=( )A .2n +1-2 B .3n C .2nD .3n-1C 由于数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,由于数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.13.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n-1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=8⎝ ⎛⎭⎪⎫1+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). 由于4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,所以a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.14.(2021·南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n +2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .(1)由于a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 由于q ≠1,所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n, T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.。
第三节 等比数列及其前n 项和课时作业1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:设数列{a n }的公比为q ,则a 1(1+q 2+q 4)=21,又a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去),所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.故选B.答案:B2.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19D .-19解析:由题知公比q ≠1,则S 3=a 11-q 31-q=a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C. 答案:C3.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( ) A .-3 B .5 C .-31D .33解析:设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18, ∴1-q 31-q 6=218,得q 3=8, ∴q =2.∴S 10S 5=1-q 101-q5=1+q 5=33,故选D.答案:D4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:a m =a 1a 2a 3a 4=a 41qq 2q 3=24×26=210=2m,所以m =10,故选B. 答案:B5.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1解析:因为点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,所以S n =3·2n-3,所以a n =3·2n-1,所以b n +b n +1=3·2n -1,因为数列{b n }为等比数列,设公比为q ,则b 1+b 1q =3,b 2+b 2q=6,解得b 1=1,q =2,所以b n =2n -1,T n =2n-1,所以T n <b n +1,故选D.答案:D6.(2018·郑州质检)已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是________.解析:设{a n }的公比为q .由a 25=2a 3a 6得(a 1q 4)2=2a 1q 2·a 1q 5,∴q =2,∴S 5=a 11-251-2=-62,a 1=-2. 答案:-27.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)=10a n +1,则公比q =________. 解析:因为等比数列{a n }为递增数列且a 1=-2<0,所以0<q <1,将3(a n +a n +2)=10a n +1两边同除以a n 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13,而0<q <1,所以q=13. 答案:138.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =__________. 解析:∵a 2-a 1=1,a 3-a 2=3,∴q =3, ∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3, ∵a 1=1,∴a n =3n -1+12. 答案:3n -1+129.(2018·昆明市检测)数列{a n }满足a 1=-1,a n +1+2a n =3. (1)证明{a n -1}是等比数列,并求数列{a n }的通项公式; (2)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设b n =a n ·sgn(a n ),求数列{b n }的前100项和.解析:(1)因为a n +1=-2a n +3,a 1=-1, 所以a n +1-1=-2(a n -1),a 1-1=-2,所以数列{a n -1}是首项为-2,公比为-2的等比数列.故a n -1=(-2)n ,即a n =(-2)n+1.(2)b n =a n ·sgn(a n )=⎩⎪⎨⎪⎧2n+1,n 为偶数,2n-1,n 为奇数,设数列{b n }的前n 项和为S n ,则S 100=(2-1)+(22+1)+(23-1)+…+(299-1)+(2100+1)=2+22+23+…+2100=2101-2.10.(2018·合肥质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn, ∴{a n n }是以12为首项、12为公比的等比数列.(2)由(1)知{a n n }是首项为12,公比为12的等比数列,∴a n n =(12)n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得:12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组——能力提升练1.(2018·长春调研)等比数列{a n }中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:当公比q =1时,a 1=a 2=a 3=9,∴S 3=3×9=27. 当q ≠1时,S 3=a 1-a 3q1-q,∴27=a 1-9q1-q∴a 1=27-18q , ∴a 3=a 1q 2,∴(27-18q )·q 2=9, ∴(q -1)2(2q +1)=0, ∴q =-12.综上q =1或q =-12.选C.答案:C2.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )A .1B .-1 C.12D .2解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:D3.(2018·彬州市模拟)已知等比数列{a n }的前n 项和S n =2n -a ,则a 21+a 22+…+a 2n =( ) A .(2n -1)2B .13(2n-1) C .4n-1D .13(4n-1) 解析:∵S n =2n-a ,∴a 1=2-a ,a 1+a 2=4-a ,a 1+a 2+a 3=8-a , 解得a 1=2-a ,a 2=2,a 3=4,∵数列{a n }是等比数列,∴22=4(2-a ),解得a =1. ∴公比q =2,a n =2n -1,a 2n =22n -2=4n -1.则a 21+a 22+…+a 2n =4n-14-1=13(4n-1).答案:D4.设数列{a n }是公比为q (|q |>1)的等比数列,令b n =a n +1(n ∈N *),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q =( ) A.32B .-43C .-32D .-52解析:数列{b n }有连续四项在集合{-53,-23,19,37,82}中,且b n =a n +1(n ∈N *),∴a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中, ∵数列{a n }是公比为q (|q |>1)的等比数列, 等比数列中有负数项,则q <0,且负数项为相隔两项∵|q |>1,∴等比数列各项的绝对值递增,按绝对值的顺序排列上述数值18,-24,36,-54,81,相邻两项相除-2418=-43,-3624=-32,-5436=-32,81-54=-32,∵|q |>1,∴-24,36,-54,81是{a n }中连续的四项,此时q =-32.答案:C5.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:由S 3+3S 2=0,得a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 答案:-26.已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n.解析:(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①∴S n -1=32a n -1-1(n ≥2),②①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n=11×3+13×5+…+12n -32n -1=12(1-13+13-15+…+12n -3-12n -1)=n -12n -1. 7.数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 证明:(1)由题设得a n +1n +1=12·a n n ,又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,a n =n ·22-n=4n 2n .(2)b n =a n4n -a n=4n 2n 4n -4n 2n=12n-1,因为对任意n ∈N *,2n-1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝ ⎛⎭⎪⎫1-12n <2.。
2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n 项和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 答案:C2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D .558解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.答案:A3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.答案:A4.(xx 届太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.答案:B5.(xx 届莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017解析:由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.答案:D6.(xx 届海口市调研测试)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12 B .1716 C .2D .17解析:设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.答案:B7.(xx 届衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2 B .3n C .2nD .3n-1解析:因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n+2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.答案:C8.(xx 届广州市五校联考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212解析:由b n =a n +1a n ,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211. 答案:C9.由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. 解析:log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1a 10)·(a 2a 9)·…·(a 5a 6)=log 2(a 3a 8)5=log 2225=25.答案:2510.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -111.(xx 届南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n+2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .解:(1)因为a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 因为q ≠1, 所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n ,T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.12.设数列{a n }的前n 项和为S n (n ∈N *).已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=81+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2).∵4a 3+a 1=4×54+1=6=4a 2符合上式,∴4a n +2+a n =4a n +1(n ≥1), ∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 22a n +1-a n =12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.[能 力 提 升]1.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________.解析:T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.答案:152.(xx 届山西吕梁质检)已知数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,则这个数列的前2 018项之积T 2 018等于________.解析:数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,这个数列的前8项分别为2,8,4,12,18,14,2,8,易得从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项积为2×8×4×12×18×14=1.又因为2 018=336×6+2,所以这个数列的前2 018项之积T 2 018=1336×2×8=16. 答案:163.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n,则a n +1=-2a n +5×3n, ∴a n +1-3n +1=-2(a n -3n).又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n}是以2为首项,-2为公比的等比数列. ∴a n -3n=2×(-2)n -1,即a n =2×(-2)n -1+3n.2019-2020年高考数学一轮总复习第五章数列5.4数列求和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 015B .-2 015C .3 021D .-3 022解析:由题知a 1=tan(180°+45°)=1,∴a 5=13 ∴d =a 5-a 15-1=124=3. ∴a n =1+3(n -1)=3n -2. 设b n =(-1)na n =(-1)n(3n -2),∴S 2 014=(-1+4)+(-7+10)+…+(-6 037+6 040)=3×1 007=3 021.故选C. 答案:C2.设{a n }是公差不为零的等差数列,a 2=2,且a 1,a 3,a 9成等比数列,则数列{a n }的前n 项和S n =( )A.n 24+7n 4 B .n 22+3n 2C.n 24+3n4D .n 22+n2解析:设等差数列{a n }的公差为d ,则 由a 23=a 1a 9得(a 2+d )2=(a 2-d )(a 2+7d ), 代入a 2=2,解得d =1或d =0(舍). ∴a n =2+(n -2)×1=n , ∴S n =a 1+a n n2=1+n n 2=n 22+n 2.故选D. 答案:D3.等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36解析:设等比数列{a n }的公比为q 则a 21q 3=2a 1,①a 1q 3+2a 1q 6=52,②解得a 1=16,q =12,∴S 5=a 11-q 51-q=31,故选B.答案:B4.已知等比数列{a n }的各项均为正数,a 1=1,公比为q ;等差数列{b n }中,b 1=3,且{b n }的前n 项和为S n ,a 3+S 3=27,q =S 2a 2.(1)求{a n }与{b n }的通项公式;(2)设数列{c n }满足c n =32S n ,求{c n }的前n 项和T n .解:(1)设数列{b n }的公差为d , ∵a 3+S 3=27,q =S 2a 2,∴⎩⎪⎨⎪⎧q 2+3d =18,6+d =q 2.求得q =3,d =3,∴a n =3n -1,b n =3n .(2)由题意得S n =n 3+3n2,c n =32S n =32×23×1n n +1=1n -1n +1. ∴T n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1.5.(xx 届广州综合测试)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n . 解:(1)设数列{a n }的公比为q , 因为a 2=4,所以a 3=4q ,a 4=4q 2. 因为a 3+2是a 2和a 4的等差中项, 所以2(a 3+2)=a 2+a 4, 化简得q 2-2q =0. 因为公比q ≠0,所以q =2. 所以a n =a 2qn -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n,所以b n =2log 2a n -1=2n -1, 所以a n b n =(2n -1)2n,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n,①2T n =1×22+3×23+5×24+…+(2n -3)2n+(2n -1)·2n +1.②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×41-2n -11-2-(2n -1)2n +1=-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.6.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3. 所以{a n }是首项为3,公差为2的等差数列, 通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n32n +3.7.已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n(n ∈N *)且λa n >2n +n +2λ对一切n ∈N *恒成立, 求实数λ的取值范围.解:(1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5, 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6, 所以{a n }是等差数列,首项为1,公差为6, 即a n =6n -5. (2)因为b n =2n, 所以a n +1-a n =2(2n +1-2n )=2n +1,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n +2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式,所以a n =2n +1+2,由λa n >2n+n +2λ得λ>2n+n 2n +1=12+n 2n +1,令f (n )=12+n 2n +1,因为f (n +1)-f (n )=n +12n +2-n 2n +1=1-n 2n +2≤0, 所以12+n2n +1在n ≥1时单调递减,所以当n =1,2时,2n+n 2n +1取最大值34,故λ的取值范围为⎝ ⎛⎭⎪⎫34,+∞. [能 力 提 升]1.已知数列{a n }的首项为a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)由已知得S n n=1+(n -1)×2=2n -1, 所以S n =2n 2-n , 当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. a 1=1=4×1-3,所以a n =4n -3,n ∈N *.(2)由(1)可得b n =(-1)na n =(-1)n(4n -3). 当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1,综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.2.在数列{a n }中,已知a n >1,a 1=1+3,且a n +1-a n =2a n +1+a n -2,记b n =(a n -1)2,n ∈N *.(1)求数列{b n }的通项公式;(2)设数列{b n }的前n 项和为S n ,证明:13≤1S 1+1S 2+1S 3+…+1S n <34.解:(1)因为a n +1-a n =2a n +1+a n -2,所以a 2n +1-a 2n -2a n +1+2a n =2, 即(a n +1-1)2-(a n -1)2=2. 又b n =(a n -1)2,n ∈N *,所以b n +1-b n =2,数列{b n }是以b 1=(1+3-1)2=3为首项,2为公差的等差数列, 故b n =2n +1,n ∈N *. (2)证明:由(1)得S n =n 3+2n +12=n (n +2),所以1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2,n ∈N *, 所以1S 1+1S 2+1S 3+…+1S n=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2<34.记T n =1S 1+1S 2+1S 3+…+1S n,因为1S n>0,n ∈N *,所以T n 单调递增.故T n ≥T 1=1S 1=13.综上13≤1S 1+1S 2+…+1S n <34.3.已知各项均为正数的数列{a n }的前n 项和为S n ,且满足a 2n +a n =2S n . (1)求数列{a n }的通项公式; (2)求证:S n2<S 1+S 2+…+S n <S n +1-12.解:(1)因为当n ∈N *时,a 2n +a n =2S n , 故当n >1时,a 2n -1+a n -1=2S n -1,两式相减得,a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n , 即(a n +a n -1)(a n -a n -1)=a n +a n -1.因为a n >0,所以a n +a n -1>0,所以当n >1时,a n -a n -1=1.又当n =1时,a 21+a 1=2S 1=2a 1,得a 1=1, 所以数列{a n }是以1为首项,1为公差的等差数列, 所以a n =n .(2)证明:由(1)及等差数列的前n 项和公式知S n =n n +12,所以S n = n n +12>n 22=n2, 所以S 1+S 2+…+S n >12+22+…+n 2= 1+2+…+n 2=S n 2. 又S n = n n +12<n +122=n +12, 所以S 1+S 2+…+S n <22+32+…+n +12=1+2+…+n +12-12=S n +1-12, 所以S n2<S 1+S 2+…+S n <S n +1-12.。
第三节等比数列及其前n项和[备考方向要明了]考什么怎么考1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中,识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 1.以客观题的形式考查等比数列的性质及其基本量的计算,如2012年新课标全国T5,浙江T13等.2.以解答题的形式考查等比数列的定义、通项公式、前n项和公式及性质的综合应用,如2012年湖北T18等.[归纳·知识整合] 1.等比数列的相关概念相关名词等比数列{a n}的有关概念及公式定义a n+1a n=q(q是常数且q≠0,n∈N*)或a na n-1=q(q是常数且q≠0,n∈N*且n≥2)通项公式a n=a1q n-1=a m·q n-m前n项和公式S n=⎩⎪⎨⎪⎧na1q=1a11-q n1-q=a1-a n q1-qq≠1等比中项设a,b为任意两个同号的实数,则a,b的等比中项G=±ab[探究] 1.b2=ac是a,b,c成等比数列的什么条件?提示:b2=ac是a,b,c成等比数列的必要不充分条件,因为当b=0时,a,c至少有一个为零时,b2=ac成立,但a,b,c不成等比数列;若a,b,c成等比数列,则必有b2=ac.2.如何理解等比数列{a n}与指数函数的关系?提示:等比数列{a n }的通项公式a n =a 1qn -1可改写为a n =a 1q·q n.当q >0,且q ≠1时,y=q x是一个指数函数,而y =a 1q·q x是一个不为0的常数与指数函数的积,因此等比数列{a n }的图象是函数y =a 1q·q x的图象上的一群孤立的点.2.等比数列的性质(1)对任意的正整数m ,n ,p ,q ,若m +n =p +q 则a m ·a n =a p ·a q . 特别地,若m +n =2p ,则a m ·a n =a 2p .(2)若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m-S 2m )(m ∈N *,公比q ≠-1).(3)数列{a n }是等比数列,则数列{pa n }(p ≠0,p 是常数)也是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k.[自测·牛刀小试]1.在等比数列{a n }中,如果公比q <1,那么等比数列{a n }是( ) A .递增数列 B .递减数列C .常数列D .无法确定数列的增减性解析:选D 当a 1>0,0<q <1,数列{a n }为递减数列,当q <0,数列{a n }为摆动数列. 2.(教材习题改编)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C .8D .2+log 35解析:选B ∵数列{a n }为等比数列,∴a 5a 6=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1·a 2·…·a 10) =log 3(a 5a 6)5=5log 3a 5a 6=5log 39=10.3.(教材习题改编)在等比数列{a n }中,若a 5-a 1=15,a 4-a 2=6,则a 3=________.解析:∵⎩⎪⎨⎪⎧a 5-a 1=15,a 4-a 2=6,∴⎩⎪⎨⎪⎧a 1q 4-1=15,a 1q 3-q =6.∴q 2-1≠0,q 4-1q 3-q =52.∴2q 2-5q +2=0,解得q =12或q =2.当q =2时,a 1=1,∴a 3=a 1q 2=4. 当q =12时,a 1=-16,∴a 3=a 1q 2=-4.答案:4或-44.在等比数列{a n }中,a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5的值为________. 解析:由等比数列性质,已知转化为a 23+2a 3a 5+a 25=25, 即(a 3+a 5)2=25,又a n >0,故a 3+a 5=5. 答案:55.在1与4之间插入三个数使这五个数成等比数列,则这三个数分别是________. 解析:设等比数列的公比为q ,则4=q 4.即q =± 2. 当q =2时,插入的三个数是2,2,2 2. 当q =-2时,插入的三个数是-2,2,-2 2. 答案:2,2,22或-2,2,-2 2等比数列的基本运算[例1] (1)(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7(2)(2012·辽宁高考)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.(3)(2012·浙江高考)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.[自主解答] (1)设数列{a n }的公比为q ,由⎩⎪⎨⎪⎧a 4+a 7=2,a 5·a 6=a 4·a 7=-8,得⎩⎪⎨⎪⎧a 4=4,a 7=-2,或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以⎩⎪⎨⎪⎧a 1=-8,q 3=-12,或⎩⎪⎨⎪⎧a 1=1,q 3=-2,所以⎩⎪⎨⎪⎧a 1=-8,a 10=1,或⎩⎪⎨⎪⎧a 1=1,a 10=-8,所以a 1+a 10=-7.(2)∵2(a n +a n +2)=5a n +1,∴2a n +2a n ·q 2=5a n ·q , 即2q 2-5q +2=0,解得q =2或q =12(舍去).又∵a 25=a 10=a 5·q 5, ∴a 5=q 5=25=32. ∴32=a 1·q 4,解得a 1=2. ∴a n =2×2n -1=2n ,故a n =2n.(3)由S 2=3a 2+2,S 4=3a 4+2作差可得a 3+a 4=3a 4-3a 2,即2a 4-a 3-3a 2=0,所以2q 2-q -3=0,解得q =32或q =-1(舍去).[答案] (1)D (2)2n(3)32———————————————————等比数列运算的通法与等差数列一样,求等比数列的基本量也常运用方程的思想和方法.从方程的观点看等比数列的通项公式a n =a 1·q n -1(a 1q ≠0)及前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1中共有五个变量,已知其中的三个变量,可以通过构造方程或方程组求另外两个变量,在求公比q 时,要注意应用q ≠0验证求得的结果.1.(1)(2013·海淀模拟)在等数列{a n }中,a 1=8,a 4=a 3a 5,则a 7=( ) A.116B.18C.14D.12(2)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( ) A.152 B.314 C.334D.172解析:(1)选B 在等比数列{a n }中,a 24=a 3a 5,又a 4=a 3a 5,所以a 4=1,故q =12,所以a 7=18.(2)选B 显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12,或⎩⎪⎨⎪⎧a 1=9,q =-13,(舍去)故S 5=a 11-q 51-q=4⎝ ⎛⎭⎪⎫1-1251-12=314.等比数列的判定与证明[例2] 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明数列{b n }是等比数列; (2)在(1)的条件下证明⎩⎨⎧⎭⎬⎫a n 2n 是等差数列,并求a n .[自主解答] (1)证明:∵由a 1=1,及S n +1=4a n +2, 有a 1+a 2=4a 1+2,a 2=3a 1+2=5, ∴b 1=a 2-2a 1=3. 由S n +1=4a n +2,①知当n ≥2时,有S n =4a n -1+2,② ①-②得a n +1=4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1). 又∵b n =a n +1-2a n ,∴b n =2b n -1.∴{b n }是首项b 1=3,公比q =2的等比数列. (2)由(1)可得b n =a n +1-2a n =3×2n -1,∴a n +12n +1-a n 2n =34. ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)34=34n -14. a n =(3n -1)×2n -2.———————————————————等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.2.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.解:(1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d .依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1×22,解得b 1=54.所以{b n }是以54为首项,以2为公比的等比数列,其通项公式为b n =54×2n -1=5×2n -3.(2)证明:由(1)得数列{b n }的前n 项和S n =541-2n1-2=5×2n -2-54,即S n +54=5×2n -2.所以S 1+54=52,S n +1+54S n +54=5×2n -15×2n -2=2.因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,以2为公比的等比数列.等比数列的性质及应用[例3] (1)在等比数列{a n }中,若a 1·a 2·a 3·a 4=1,a 13·a 14·a 15·a 16=8,则a 41·a 42·a 43·a 44=________.(2)已知数列{a n }为等比数列,S n 为其前n 项和,n ∈N *,若a 1+a 2+a 3=3,a 4+a 5+a 6=6,则S 12=________.[自主解答] (1)法一:a 1·a 2·a 3·a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41·q 6=1,①a 13·a 14·a 15·a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,② 由②÷①,得a 41·q 54a 41·q6=q 48=8⇒q 16=2,又a 41·a 42·a 43·a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)·(q 16)10=1·210=1 024.法二:由性质可知,依次4项的积为等比数列,设公比为q ,T 1=a 1·a 2·a 3·a 4=1,T 4=a 13·a 14·a 15·a 16=8,∴T 4=T 1·q 3=1·q 3=8,即q =2.∴T 11=a 41·a 42·a 43·a 44=T 1·q 10=210=1 024.(2)法一:设等比数列{a n }的公比为q ,则a 4+a 5+a 6a 1+a 2+a 3=a 1·q 3+a 2·q 3+a 3·q 3a 1+a 2+a 3=q 3=63,即q 3=2.故S 12=(a 1+a 2+a 3)+(a 4+a 5+a 6)+(a 7+a 8+a 9)+(a 10+a 11+a 12)=(a 1+a 2+a 3)+(a 1·q 3+a 2·q 3+a 3·q 3)+(a 1·q 6+a 2·q 6+a 3·q 6)+(a 1·q 9+a 2·q 9+a 3·q 9)=(a 1+a 2+a 3)+(a 1+a 2+a 3)q 3+(a 1+a 2+a 3)q 6+(a 1+a 2+a 3)q 9=(a 1+a 2+a 3)(1+q 3+q 6+q 9)=3×(1+2+22+23)=45.法二:设等比数列{a n }的公比为q , 则a 4+a 5+a 6a 1+a 2+a 3=q 3=63,即q 3=2.因为S 6=a 1+a 2+a 3+a 4+a 5+a 6=9,S 12-S 6=a 7+a 8+a 9+a 10+a 11+a 12,所以S 12-S 6S 6=a 7+a 8+a 9+a 10+a 11+a 12a 1+a 2+a 3+a 4+a 5+a 6= a 1·q 6+a 2·q 6+a 3·q 6+a 4·q 6+a 5·q 6+a 6·q 6a 1+a 2+a 3+a 4+a 5+a 6=q 6=4.所以S 12=5S 6=45. [答案] (1)1 024 (2)45———————————————————等比数列常见性质的应用等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.3.已知等比数列前n 项的和为2,其后2n 项的和为12,求再后面3n 项的和. 解:∵S n =2,其后2n 项为S 3n -S n =S 3n -2=12, ∴S 3n =14.由等比数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等比数列, 即(S 2n -2)2=2·(14-S 2n )解得S 2n =-4,或S 2n =6.当S 2n =-4时,S n ,S 2n -S n ,S 3n -S 2n ,…是首项为2,公比为-3的等比数列, 则S 6n =S n +(S 2n -S n )+…+(S 6n -S 5n )=-364, ∴再后3n 项的和为S 6n -S 3n =-364-14=-378.当S 2n =6时,同理可得再后3n 项的和为S 6n -S 3n =126-14=112. 故所求的和为-378或112.3个防范——应用等比数列的公比应注意的问题 (1)注意q =1时,S n =na ,这一特殊情况.(2)由a n +1=qa n (q ≠0),并不能断言{a n }为等比数列,还要验证a 1≠0.(3)在应用等比数列的前n 项和公式时,必须注意对q =1和q ≠1分类讨论,防止因忽略q =1这一特殊情况而导致错误.4个思想——求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和的公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中根据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)整体思想:当公比q ≠1时,S n =a 11-q n 1-q =a 11-q ·(1-q n),令a 11-q =t ,则S n =t (1-q n ).把a 11-q与q n当成一个整体求解,也可简化运算.(3)分类讨论思想:在应用等比数列前n 项和公式时,必须分类求和,当q =1时,S n=na 1;当q ≠1时,S n =a 11-q n1-q;在判断等比数列单调性时,也必须对a 1与q 分类讨论.(4)函数思想:在等比数列{a n }中,a n =a 1q·q n,它的各项是函数y =a 1q·q x图象上的一群孤立的点,可以根据指数函数的一些性质研究等比数列问题(如单调性),注意函数思想在等比数列问题中的应用.创新交汇——以等比数列为背景的新定义问题1.在新情境下先定义一个新数列,然后根据定义的条件推断这个新数列的一些性质或者判断一个数列是否属于这类数列的问题是近年来新兴起的一类问题,同时,数列也常与函数、不等式等形成交汇命题.2.对于此类新定义问题,我们要弄清其本质,然后根据所学的数列的性质即可快速解决.[典例] (2012·湖北高考)定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”,现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=|x|;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为( )A.①②B.③④C.①③D.②④[解析] 法一:设{a n}的公比为q.①f(a n)=a2n,∵a2n+1a2n=⎝⎛⎭⎪⎫a n+1a n2=q2,∴{f(a n)}是等比数列.排除B、D.③f(a n)=|a n|,∵|a n+1||a n|=⎪⎪⎪⎪⎪⎪a n+1a n=|q|,∴{f(a n)}是等比数列.法二:不妨令a n=2n.①因为f(x)=x2,所以f(a n)=4n.显然{f(2n)}是首项为4,公比为4的等比数列.②因为f(x)=2x,所以f(a1)=f(2)=22,f(a2)=f(4)=24,f(a3)=f(8)=28,所以f a 2f a 1=2422=4≠f a 3f a 2=2824=16,所以{f (a n )}不是等比数列.③因为f (x )=|x |,所以f (a n )=2n =(2)n. 显然{f (a n )}是首项为2,公比为2的等比数列. ④因为f (x )=ln|x |,所以f (a n )=ln 2n=n ln 2. 显然{f (a n )}是首项为ln 2,公差为ln 2的等差数列. [答案] C [名师点评]1.本题具有以下创新点(1)命题背景新颖:本题是以“保等比数列函数”为新定义背景,考查等比数列的有关性质.(2)考查内容创新:本题没有直接指明判断等比数列的有关性质,而是通过新定义将指数函数、对数函数及幂函数、二次函数与数列有机结合,对学生灵活处理问题的能力有较高要求.2.解决本题的关键有以下两点(1)迅速脱掉“新定义”的外衣,认清本题的实质是:已知数列{a n }为正项等比数列,判断数列{a 2n },{2a n },{|a n |}及{ln|a n |}是否为等比数列问题.(2)灵活运用排除法或特殊值法也是正确解决本题的关键. [变式训练]1.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则m n =( )A.32 B.32或23 C.23D .以上都不对解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b=92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23. 2.设f (x )是定义在R 上恒不为零的函数,且对任意的实数x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,2B.⎣⎢⎡⎦⎥⎤12,2C.⎣⎢⎡⎦⎥⎤12,1 D.⎣⎢⎡⎭⎪⎫12,1 解析:选D 由已知可得a 1=f (1)=12,a 2=f (2)=[f (1)]2=⎝ ⎛⎭⎪⎫122,a 3=f (3)=f (2)·f (1)=[f (1)]3=⎝ ⎛⎭⎪⎫123,…,a n =f (n )=[f (1)]n =⎝ ⎛⎭⎪⎫12n ,∴S n =12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n .∵n ∈N *,∴12≤S n <1.一、选择题(本大题共6小题,每小题5分,共30分)1.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4×⎝ ⎛⎭⎪⎫32nB .4×⎝ ⎛⎭⎪⎫23nC .4×⎝ ⎛⎭⎪⎫32n -1D .4×⎝ ⎛⎭⎪⎫23n -1解析:选C (a +1)2=(a -1)(a +4)⇒a =5,a 1=4,q =32,故a n =4·⎝ ⎛⎭⎪⎫32n -1.2.(2012·安徽高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .7解析:选B 由题意可知a 3a 11=a 27=16,因为{a n }为正项等比数列,所以a 7=4.所以log 2a 10=log 2(a 7×23)=log 225=5.3.各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ) A .33 B .72 C .84D .189解析:选C ∵a 1+a 2+a 3=21,∴a 1+a 1·q +a 1·q 2=21,3+3×q +3×q 2=21, 1+q +q 2=7,解得q =2或q =-3.∵a n >0,∴q =2,a 3+a 4+a 5=21×q 2=21×4=84.4.(2013·西安模拟)已知a ,b ,m ,n ,x ,y 均为正数,且a ≠b ,若a ,m ,b ,x 成等差数列,a ,n ,b ,y 成等比数列,则有( )A .m >n ,x >yB .m >n ,x <yC .m <n ,x <yD .m <n ,x >y解析:选B ∵m =a +b2,n =ab (a ≠b ),∴m >n .又2b =m +x ,由b 2=ny ,得b =ny , 即2ny =m +x ≥2mx ,∴ny ≥mx , 即ny ≥mx ,y x ≥mn>1.∴y >x .5.已知等比数列{a n }中,a 1=2,a 5=18,则a 2a 3a 4等于( ) A .36 B .216 C .±36D .±216解析:选B 由等比数列的性质得a 23=a 1·a 5=2×18=36, 又a 3=a 1q 2=2q 2>0,故a 3=6. 所以a 2a 3a 4=a 33=216.6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B.⎝ ⎛⎭⎪⎫32n -1 C.⎝ ⎛⎭⎪⎫23n -1D.12n -1解析:选B 利用等比数列知识求解. ∵S n =2a n +1,∴当n ≥2时,S n -1=2a n .∴a n =S n -S n -1=2a n +1-2a n .∴3a n =2a n +1. ∴a n +1a n =32.又∵S 1=2a 2,∴a 2=12.∴a 2a 1=12.∴{a n }从第二项起是以32为公比的等比数列.∴S n =a 1+a 2+a 3+…+a n =1+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n -11-32=⎝ ⎛⎭⎪⎫32n -1⎝⎛也可以先求出n ≥2时,a n =3n -22n -1,再利用S n =2a n +1,⎭⎪⎫求得S n =⎝ ⎛⎭⎪⎫32n -1.二、填空题(本大题共3小题,每小题5分,共15分)7.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________. 解析:∵S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0. ∵a 1≠0,∴q =-2. 答案:-28.若数列{a n }(a n ∈R )对任意的正整数m ,n 满足a m +n =a m a n ,且a 3=22,那么a 12=________.解析:令m =1,则a n +1=a n a 1⇒a 1=q ,a 3=a 1q 2=22⇒q 3=22,a 12=q 12=64. 答案:649.(2013·聊城模拟)已知f (x )是定义在R 上的不恒为零的函数,且对于任意的a ,b∈R ,满足f (a ·b )=af (b )+bf (a ),f (2)=2,a n =f 2n n (n ∈N *),b n =f 2n 2n(n ∈N *),考察下列结论.①f (0)=f (1);②f (x )为偶函数;③数列{a n }为等比数列;④{b n }为等差数列.其中正确的是________.解析:令a =0,b =0,则f (0)=0,令a =b =1, 则f (1)=2f (1),故f (0)=f (1)=0; 设a =-1,b =x ,因为f (1)=f [(-1)×(-1)]=-2f (-1), 则f (-1)=0,所以f (-x )=-f (x )+xf (-1)=-f (x ),f (x )为奇函数;f (2n)=2f (2n -1)+2n -1f (2)=2f (2n -1)+2n⇒f 2n2n=f 2n -12n -1+1,则{b n }为等差数列;∵b 1=f 22=1,∴b n =1+(n -1)×1=n .∴f 2n2n =n ,a n =f 2n n=2n,则数列{a n }为等比数列.答案:①③④三、解答题(本大题共3小题,每小题12分,共36分) 10.数列{a n }中,S n =1+ka n (k ≠0,k ≠1). (1)证明:数列{a n }为等比数列; (2)求通项a n ;(3)当k =-1时,求和a 21+a 22+…+a 2n . 解:(1)∵S n =1+ka n ,①S n -1=1+ka n -1,②①-②得S n -S n -1=ka n -ka n -1(n ≥2), ∴(k -1)a n =ka n -1,a n a n -1=k k -1为常数,n ≥2. ∴{a n }是公比为kk -1的等比数列.(2)∵S 1=a 1=1+ka 1,∴a 1=11-k. ∴a n =11-k ·⎝ ⎛⎭⎪⎫k k -1n -1=-kn -1k -1n.(3)∵{a n }中a 1=11-k ,q =k k -1,∴{a 2n }是首项为⎝⎛⎭⎪⎫1k -12,公比为⎝ ⎛⎭⎪⎫k k -12的等比数列.当k =-1时,等比数列{a 2n }的首项为14,公比为14,∴a 21+a 22+…+a 2n =14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n .11.设数列{a n }是一等差数列,数列{b n }的前n 项和为S n =23(b n -1),若a 2=b 1,a 5=b 2.(1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和S n .解:(1)∵S 1=23(b 1-1)=b 1,∴b 1=-2.又S 2=23(b 2-1)=b 1+b 2=-2+b 2,∴b 2=4.∴a 2=-2,a 5=4. ∵{a n }为等差数列, ∴公差d =a 5-a 23=63=2, 即a n =-2+(n -2)·2=2n -6. (2)∵S n +1=23(b n +1-1),①S n =23(b n -1),②①-②得S n +1-S n =23(b n +1-b n )=b n +1,∴b n +1=-2b n .∴数列{b n }是等比数列,公比q =-2,首项b 1=-2, ∴b n =(-2)n. ∴S n =23[(-2)n-1].12.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c n b n=a n +1成立,求c 1+c 2+c 3+…+c 2 013. 解:(1)∵由已知得a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ), 解得d =2或d =0(舍去).∴a n =1+(n -1)·2=2n -1(n ∈N *). 又b 2=a 2=3,b 3=a 5=9, ∴数列{b n }的公比为3. ∴b n =3·3n -2=3n -1(n ∈N *).(2)由c 1b 1+c 2b 2+…+c n b n=a n +1得 当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n . 两式相减得,n ≥2时,c n b n=a n +1-a n =2. ∴c n =2b n =2·3n -1(n ≥2).又当n =1时,c 1b 1=a 2, ∴c 1=3.∴c n =⎩⎪⎨⎪⎧3n =1,2·3n -1n ≥2.∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.1.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6D .4 2解析:选A 法一:由等比中项的性质知a 1a 2a 3=(a 1a 3)·a 2=a 32=5,a 7a 8a 9=(a 7a 9)·a 8=a 38=10,所以a 2a 8=5013,所以a 4a 5a 6=(a 4a 6)·a 5=a 35=(a 2a 8)3=(5016)3=5 2.法二:由等比数列的性质知a 1a 2a 3,a 4a 5a 6,a 7a 8a 9构成等比数列,所以(a 1a 2a 3)(a 7a 8a 9)=(a 4a 5a 6)2,即a 4a 5a 6=±5×10=±52,又数列各项均为正数,所以a 4a 5a 6=5 2.2.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4D .1∶3解析:选C 由等比数列的性质:S 3、S 6-S 3、S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6),将S 6=12S 3代入得S 9S 3=34.3.设正项等比数列{a n }的前n 项和为S n ,已知a 3=4,a 4a 5a 6=212. (1)求首项a 1和公比q 的值; (2)若S n =210-1,求n 的值. 解:(1)∵a 4a 5a 6=a 35=212⇒a 5=16,∴a 5a 3=q 2=4⇒q =2,a 1q 2=a 3,解得a 1=1.(2)由S n =210-1,得S n =a 1q n -1q -1=2n-1,∴2n -1=210-1⇒2n =210,即n =10.4.已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明{b n }是等比数列; (2)求{a n }的通项公式. 解:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,以-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 又a 1=1也符合上式,所以{a n }的通项公式为a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
第三节 等比数列及其前n 项和1.(2021·江西卷)等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24解析:由x,3x +3,6x +6成等比数列得,(3x +3)2=x (6x +6). 解得x 1=-3或x 2=-1(不合题意,舍去). 故数列的第四项为-24. 答案:A2.等差数列{a n }的前n 项和为S n ,且9a 1,3a 2,a 3成等比数列.假设a 1=3,那么a 4=( ) A .6 B .4 C .3 D .5解析:设等差数列{a n }的公差为d ,那么有9(a 1+d )2=9a 1·(a 1+2d ),因为a 1=3,因此可解得d =0,因此{a n }为常数列,a 4=a 1=3.应选C.答案:C3.设等比数列{a n }的前n 项和为S n ,假设8a 2+a 5=0,那么以下式子中数值不能确信的是( ) A.a 5a 3B.S 5S 3C.a n +1a nD.S n +1S n解析:由8a 2+a 5=0知,公比q =-2,因此a 5a 3=q 2=4,S 5S 3=1-q 51-q 3=113,a n +1a n=q =-2.S n +1S n=1-q n +11-q n,依照n 的奇偶性可知,该式的结果不定.应选D.答案:D4.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,那么数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.6164B.6364C.3116D.3316 解析:∵a 1=1,9S 3=S 6,∴q ≠1.那么9·1-q 31-q =1-q 61-q ,得q 3=1(舍),q 3=8,∴q =2,∴1a n =12n -1,∴数列⎩⎨⎧⎭⎬⎫1a n 前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116. 答案:C5.一个蜂巢里有1只蜜蜂,第一天,它飞出去带回了5个伙伴;第二天,6只蜜蜂飞出去各自带回了5个伙伴……若是那个进程继续下去,那么第6天所有蜜蜂归巢后,蜂巢中共有蜜蜂( )A.666-16-1只 B .66只C .63只D .62只解析:从第一天起,每一天归巢后,蜂巢中的蜜蜂数依次为:6,62,63,…,这是一个等比数列,首项为6,公比为6,因此第6天所有蜜蜂归巢后,蜂巢中共有蜜蜂66只.应选B.答案:B6.等比数列{a n }中,a 3=6,前三项和S 3=∫304x d x ,那么公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:S 3=∫304x d x =2x 2|30=2×32-0=18,由题知,a 1q 2=6①a 1+a 1q =12②②式除以①式得1q 2+1q =2,解得q =1或-12,应选C.答案:C7.概念在(-∞,0)∪(0,+∞)上的函数f (x ),若是关于任意给定的等比数列{a n },{f (a n )}仍是等比数列,那么称f (x )为“保等比数列函数”.现有概念在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x ;③f (x )=|x |;④f (x )=ln |x |.那么其中是“保等比数列函数”的f (x )的序号为 ( ) A .①② B .③④ C .①③ D .②④解析:等比数列性质,a n a n +2=a 2n +1,①f (a n )f (a n +2)=a 2n a 2n +2=(a 2n +1)2=f 2(a n +1);②f (a n )f (a n +2)=2a n 2a n +2=2a n +a n +2≠22a n +1=f 2(a n +1); ③f (a n )f (a n +2)=|a n a n +2|=|a n +1|2=f 2(a n +1);④f (a n )f (a n +2)=ln|a n |ln|a n +2|≠(ln|a n +1|)2=f 2(a n +1).应选C. 答案:C8.(2021·茂名一模)已知等比数列{a n }的公比q 为正数,且a 3·a 9=2a 25,那么q =__________.解析:设等比数列的首项为a 1,由a 3·a 9=2a 25,得:(a 1q 2)·(a 1q 8)=2(a 1q 4)2,即a 21q 10=2a 21q 8, ∵a 1≠0,q >0,∴q = 2.答案:29.(2021·北京卷)假设等比数列{a n }知足a 2+a 4=20,a 3+a 5=40,那么公比q =________;前n 项和S n =________.解析:设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2.因此S n =a 11-q n1-q=2n +1-2.答案:2 2n +1-210.(2021·广东深圳二模)已知递增的等比数列{a n }中,a 2+a 8=3,a 3·a 7=2,那么a 13a 10=________.解析:∵{a n }是递增的等比数列,∴a 3a 7=a 2a 8=2,又∵a 2+a 8=3,∴a 2,a 8是方程x 2-3x +2=0的两根,那么a 2=1,a 8=2, ∴q 6=a 8a 2=2,∴q 3=2,∴a 13a 10=q 3= 2.答案:211.若是数列a 1,a 2a 1,a 3a 2,…,a n a n -1,…是首项为1,公比为-2的等比数列,那么a 5=________.解析:∵a na n -1=a 1(-2)n -1=(-2)n -1,∴a 5=a 5a 4·a 4a 3·a 3a 2·a 2a 1=(-2)4+3+2+1=32.答案:3212.已知等比数列{a n }的各项均为不等于1的正数,数列{b n }知足b n =ln a n ,b 3=18,b 6=12,那么数列{b n }前n 项和的最大值为__________.解析:由题知,b 3=18=ln a 3,a 3=e 18,b 6=12=l n a 6,a 6=e 12,a 6a 3=q 3=e -6,q =e -2,那么a 1=e 22,那么b 1=22,b 2=20,b n =22+(n -1)·(-2),n =12时,b n =0,那么S 12最大为132.答案:13213.(2021·陕西卷)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1, 证明数列{a n +1}不是等比数列. 解析:(1) 分两种情形讨论.①当q =1时,数列{a n }是首项为a 1的常数数列,因此S n =a 1+a 1+…+a 1=na 1. ②当q ≠1时,数列S n =a 1+a 2+…+a n -1+a n ⇒qS n =qa 1+qa 2+…+qa n -1+qa n . 上面两式错位相减:(1-q )S n =a 1+(a 2-qa 1)+(a 3-qa 2)…+(a n -qa n -1)-qa n =a 1-qa n . ⇒S n =a 1-qa n 1-q=a 11-q n1-q.③综上,S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q ,q ≠1.(2)利用反证法.设{a n }是公比q ≠1的等比数列, 假设数列{a n +1}是等比数列.那么 ①当∃n ∈N *,使得a n +1=0成立,那么{a n +1}不是等比数列. ②当∀n ∈N *,使得a n +1≠0成立,那么a n +1+1a n +1=a 1q n +1a 1q n -1+1=恒为常数⇒a 1q n +1=a 1q n -1+1⇒当a 1≠0时,q =1.这与题目条件q ≠1矛盾.③综上两种情形,假设数列{a n +1}是等比数列均不成立,因此当q ≠1时, 数列{a n +1}不是等比数列. 14.(2021·广州一模)已知数列{a n }的前n 项和为S n ,且a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求数列{a n}的通项公式;(2)假设p,q,r是三个互不相等的正整数,且p,q,r成等差数列,试判定a p-1,a q-1,a r-1是不是成等比数列?并说明理由.解析:(1)∵a1+2a2+3a3+…+na n=(n-1)S n+2n,∴当n=1时,有a1=(1-1)S1+2,解得a1=2.由a1+2a2+3a3+…+na n=(n-1)S n+2n,①a1+2a2+3a3+…+na n+(n+1)a n+1=nS n+1+2(n+1),②②-①得:(n+1)a n+1=nS n+1-(n-1)S n+2.③由③式得:(n+1)a n+1=nS n+1-(n-1)S n+2=n(S n+1-S n)+S n+2,得a n+1=S n+2.④当n≥2时a n=S n-1+2,⑤⑤-④得:a n+1=2a n.由a1+2a2=S2+4,得a2=4,∴a2=2a1.∴数列{a n}是以a1=2为首项,2为公比的等比数列.∴a n=2n.(2)∵p,q,r成等差数列,∴p+r=2q.假设a p-1,a q-1,a r-1成等比数列,那么(a p-1)(a r-1)=(a q-1)2,即(2p-1)(2r-1)=(2q-1)2,化简得:2p+2r=2×2q.(*)∵p≠r,∴2p+2r>22p×2r=2×2q,这与(*)式矛盾,故假设不成立.∴a p-1,a q-1,a r-1不是等比数列.。
课时规范训练A 组 基础演练1.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.明显,n ∈N *,a n ,a n +1,a n +2成等比数列,则a 2n +1=a n a n +2,反之,不肯定成立,举反例,如数列为1,0,0,0,….2.设{}a n 是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ) A .2 B .-2 C.12D .-12解析:选D.由于等差数列{}a n 的前n 项和为S n =na 1+n (n -1)2d ,所以S 1,S 2,S 4分别为a 1,2a 1-1,4a 1-6.由于S 1,S 2,S 4成等比数列,所以(2a 1-1)2=a 1·(4a 1-6).解得a 1=-12.3.在等比数列{a n }中,若a 4,a 8是方程x 2-3x +2=0的两根,则a 6的值是( ) A .±2 B .- 2 C. 2D .±2解析:选C.由于a 4,a 8是方程的两根,则⎩⎪⎨⎪⎧a 4+a 8=3>0a 4a 8=2>0,∴a 4>0,a 8>0,又a 26=a 4a 8=2,∴a 6= 2.4.已知等比数列{a n }的公比q =2,且2a 4,a 6,48成等差数列,则{a n }的前8项和为( ) A .127 B .255 C .511D .1 023解析:选B.∵2a 6=2a 4+48,即a 6=a 4+24 ∴25a 1=23a 1+24,从而a 1=1.于是S 8=1×(1-28)1-2=28-1=255.5.设数列{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=( ) A.152 B.314 C.334D.172解析:选B.设此数列的公比为q (q >0),由已知a 2a 4=1,得a 23=1,∴a 3=1,由S 3=7,知a 3+a 3q +a 3q 2=7,即6q 2-q -1=0,解得q =12,从而a 1=4, 所以S 5=4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=314. 6.等比数列{a n }中,S n 表示前n 项和,a 3=2S 2+1,a 4=2S 3+1,则公比q 为________. 解析:由a 3=2S 2+1,a 4=2S 3+1得 a 4-a 3=2(S 3-S 2)=2a 3, ∴a 4=3a 3,∴q =a 4a 3=3.答案:37.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.解析:由已知条件得2S n =S n +1+S n +2, 即2S n =2S n +2a n +1+a n +2,即a n +2a n +1=q =-2.答案:-28.等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.解析:由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0. 由q 2+q -2=0解得q =-2或q =1(舍去), ∴S 5=a 1(1-q 5)1-q=1-(-2)53=11.答案:119.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1. 解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列, ∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -2(2-1)=2n -2. 当n =1时,a 1=1,不适合上式. ∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+a 5+…+a 2n +1=2(4n -1)3+1=22n +1+13.10.已知成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5. (1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列. 解:(1)设成等差数列的三个正数分别为a -d ,a ,a +d .依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去), ∴b 3=5,公比q =2,因此b 1=54,故b n =54·2n -1=5·2n -3.(2)证明:由(1)知b 1=54,公比q =2,∴S n =54(1-2n)1-2=5·2n -2-54,则S n +54=5·2n -2,因此S 1+54=52,S n +54S n -1+54=5·2n -25·2n -3=2(n ≥2). ∴数列⎩⎨⎧⎭⎬⎫S n +54是以52为首项,公比为2的等比数列.B 组 力量突破1.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为( ) A .-2 B .2 C .-3D .3解析:选B.设公比为q ,若q =1,则S 2mS m=2, 与题中条件冲突,故q ≠1.∵S 2m S m =a 1(1-q 2m )1-q a 1(1-q m )1-q=q m +1=9,∴q m=8. ∴a 2m a m =a 1q 2m -1a 1q m -1=q m=8=5m +1m -1, ∴m =3,∴q 3=8,∴q =2.2.等比数列{a n }中,|a 1|=1,a 5=-8a 2.a 5>a 2,则a n 等于( ) A .(-2)n -1 B .-(-2)n -1 C .(-2)nD .-(-2)n解析:选A.∵|a 1|=1,∴a 1=1或a 1=-1. ∵a 5=-8a 2=a 2·q 3,∴q 3=-8,∴q =-2. 又a 5>a 2,即a 2q 3>a 2,∴a 2<0.而a 2=a 1q =a 1·(-2)<0,∴a 1=1. 故a n =a 1·(-2)n -1=(-2)n -1.3.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 33+…+a 2n 等于( )A .(3n -1)2 B.12(9n -1) C .9n-1D.14(3n-1)解析:选B.∵a 1+a 2+…+a n =3n -1,n ∈N *, n ≥2时,a 1+a 2+…+a n -1=3n -1-1, ∴当n ≥2时,a n =3n -3n -1=2·3n -1, 又n =1时,a 1=2适合上式,∴a n =2·3n -1, 故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 4.已知等比数列{a n }满足a 1+a 2+a 3=-8,a 4+a 5+a 6=1,则a 11-q =__________.解析:∵a 4+a 5+a 6a 1+a 2+a 3=q 3=-18,∴q =-12,把q =-12代入a 1+a 2+a 3=-8, 解得a 1=-323,∴a 11-q =-649.答案:-6495.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2), ∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).。
5-3 等比数列及其前n 项和课时规X 练A 组 基础对点练1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( B ) A .21 B.42 C .63D.842.(2018·某某质检)在等比数列{a n }中,a 2=2,a 5=16,则a 6=( C ) A .14 B.28 C .32D.643.(2017·某某摸底考试)已知数列{a n }为等比数列,a 5=1,a 9=81,则a 7=( B ) A .9或-9 B.9 C .27或-27D.27解析:∵数列{a n }为等比数列,且a 5=1,a 9=81, ∴a 27=a 5a 9=1×81=81, ∴a 7=±9.当a 7=-9时,a 26=1×(-9)=-9不成立,舍去. ∴a 7=9.故选B.4.(2018·某某调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( B ) A .-2n B.2n C .2n -1D.2n +1解析:由题意,得a 2a 8=a 24,又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.5.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( D ) A .-3 B.-1 C .1D.3解析:在等比数列{a n }中, ∵a 3=2S 2+1,a 4=2S 3+1,∴a 4-a 3=2S 3+1-(2S 2+1)=2(S 3-S 2)=2a 3, ∴a 4=3a 3, ∴q =a 4a 3=3.故选D.6.我国古代有用一首诗歌形式提出的数列问题:远望巍巍塔七层,红灯向下成倍增.共灯三百八十一,请问塔顶几盏灯?( C ) A .5 B.4 C .3D.27.若等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( D ) A .5 B.9 C .log 345D.10解析:由等比数列性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,∴a 5a 6=9, 则原式=log 3a 1a 2…a 10=log 3(a 5a 6)5=10.8.已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是__-2__. 9.(2018·某某调研)在各项均为正数的等比数列{a n }中,若a 5=5,则log 5a 1+log 5a 2+…+log 5a 9= __9__.解析:因为数列{a n }是各项均为正数的等比数列,所以由等比数列的性质,可得a 1·a 9=a 2·a 8=a 3·a 7=a 4·a 6=a 25=52,则log 5a 1+log 5a 2+…+log 5a 9=log 5(a 1·a 2·…·a 9) =log 5[(a 1·a 9)·(a 2·a 8)·(a 3·a 7)·(a 4·a 6)·a 5]=log 5a 95=log 559=9.10.(2018·某某统考)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=4,a n +1=3S n +4(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89.解析:(1)因为a n +1=3S n +4, 所以a n =3S n -1+4(n ≥2),两式相减,得a n +1-a n =3a n ,即a n +1=4a n (n ≥2). 又a 2=3a 1+4=16=4a 1,所以数列{a n }是首项为4,公比为4的等比数列,所以a n =4n. (2)证明:因为a n b n =log 2a n ,所以b n =2n4n ,所以T n =241+442+643+ (2)4n ,14T n =242+443+644+ (2)4n +1,两式相减得,34T n =24+242+243+244+…+24n -2n4n +1=2⎝ ⎛⎭⎪⎫14+142+143+144+…+14n -2n 4n +1=2×14⎝ ⎛⎭⎪⎫1-14n 1-14-2n 4n +1=23-23×4n -2n4n +1=23-6n +83×4n +1, 所以T n =89-6n +89×4n <89.11.(2017·某某质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n ,知a n +1n +1=12·a nn, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫a n n 是首项为12,公比为12的等比数列,∴a n n =⎝ ⎛⎭⎪⎫12n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②,得12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组 能力提升练1.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( C )A .2B.1C.12D.18解析:设等比数列{a n }的公比为q ,a 1=14,a 3a 5=4(a 4-1),由题可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝ ⎛⎭⎪⎫14×q 3-1,∴q 6-16q 3+64=0,∴(q 3-8)2=0,∴q 3=8,∴q =2,∴a 2=12.故选C.2.(2018·某某质检)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马,”马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a 升,b 升,c 升,1斗为10升,则下列判断正确的是( D )A .a ,b ,c 依次成公比为2的等比数列,且a =507B .a ,b ,c 依次成公比为2的等比数列,且c =507C .a ,b ,c 依次成公比为12的等比数列,且a =507A .a ,b ,c 依次成公比为12的等比数列,且c =507解析:由题意,可得a ,b ,c 依次成公比为12的等比数列,b =12a ,c =12b ,故4c +2c +c =50,解得c =507.故选D.3.在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( B ) A .4 B.5 C .6D.7解析:由等比数列的性质,可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5,故选B.4.(2018·某某适应性考试)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 018=( A )A .22 017-12 B.1-⎝ ⎛⎭⎪⎫12 2 017C .22 018-12D.1-⎝ ⎛⎭⎪⎫12 2 018解析:由a 1=12,a 2a 6=8(a 4-2),得q 6-16q 3+64=0,所以q 3=8,即q =2,所以S 2 018=a 11-q 2 0181-q =22 017-12.故选A.5.(2016·高考某某卷)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( C ) A .充要条件 B.充分而不必要条件 C .必要而不充分条件 D.既不充分也不必要条件解析:由题意,得a n =a 1qn -1(a 1>0),a 2n -1+a 2n =a 1q2n -2+a 1q2n -1=a 1q2n -2(1+q ).若q <0,因为1+q 的符号不确定,所以无法判断a 2n -1+a 2n 的符号;反之,若a 2n -1+a 2n <0,即a 1q 2n -2(1+q )<0,可得q <-1<0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件,故选C.6.若等比数列{a n }的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( D )A.32B.94 C .1D.2解析:设等比数列{a n }的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9①,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92②,①÷②得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2.故选D. 7.已知等比数列{a n }的各项都是正数,且3a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( D )A .6 B.7 C .8D.9解析:∵3a 1,12a 3,2a 2成等差数列,∴a 3=3a 1+2a 2,∴q 2-2q -3=0,∴q =3或q =-1(舍去).∴a 8+a 9a 6+a 7=a 1q 7+a 1q 8a 1q 5+a 1q 6=q 2+q 31+q=q 2=32=9.故选D.8.(2018·某某质检)已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018=( A ) A .22 018-1 B.32 018-6C.⎝ ⎛⎭⎪⎫12 2 018-72D.⎝ ⎛⎭⎪⎫13 2 018-103解析:因为3S n =2a n -3n ,所以当n =1时,3S 1=3a 1=2a 1-3,所以a 1=-3;当n ≥2时,3a n =3S n -3S n -1=(2a n -3n )-(2a n -1-3n +3),所以a n =-2a n -1-3,即a n +1=-2(a n -1+1),所以数列{a n +1}是以-2为首项,-2为公比的等比数列.则a n +1=-2×(-2)n -1=(-2)n,所以a n =(-2)n-1,所以a 2 018=(-2)2 018-1=22 018-1,故选A.9.(2018·某某质量预测)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=__100__.解析:由log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,即a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列.又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100, 所以log 2(a 101+a 102+…+a 110)=log 22100=100.10.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值X 围是__(-∞,-1]∪[3,+∞)__.解析:当q >0时,S 3=a 1+a 2+a 3=1+a 1+a 3≥1+2a 1a 3=1+2a 22=3; 当q <0时,S 3=a 1+a 2+a 3=1+a 1+a 3≤1-2a 1a 3=1-2a 22=-1, 所以S 3的取值X 围是(-∞,-1]∪[3,+∞).11.(2018·某某质检)已知数列{a n }是各项均为正数的等比数列,若a 1=1,a 2·a 4=16. (1)设b n =log 2a n ,求数列{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和S n . 解析:(1)设数列{a n }的公比为q (q >0),由⎩⎪⎨⎪⎧a 1=1,a 2a 4=16,得q 4=16,所以q =2,则a n =2n -1.又b n =log 2a n ,所以b n =n -1. (2)由(1)可知a n ·b n =(n -1)·2n -1,则S n =0×20+1×21+2×22+…+(n -1)·2n -1,2S n =0×21+1×22+2×23+…+(n -1)·2n, 两式相减,得-S n =2+22+23+…+2n -1-(n -1)·2n=2-2n1-2-(n -1)·2n =2n (2-n )-2, 所以S n =2n(n -2)+2.12.(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{}a n 是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n , 即(λ-1)a n +1=λa n ,由a 1≠0,λ≠0,得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n .由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132, 即⎝ ⎛⎭⎪⎫λλ-15=132,解得λ=-1.。
第三节 等比数列【最新考纲】 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.定义的符号表达式为ɑn +1ɑn=q(n∈N *,q 为非零常数).(2)等比中项:如果ɑ、G 、b 成等比数列,那么G 叫做ɑ与b 的等比中项.那么G ɑ=bG ,即G 2=ɑb .2.等比数列的有关公式(1)通项公式:ɑn =ɑ1q n -1. (2)前n 项和公式:S n =⎩⎪⎨⎪⎧n ɑ1(q =1)ɑ1(1-q n )1-q=ɑ1-ɑn q 1-q (q≠1).3.等比数列的性质(1)对任意的正整数m 、n 、p 、q ,若m +n =p +q =2k ,则ɑm ·ɑn =ɑp ·ɑq =ɑ2k .(2)通项公式的推广:ɑn =ɑm q n -m (m ,n ∈N *).(3)公比不为-1的等比数列{ɑn }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n;当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.(4)若数列{ɑn },{b n }(项数相同)是等比数列,则{λɑn },⎩⎨⎧⎭⎬⎫1ɑn ,{ɑ2n },{ɑn ·b n },⎩⎨⎧⎭⎬⎫ɑn b n (λ≠0)仍是等比数列.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)满足ɑn +1=q ɑn (n∈N *,q 为常数)的数列{ɑn }为等比数列.( )(2)G 为ɑ,b 的等比中项⇔G 2=ɑb.( )(3)如果{ɑn }为等比数列,b n =ɑ2n -1+ɑ2n ,则数列{b n }也是等比数列.( ) (4)数列{ɑn }的通项公式是ɑn =ɑn,则其前n 项和为S n =ɑ(1-ɑn)1-ɑ.( )答案:(1)× (2)× (3)× (4)×2.对任意等比数列{ɑn },下列说法一定正确的是( ) A .ɑ1,ɑ3,ɑ9成等比数列 B .ɑ2,ɑ3,ɑ6成等比数列 C .ɑ2,ɑ4,ɑ8成等比数列 D .ɑ3,ɑ6,ɑ9成等比数列解析:根据等比数列的性质,若m +n =2k(m ,n ,k ∈N +),则ɑm ,ɑk ,ɑn 成等比数列. 答案:D3.已知等比数列{ɑn }中,ɑ2+ɑ3=1,ɑ4+ɑ5=2,则ɑ6+ɑ7等于( ) A .2 B .2 2 C .4 D .4 2解析:因为ɑ2+ɑ3,ɑ4+ɑ5,ɑ6+ɑ7成等比数列,ɑ2+ɑ3=1,ɑ4+ɑ5=2,所以(ɑ4+ɑ5)2=(ɑ2+ɑ3)(ɑ6+ɑ7),解得ɑ6+ɑ7=4. 答案:C4.(2015·广东卷)若三个正数ɑ,b ,c 成等比数列,其中ɑ=5+26,c =5-26,则b =________.解析:∵ɑ,b ,c 成等比数列, ∴b 2=ɑ·c=(5+26)(5-26)=1. 又b >0,∴b =1. 答案:15.(2015·课标全国Ⅰ卷)在数列{ɑn }中,ɑ1=2,ɑn +1=2ɑn ,S n 为{ɑn }的前n 项和.若S n =126,则n =________.解析:∵ɑ1=2,ɑn +1=2ɑn ,∴数列{ɑn }是首项为2,公比为2的等比数列.又∵S n =126,∴2(1-2n)1-2=126,∴n =6.答案:6一个推导利用错位相减法推导等比数列的前n 项和公式. 两个防范1.由ɑn +1=q ɑn (q≠0),并不能断言{ɑn }为等比数列,还要验证ɑ1≠0.2.应用等比数列的前n 项和公式时,必须注意对q =1与q≠1分类讨论,防止因忽略q =1这一特殊情况致误.三种方法等比数列的三种判定方法1.定义:ɑn +1ɑn =q(q 是不为零的常数,n ∈N *)⇔{ɑn }是等比数列.2.通项公式:ɑn =cqn -1(c 、q 均是不为零的常数,n ∈N *)⇔{ɑn }是等比数列.3.等比中项法:ɑ2n +1=ɑn ·ɑn +2(ɑn ·ɑn +1·ɑn +2≠0,n ∈N *)⇔{ɑn }是等比数列.一、选择题1.(经典再现)设首项为1,公比为23的等比数列{ɑn }的前n 项和为S n ,则( )A .S n =2ɑn -1B .S n =3ɑn -2C .S n =4-3ɑnD .S n =3-2ɑn 解析:在等比数列{ɑn }中, S n =ɑ1-ɑn q1-q =1-ɑn ·231-23=3-2ɑn .答案:D2.(2015·课标全国Ⅱ卷)已知等比数列{ɑn }满足ɑ1=3,ɑ1+ɑ3+ɑ5=21,则ɑ3+ɑ5+ɑ7=( )A .21B .42C .63D .84解析:∵ɑ1=3,ɑ1+ɑ3+ɑ5=21,∴3+3q 2+3q 4=21.∴1+q 2+q 4=7.解得q 2=2或q 2=-3(舍去).∴ɑ3+ɑ5+ɑ7=q 2(ɑ1+ɑ3+ɑ5)=2×21=42.故选B. 答案:B3.已知等比数列{ɑn }的公比为正数,且ɑ3ɑ9=2ɑ25,ɑ2=2,则ɑ1=( )A.12B.22 C. 2 D .2 解析:由等比数列的性质得ɑ3ɑ9=ɑ26=2ɑ25, ∵q >0,∴ɑ6=2ɑ5,q =ɑ6ɑ5=2,ɑ1=ɑ2q= 2.答案:C4.已知数列{ɑn }满足log 3ɑn +1=log 3ɑn +1(n∈N *),且ɑ2+ɑ4+ɑ6=9,则log 13(ɑ5+ɑ7+ɑ9)的值是( )A .-15B .-5C .5 D.15解析:由log 3ɑn +1=log 3ɑn +1(n∈N *),得log 3ɑn +1-log 3ɑn =1,即log 3ɑn +1ɑn=1,解得ɑn +1ɑn=3,所以数列{ɑn }是公比为3的等比数列.因为ɑ5+ɑ7+ɑ9=(ɑ2+ɑ4+ɑ6)q 3,所以ɑ5+ɑ7+ɑ9=9×33=35.所以log 13(ɑ5+ɑ7+ɑ9)=log 1335=-log 335=-5.答案:B5.(2016·河北石家庄调研)已知各项均为正数的等比数列{ɑn }中,ɑ4与ɑ14的等比中项为22,则2ɑ7+ɑ11的最小值为( )A .16B .8C .2 2D .4 解析:∵ɑ4与ɑ14的等比中项为22,∴ɑ4·ɑ14=ɑ7·ɑ11=(22)2=8,∴2ɑ7+ɑ11≥22ɑ7ɑ11=22×8=8,∴2ɑ7+ɑ11的最小值为8. 答案:B6.数列{ɑn }中,已知对任意n∈N *,ɑ1+ɑ2+ɑ3+…+ɑn =3n -1,则ɑ21+ɑ22+ɑ23+…+ɑ2n 等于( )A .(3n -1)2B.12(9n -1)C .9n-1 D.14(3n -1)解析:∵ɑ1+ɑ2+…+ɑn =3n-1,n ∈N *,n ≥2时,ɑ1+ɑ2+…+ɑn -1=3n -1-1,∴当n≥2时,ɑn =3n -3n -1=2·3n -1,又n =1时,ɑ1=2适合上式,∴ɑn =2·3n -1,故数列{ɑ2n }是首项为4,公比为9的等比数列, 因此ɑ21+ɑ22+…+ɑ2n=4(1-9n )1-9=12(9n-1).答案:B二、填空题7.(2014·安徽卷)数列{ɑn }是等差数列,若ɑ1+1,ɑ3+3,ɑ5+5构成公比为q 的等比数列,则q =________.解析:设数列{ɑn }的公差为d , 则ɑ1=ɑ3-2d ,ɑ5=ɑ3+2d ,由题意得,(ɑ1+1)(ɑ5+5)=(ɑ3+3)2,即(ɑ3-2d +1)·(ɑ3+2d +5)=(ɑ3+3)2,整理,得(d +1)2=0,∴d =-1,则ɑ1+1=ɑ3+3,故q =1. 答案:18.等比数列{ɑn }的前n 项和为S n ,若ɑ1+ɑ2+ɑ3+ɑ4=1,ɑ5+ɑ6+ɑ7+ɑ8=2,S n =15,则项数n =________.解析:ɑ5+ɑ6+ɑ7+ɑ8=(ɑ1+ɑ2+ɑ3+ɑ4)q 4=q 4=2,ɑ1+ɑ2+ɑ3+ɑ4=ɑ1(1-q 4)1-q =-ɑ11-q =1,∴ɑ11-q =-1,又S n =15,即ɑ1(1-q n)1-q =15,∴q n=16,又q 4=2.∴n=16. 答案:169.(2016·郑州一检)已知等比数列{ɑn },前n 项和为S n ,ɑ1+ɑ2=34,ɑ4+ɑ5=6,则S 6=________.解析:由条件可设该等比数列首项为ɑ1,公比为q ,则由ɑ4+ɑ5=(ɑ1+ɑ2)q 3可得q =2,代入ɑ1+ɑ2=34可得ɑ1=14,故S 6=ɑ1(1-q 6)1-q =634.答案:634三、解答题10.在等比数列{ɑn }中,ɑ2=3,ɑ5=81. (1)求ɑn ;(2)设b n =log 3ɑn ,求数列{b n }的前n 项和S n .解:(1)设{ɑn }的公比为q ,依题意,得⎩⎪⎨⎪⎧ɑ1q =3,ɑ1q 4=81,解得⎩⎪⎨⎪⎧ɑ1=1,q =3.因此,ɑn =3n -1.(2)因为b n =log 3ɑn =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n 2.11.数列{ɑn }的前n 项和记为S n ,ɑ1=t ,点(S n ,ɑn +1)在直线y =3x +1上,n ∈N *.(1)当实数t 为何值时,数列{ɑn }是等比数列;(2)在(1)的结论下,设b n =log 4ɑn +1,c n =ɑn +b n ,T n 是数列{c n }的前n 项和,求T n . 解:(1)∵点(S n ,ɑn +1)在直线y =3x +1上,∴ɑn +1=3S n +1,ɑn =3S n -1+1(n >1,且n∈N *), ɑn +1-ɑn =3(S n -S n -1)=3ɑn , ∴ɑn +1=4ɑn ,n >1,ɑ2=3S 1+1=3ɑ1+1=3t +1,∴当t =1时,ɑ2=4ɑ1,数列{ɑn }是等比数列.(2)在(1)的结论下,ɑn +1=4ɑn ,ɑn +1=4n,b n =log 4ɑn +1=n ,c n =ɑn +b n =4n -1+n ,T n =c 1+c 2+…+c n =(40+1)+(41+2)+…+(4n -1+n)=(1+4+42+…+4n -1)+(1+2+3+…+n) =4n-13+n (n +1)2.。