第一章 计数原理单元测试题
- 格式:doc
- 大小:232.00 KB
- 文档页数:6
计数原理单元测试卷一同学们,今天我们进行的是计数原理单元的测试,请大家认真审题,仔细作答。
现在,让我们开始今天的测试。
一、选择题(每题3分,共30分)1. 某班级有30名学生,需要选出5名代表参加校运会,有多少种不同的选法?A. 3000B. 300C. 150D. 1002. 如果一个事件可以由n个步骤组成,每个步骤有两种选择,那么完成这个事件共有多少种不同的方法?A. 2^nB. n^2C. 2nD. n!3. 某图书馆有100本书,需要选出10本进行展示,如果不考虑书籍的排列顺序,共有多少种不同的选法?A. 100B. 10C. 10^100D. 100!/(10!*90!)...(此处省略其他选择题)二、填空题(每空2分,共20分)1. 如果一个事件有5种可能的结果,每种结果发生的概率相等,那么这个事件的期望值是______。
2. 从5个不同的数字中选出3个数字进行排列,不考虑排列顺序,共有______种不同的组合。
...(此处省略其他填空题)三、简答题(每题10分,共20分)1. 请解释什么是排列和组合,并给出一个例子说明它们的区别。
2. 请解释什么是二项式定理,并给出一个应用二项式定理的例子。
四、计算题(每题15分,共30分)1. 某学校有5个班级,每个班级有50名学生。
现在需要从这5个班级中随机选出10名学生组成一个学习小组。
如果不考虑班级之间的差异,计算出有多少种不同的组合方式。
2. 假设有5个不同的球和5个不同的盒子,每个盒子只能放一个球。
计算出有多少种不同的放球方法。
五、论述题(共10分)请论述计数原理在日常生活中的应用,并给出至少两个具体的例子。
同学们,测试结束。
请检查自己的答案,确保没有遗漏。
希望你们都能取得好成绩。
如果有任何疑问,可以在课后与我讨论。
谢谢大家的努力和参与。
高中数学第一章计数原理单元测评北师大版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章计数原理单元测评北师大版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章计数原理单元测评北师大版选修2-3的全部内容。
《计数原理》测评(时间90分钟,满分100分)一、选择题(本大题共12小题,每小题4分,共48分)1.从集合{1,2,3,…,11}中任选两个元素作为椭圆方程22mx +22n y =1中的m 和n ,则能组成落在矩形区域B={(x ,y )||x |<11且|y |<9}内的椭圆个数为A 。
43 B.72 C.86 D.90 答案:1。
B 解析:m∈{1,2,3,4,5,6,7,8,9,10},n∈{1,2,3,4,5,6,7,8}。
故椭圆个数为C 110·C 18—8=72个。
2.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作。
若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为A 。
1214C 412C 48C B.1214C 412A 48C C.33484121214A C C C D 。
1214C 412C 48C 33A 答案: A 解析:由题意,不同的排班种数为C 1014C 46610C =!256!478910!411121314⨯•⨯⨯⨯•⨯⨯⨯=C 484121214C C 。
3。
五人排成一排,甲与乙不相邻,且甲与丙也不相邻的不同排法有A.60种 B 。
48种 C.36种 D 。
24种 答案:C 解析:甲排第一位时,乙、丙不排第二位,有C 12A 33种排法;甲排第二位时,乙、丙只能排四、五位,有A 22A 22种排法;甲排第三位时,只乙、丙能排首尾,有A 22A 22种排法;甲排第四位,乙、丙只能排第一、二位,有A 22A 22种排法;甲排第五位时,乙、丙只能排第一、二、三位,有C 12A 33种排法,共有(12+4+4+4+12)=36种排法。
一、选择题1.在二项式()12nx -的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为( ) A .960- B .960 C .1120D .16802.若()()()()()201923201901232019122222x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-,则01232019a a a a a -+-+⋅⋅⋅-的值为( )A .-2B .-1C .0D .13.将甲、乙、丙、丁四人分配到A 、B 、C 三所学校任教,每所学校至少安排1人,则甲不去A 学校的不同分配方法有( ) A .18种B .24种C .32种D .36种4.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n +B .2mn m CC .2n mn C D .2m mn C5.已知二项式()nx x-的展开式中二项式系数之和为64,则该展开式中常数项为 A .-20B .-15C .15D .206.已知21nx x ⎛⎫ ⎪⎝⎭+的二项展开式的各项系数和为32,则二项展开式中x 的系数为( ) A .5 B .10 C .20 D .407.在()nx x+的展开式中,各项系数与二项式系数和之比为128,则4x 的系数为( ) A .21B .63C .189D .7298.在2310(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中,含2x 项的系数为( ) A .45B .55C .120D .1659.在二项式3nx x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数之和为A ,二项式系数之和为B ,若72A B +=,则n =( )A .3B .4C .5D .610.如图,用6种不同的颜色把图中A,B,C,D 四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为( )A .400B .460C .480D .49611.若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-=,则012020a a a +++=( )A .1B .0C .20202D .2021212.以长方体1111ABCD A B C D -的任意三个顶点为顶点作三角形,从中随机取出2个三角形,则这2个三角形不共面的情兄有( )种A .1480B .1468C .1516D .1492二、填空题13.已知13nx x ⎛⎫- ⎪⎝⎭的展开式中第6项与第8项的二项式系数相等,则含10x 项的系数是___________.14.把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为________.15.方程10x y z ++=的正整数解的个数__________.16.4名志愿者被随机分配到、、A B C 三个不同的岗位服务,每个岗位至少有一名志愿者,则甲、乙两名志愿者没有分配到同一个岗位服务的概率为______. 17.(x +y )(2x -y )5的展开式中x 3y 3的系数为________.18.有4位同学参加学校组织的政治、地理、化学、生物4门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有2人报名的方案有______.19.定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有____个.20.622x x ⎛ ⎝的展开式中3x 的系数为__________.(用数字作答)三、解答题21.设函数(,)(1)(0,0)x f x y my m y =+>>.(1)当3m =时,求()9,f y 的展开式中二项式系数最大的项;(2)已知(2,)f n y 的展开式中各项的二项式系数和比(,)f n y 的展开式中各项的二项式系数和大4032,若01(,)nn f n y a a y a y =++⋅⋅⋅+,且2135a =,求1i ni a =∑22.求值:(1)333364530C C C C +++⋅⋅⋅+; (2)12330303030302330C C C C +++⋅⋅⋅+.23.已知i ,m ,n 是正整数,且1i m n <≤<. (1)证明:i i i im n n A m A <; (2)证明:(1)(1)m n n m +<+. 24.已知()(n f x x =,()f x 的展开式的各二项式系数的和等于128,(1)求n 的值;(2)求()f x 的展开式中的有理项;(3)求()f x 的展开式中系数最大的项和系数最小的项.25.已知二项式1nx ⎫⎪⎭的展开式中各项的系数和为256. (1)求n ;(2)求展开式中的常数项.26.已知5nx⎛⎝.(1)当6n =时,求: ①展开式中的中间一项; ②展开式中常数项的值;(2)若展开式中各项系数之和比各二项式系数之和大240,求展开式中含x 项的系数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据条件求出8n =,再由二项式定理及展开式通项公式,即可得答案. 【详解】由已知可得:2256n =,所以8n =,则展开式的中间项为44458(2)1120T C x x =-=,即展开式的中间项的系数为1120. 故选:C .【点睛】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.2.B解析:B 【分析】令1x =,即可求01232019a a a a a -+-+⋅⋅⋅-出的值. 【详解】解:在所给等式中,令1x =,可得等式为()20190123201912a a a a a -=-+-+⋅⋅⋅-,即012320191a a a a a -+-+⋅⋅⋅-=-. 故选:B. 【点睛】本题考查二项式定理的展开使用及灵活变求值,特别是解决二项式的系数问题,常采用赋值法,属于中档题.3.B解析:B 【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案. 【详解】解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有11232212C A A =种情况, ②没有人与甲在同一个学校,则有12223212C C A =种情况;则若甲要求不到A 学校,则不同的分配方案有121224+=种; 故选:B . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中等题.4.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.5.C解析:C 【分析】利用二项式系数之和为64解得6n =,再利用二项式定理得到常数项. 【详解】二项式(nx 的展开式中二项式系数之和为642646n n ⇒=⇒=36662166(((1)r r r r rr r x T C x C x --+-⇒=⋅=-当36042r r -=⇒=时,系数为15 故答案选C 【点睛】本题考查了二项式定理,先计算出6n =是解题的关键,意在考查学生的计算能力.6.B解析:B 【分析】首先根据二项展开式的各项系数和012232n n n n n n C C C C +++==,求得5n =,再根据二项展开式的通项为211()()r rn rr n T C x x-+=,求得2r,再求二项展开式中x 的系数.【详解】因为二项展开式的各项系数和012232n n n n n n C C C C +++==,所以5n =,又二项展开式的通项为211()()r rn rr n T C x x-+==3r r n n C x -,351r -=,2r所以二项展开式中x 的系数为2510C =.答案选择B .【点睛】本题考查二项式展开系数、通项等公式,属于基础题.7.C解析:C 【解析】分析:令1x =得各项系数和,由已知比值求得指数n ,写出二项展开式通项,再令x 的指数为4求得项数,然后可得系数.详解:由题意41282n n =,解得7n =,∴37721773r r r r r rr T C x C x --+==,令3742r-=,解得2r ,∴4x 的系数为2273189C =.故选C . 点睛:本题考查二项式定理,考查二项式的性质.在()n a b +的展开式中二项式系数和为2n ,而展开式中各项系数的和是在展开式中令变量值为1可得,二项展开式通项公式为1C r n r rr n T ab -+=. 8.D解析:D 【解析】分析:由题意可得展开式中含2x 项的系数为222223410C C C C +++⋯+ ,再利用二项式系数的性质化为 311C ,从而得到答案.详解:()()()2310111x x x ++++⋅⋅⋅++的展开式中含2x 项的系数为222232341011 165.C C C C C +++⋯+==故选D.点睛:本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,属于中档题.9.A解析:A 【解析】分析:先根据赋值法得各项系数之和,再根据二项式系数性质得B ,最后根据72B +=解出.n详解:因为各项系数之和为(13)4nn+=,二项式系数之和为2n , 因为72A B +=,所以4272283n n n n +=∴=∴=, 选A.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如2(),()(,)n n ax b ax bx c a b R +++∈的式子求其展开式的各项系数之和,常用赋值法, 只需令1x =即可;对形如()(,)nax by a b +∈R 的式子求其展开式各项系数之和,只需令1x y ==即可.10.C解析:C 【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有31116321C C C C 种方法,用四种颜色涂色时,有41126322C C C A 种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有31116321120C C C C =种方法, 用四种颜色涂色时,有41126432360C C C A =种方法,根据分类计数原理得不同涂法的种数为120+360=480. 故答案为C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.11.C解析:C 【分析】 由()202011x x =+-⎡⎤⎣⎦结合二项式定理可得出2020kk a C =,利用二项式系数和公式可求得012020a a a +++的值.【详解】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+.故选:C. 【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式0122nn n n n n C C C C ++++=,考查学生的转化能力与计算能力,属于基础题.12.B解析:B 【分析】根据平行六面体的几何特征,可以求出以平行六面体1111ABCD A B C D -的任意三个顶点为顶点作三角形的总个数,及从中随机取出2个三角形的情况总数,再求出这两个三角形共面的情况数,即可得到这两个三角形不共面的情况数,即可得到答案. 【详解】因为平行六面体1111ABCD A B C D -的8个顶点任意三个均不共线, 故从8个顶点中任取三个均可构成一个三角形共有38=56C 个三角形,从中任选两个,共有2561540C =种情况,因为平行六面体有六个面,六个对角面, 从8个顶点中4点共面共有12种情况, 每个面的四个顶点共确定6个不同的三角形,故任取出2个三角形,则这2个三角形不共面共有1540-12×6=1468种, 故选:B. 【点睛】本题考查了棱柱的结构特征,考查了组合数的计算,在解题过程中注意共面和不共面的情况,做到不重不漏,属于中档题.二、填空题13.【分析】首先由二项式系数相等求再根据通项公式求指定项的系数【详解】由条件可知所以所以的通项公式是令解得:所以函数的系数是故答案为:-4【点睛】易错点睛:本题考查二项式定理求指定项系数其中二项式系数与 解析:4-【分析】首先由二项式系数相等求n ,再根据通项公式求指定项的系数. 【详解】由条件可知57n n C C =,所以5712n =+=,所以1213x x ⎛⎫- ⎪⎝⎭的通项公式是12122112121133r rr r r rr T C x C x x --+⎛⎫⎛⎫=⋅⋅-=-⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 令12210r -=,解得:1r =, 所以函数10x 的系数是112143C ⎛⎫-⋅=- ⎪⎝⎭. 故答案为:-4 【点睛】易错点睛:本题考查二项式定理求指定项系数,其中二项式系数与项的关系是第1r +项的系数是rn C ,这一点容易记错,需注意.14.36【分析】先从4个人中选出2人作为一个元素看成整体再把它同另外两个元素在三个位置全排列根据分步乘法原理得到结果【详解】从4名学生中选出2名学生作为一个整体有种再和另外两人分别推荐到3所不同的大学共解析:36 【分析】先从4个人中选出2人作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,根据分步乘法原理得到结果. 【详解】从4名学生中选出2名学生作为一个整体,有24C 种,再和另外两人分别推荐到3所不同的大学,共有234336C A =种分配方案.故答案为:36 【点睛】本题考查分步乘法计数原理,利用了捆绑法,属于中档题.15.【分析】本题转化为把10个球放在三个不同的盒子里有多少种方法利用隔板法即可求得答案【详解】问题中的看作是三个盒子问题则转化为把个球放在三个不同的盒子里有多少种方法将个球排一排后中间插入两块隔板将它们 解析:36【分析】本题转化为把10个球放在三个不同的盒子里,有多少种方法,利用隔板法,即可求得答案. 【详解】问题中的x y z 、、看作是三个盒子,问题则转化为把10个球放在三个不同的盒子里,有多少种方法.将10个球排一排后,中间插入两块隔板将它们分成三堆球,使每一堆至少一个球. 隔板不能相邻,也不能放在两端,只能放在中间的9个空内.∴共有2936C =种.故答案为:36 【点睛】本题解题关键是掌握将正整数解的问题转化为组合数问题,考查了分析能力和转化能力,属于中档题.16.【分析】要保证每个岗位至少一人人所以首先将四个人分成三组在将三组全排列求出总事件数然后再将甲乙分到不同两组得出甲乙不在同一岗位的基本事件数总而得出概率【详解】因为每个岗位至少有一人所以要将四个人分成解析:56【分析】要保证每个岗位至少一人人,所以首先将四个人分成三组,在将三组全排列求出总事件数,然后再将甲乙分到不同两组,得出甲乙不在同一岗位的基本事件数,总而得出概率. 【详解】因为每个岗位至少有一人,所以要将四个人分成三组,则只能是211、、所以总事件数为: 2113421322=36C C C A A ⋅⋅⋅, 甲乙不在同一岗位的基本事件数:()11232223+=30C C C A ⋅⋅ 所以甲、乙两名志愿者没有分配到同一个岗位服务的概率305=366P =, 故答案为:56. 【点睛】本题考查等可能性事件的概率,利用排列组合公式求出基本事件的总数和满足某个事件的基本事件个数是解答本题的关键.17.40【分析】先求出的展开式的通项再求出即得解【详解】设的展开式的通项为令r=3则令r=2则所以展开式中含x3y3的项为所以x3y3的系数为40故答案为:40【点睛】本题主要考查二项式定理求指定项的系解析:40 【分析】先求出5(2)x y -的展开式的通项,再求出43,T T 即得解.【详解】设5(2)x y -的展开式的通项为555155(2)()(1)2r rr r r r r r r T C x y C x y ---+=-=-,令r=3,则32323454=40T C x y x y =--, 令r=2,则23232358=80T C x y x y =,所以展开式中含x 3y 3的项为233233(40)(80)40x x y y x y x y ⋅-+⋅=.所以x 3y 3的系数为40. 故答案为:40 【点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.18.【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案即可求解得到答案【详解】由题意先在4位同学中选2人选地理学科共种选法再将剩下的2人在政治化学生物3门活动课任选一门报名共3×3=9种选法故地 解析:54【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案,即可求解,得到答案. 【详解】由题意,先在4位同学中选2人选地理学科,共246C =种选法,再将剩下的2人在政治、化学、生物3门活动课任选一门报名,共3×3=9种选法, 故地理学科恰有2人报名的方案有6×9=54种选法, 故答案为54. 【点睛】本题主要考查了排列、组合,以及分步计数原理的应用,其中解答中认真审题,合理利用排列、组合,以及分步计数原理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.19.14【解析】由题意得必有则具体的排法列表如下:由图可知不同的规范01数列共有14个故答案为14解析:14 【解析】由题意,得必有10a =,81a =,则具体的排法列表如下:由图可知,不同的“规范01数列”共有14个. 故答案为14.20.60【解析】的展开式的通项公式为令得∴的系数为故答案为60解析:60 【解析】622x x ⎛ ⎝的展开式的通项公式为()3666216612222xrr x r r r r T C x C x x ---+⎛⎛⎫==-⋅ ⎪ ⎝⎭⎝ 令3632r -=得2r∴3x 的系数为2622612602C -⎛⎫-⋅⋅= ⎪⎝⎭故答案为60三、解答题21.(1)4511206T y =,5633618T y =;(2)4095. 【分析】(1)根据二项式的性质知二项式系数最大项为第5、第6项,代入通项计算;(2)利用展开式中各项的二项式系数和公式列出等式求解n ,代入(,)f n y 由2135a =列等式求解m ,即可利用赋值法求1i ni a =∑.【详解】(1)9(9,)(13)f y y =+,二项式系数最大项为第5、第6项,44459(3)11206T C y y ==,55569(3)33618T C y y ==.(2)由题意:2224032n n -=,即()()2642630nn-+=,解得6n =,6260126(6,)(1)f y my a a y a y a y =+=+++⋅⋅⋅+,则2226135a C m ==,29m =,解得3m =或3-(舍去),则6(6,)(13)f y y =+,令1y =可得601264a a a a =+++⋅⋅⋅,所以661260126011414095n i ii i a aa a a a a a a a ====++⋅⋅⋅=+++⋅⋅⋅-=-=∑∑.【点睛】本题考查二项式定理,涉及二项式系数最大项、展开式中二项式系数和、赋值法求展开式中项的系数和,属于中档题. 22.(1)31464;(2)29302⋅. 【分析】(1)根据组合数性质11m m mn n n C C C -++=即可得结果; (2)根据组合数性质0122n n n n n n C C C C ++++=即可得结果;【详解】(1)333343333456304456301C C C C C C C C C +++⋅⋅⋅+=++++⋅⋅⋅+-4311C =-31464=(2)()12330012293030303029292929233030C C C C C C C C +++⋅⋅⋅+=+++⋅⋅⋅+29302=⋅ 【点睛】本题主要考查了通过组合数的性质计算式子的值,熟练掌握运算性质是解题的关键,属于中档题.23.(1)证明过程见解析;(2)证明过程见解析. 【分析】(1)根据排列数的公式,结合不等式的性质进行证明即可;(2)根据二项式定理,结合(1)中的结论、排列数、组合数的公式进行证明即可. 【详解】(1)由排列数的公式得:(1)(2)(1)121i m i A m m m m i m m m m i m mmm m m m m m---+---+==⋅⋅, (1)(2)(1)121i n i A n n n n i n n n n i n nnn n n n n n---+---+==⋅⋅, 当1i m n <≤<,1,2,31k i =-时,()()()=0m k n k n m k m n k k m n m k n km n mn mn m n ---------=<⇒<, 由不等式的性质可知: 121m m m m i m m mm ---+⋅⋅<121n n n n i n n nn---+⋅⋅,即i m i A m <i i i m ni i n i n A nm A A <⇒; (2)由二项式定理可知:0(1),(1)mnmi i ni imn i i n n Cm m C ==+=⋅+=⋅∑∑,因为,!!i iiim n mn A A C C i i ==,由(1)知:i i i i m n n A m A <, 所以有i i i im n n C m C <,又因为000011111,,0i in m n m n m C n C m C n C nm m C ====>(1)i m n <≤<,所以(1)(1)n mii ii n m nm i i m C n Cm n ==⋅>⋅⇒+>+∑∑.【点睛】本题考查了排列数、组全数公式的应用,考查了二项式定理,考查了不等式的性质,考查推理论证能力和数学运算能力.24.(1)7n =;(2)71=T x ,3435T x =-,177-=T x ;(3)系数最大的项为第五项53535T x =;系数最小的项为第4项3435T x =-【分析】(1)根据()f x 的展开式的各二项式系数的和等于2128n =求解. (2)先得到()f x 的展开式中的通项公式47317(1)r r rr TC x-+=-,再令473r-为整数求解. (3)由通项公式知:第1r +项的系数为7(1)⋅-r r C ,若该系数最大,则r 为偶数,且7rC 最大求解.若该系数最小,则r 为奇数,且7rC 最大求解. 【详解】 (1)已知()(n f x x =,()f x ∴的展开式的各二项式系数的和等于2128n =,7n ∴=.(2)()f x 的展开式中的通项公式为47317(1)-+=⋅-⋅r r rr T C x,令473r-为整数,可得0r =,3,6, 故展开式的有理项为71=T x ,3435T x =-,177-=T x . (3)第1r +项的系数为7(1)⋅-r r C ,当该系数最大时,r 为偶数,且7rC 最大,此时,4r =, 故()f x 的展开式中系数最大的项为第五项53535T x =; 当该系数最小时,r 为奇数,且7rC 最大,此时,3r =, 故()f x 的展开式中系数最小的项为第4项3435T x =-.【点睛】本题主要考查二项展开式的通项公式,二项式系数的性质,项的系数,还考查了运算求解的能力,属于中档题. 25.(1)8;(2)28. 【分析】⑴观察1nx ⎫⎪⎭可知,展开式中各项系数的和为256,即112...256nn n n n C C C C ++++=,解出得到n 的值⑵利用二次展开式中的第1r +项,即通项公式11rn rrr nT C x -+⎛⎫= ⎪⎝⎭,将第一问的n 代入,并整理,令x 的次数为0,解出r ,得到答案 【详解】(1)由题意,得112...256nn n n n C C C C ++++=,即2n =256,解得n =8.(2)该二项展开式中的第1r +项为T r +1=8483881rr rr r CC x x --⎛⎫⋅=⋅ ⎪⎝⎭,令843r-=0,得r =2,此时,常数项为238T C ==28.【点睛】本题主要考的是利用赋值法解决展开式的系数和问题,考查了利用二次展开式的通项公式解决二次展开式的特定项问题. 26.(1)①322500x -;②375;(2)150.【分析】(1)当6n =时,利用二项式定理,二项展开式的通项公式,可求出特定的项以及常数项的值;(2)根据展开式中各项系数之和比各二项式系数之和大于240求出n 的值,再利用二项展开式的通项公式,求出展开式中含x 项的系数. 【详解】(1)①当6n =时,65x⎛- ⎝的展开式共有7项,展开式中的中间一项为()33333322465201252500T C x x x -⎛=⋅⋅=-⨯=- ⎝;②展开式的通项公式为()()36662166515r r rr rr r r T C x C x---+⎛=⋅⋅=⋅-⋅⋅ ⎝, 令3602r -=,得4r =,所求常数项的值为()442615375C ⋅-⋅=; (2)若展开式中各项系数之和比各二项式系数之和大于240,而展开式中各项系数之和为4n ,各二项式系数之和为2n , 则42240nn,即()()2152160n n+-=,解得4n =.所以,展开式通项为()()34442144515rr rr rr r r T C x C x---+⎛=⋅⋅=⋅-⋅⋅ ⎝, 令3412r -=,解得2r ,因此,展开式中含x 项的系数为()222415150C ⋅-⨯=. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.。
一、选择题1.已知()272901291(21)(1)(1)(1)()x x a a x a x a x x R +-=+-+-++-∈.则1a =( ) A .-30B .30C .-40D .402.261(12)()x x x+-的展开式中,含2x 的项的系数是( ) A .40-B .25-C .25D .553.若1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,则展开式中含2x 项的系数是 A .462- B .462 C .792D .792-4.某景观湖内有四个人工小岛,为方便游客登岛观赏美景,现计划设计三座景观桥连通四个小岛,且每个小岛最多有两座桥连接,则设计方案的种数最多是( )A .8B .12C .16D .245.已知231(1)nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,*n N ∈,则n 的值可以是( )A .5B .6C .7D .8 6.如图中每个小方格均为面积相等的正方形,则该图中正方形共有( )个A .30B .32C .36D .24 7.若4()(1)a x x ++的展开式关于x 的系数和为64,则展开式中含3x 项的系数为( ) A .26 B .18C .12D .98.甲、乙二人均从5种不同的食品中任选一种或两种吃,则他们一共吃到了3种不同食品的情况有( ) A .84种B .100种C .120种D .150种9.从A ,B ,C ,D ,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为( ) A .24 B .48 C .72D .12010.本周日有5所不同的高校来我校作招生宣传,学校要求每位同学可以从中任选1所或2所去咨询了解,甲、乙、丙三位同学的选择没有一所是相同的,则不同的选法共有( ) A .330种 B .420种C .510种D .600种11.若2132020x x C C -+=,则x 的值为( )A .4B .4或5C .6D .4或612.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.设06126201262m m m m x a x a x a x a x x ⎛⎫-=++++ ⎪⎝⎭,则0126m m m m ++++=_________________.14.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为2,则该展开式中4x 的系数为___________.15.已知()2311nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,*N n ∈且58n ≤≤,则n =______. 16.设集合{}{}12310(,,,...,)1,0,1,1,2,3,...,10i A x x x x x i =∈-=,则集合A 中满足条件“123101+9x x x x ≤+++≤…”的元素个数为_____.17.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科,3门文科)中选择3门学科参加等级考试,小李同学受理想中的大学专业所限,决定至少选择一门理科学科,那么小李同学的选科方案有________种. 18.若28C x=3828C x -,则x 的值为_______.19.62x ⎛ ⎝的展开式中3x 的系数为__________.(用数字作答)20.()()611ax x -+的展开式中,3x 项的系数为10-,则实数a =___________.三、解答题21.为提高学生学习的数学的兴趣,南京港师范大学附属中学拟开设《数学史》、《微积分先修课程》、《数学探究》、《数学建模》四门校本选修课程,甲、乙、丙三位同学打算在上述四门课程中随机选择一门进行学习,已知三人选择课程时互不影响,且每人选择每一门课程都是等可能的.(1)求三位同学选择的课程互不相同的概率:(2)求甲、乙两位同学不能选择同一门课程,求三人共有多少种不同的选课种数; (3)若至少有两位同学选择《数学史》,求三人共有多少种不同的选课种数. 22.一个口袋内有3个不同的红球,4个不同的白球(1)从中任取3个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取4个球,使总分不少于6分的取法有多少种?23.(1)3个人坐在有八个座位的一排椅子上,若每个人的左右两边都要有空位,则不同坐法的种数为多少?(2)某高校现有10个保送上大学的名额分配给7所高中学校,若每所高中学校至少有1个名额,则名额分配的方法共有多少种?24.若某一等差数列的首项为112225113n n nnCA----,公差为52mx ⎛ ⎝展开式中的常数项,其中m 是777715-除以19的余数,则此数列前多少项的和最大?并求出这个最大值.25.已知112nx ⎛⎫- ⎪⎝⎭的展开式中所有项的系数和为164. (1)求112nx ⎛⎫- ⎪⎝⎭的展开式中二项式系数最大的项;(2)求()1212nx x ⎛⎫+- ⎪⎝⎭的展开式中的常数项.26.已知:22)nx(n ∈N *)的展开式中第五项的系数与第三项的系数的比是10:1. (1)求展开式中各项系数的和;(2)求展开式中含32x 的项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令1t x =-,得29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,进而得含t 的项为767722(2)tC C t +,从而得解.【详解】令1t x =-,则有:27290129[(1)1][2(1)1]()t t a a t a t a t x R +++-=++++∈,即29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,7(21)t +展开式的通项公式为:77(2)r r C t -,所以29012927(22)(21)()a a t t t t a t a t x R =++++++∈+中含t 的项为:767722(2)30tC C t t +=.故选:B. 【点睛】关键点点睛:本题解题的关键是令1t x =-,转化为求27(22)(21)t t t +++的展开中含t 的项.2.B解析:B 【分析】写出二项式61()x x-的展开式中的通项,然后观察含2x 项有两种构成,一种是()212x+中的1与61()x x-中的二次项相乘得到,一种是()212x+中的22x与61()x x-中的常数项相乘得到,将系数相加即可得出结果. 【详解】二项式61()x x-的展开式中的通项662166()1C (1)C k kk k k k k T x x x--+=-=-,含2x 的项的系数为223366(1)2(1)25C C -+⨯-=- 故选B. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.3.D解析:D 【解析】∵1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,∴n 为偶数,展开式共有13项,则12n =.121x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()1212211C r r r r T x -+=-,令1222r -=,得5r =. ∴展开式中含2x 项的系数是()12551C 792-=-,故选D . 【名师点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项,可依据条件写出第1r +项,再由特定项的特点求出r 值即可; (2)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.4.B解析:B 【分析】四个人工小岛记为ABCD ,用“-”表示桥,对A 分有一座桥相连和两座桥相连,一一列举,得到答案. 【详解】四个人工小岛记为ABCD ,对A 分有一座桥相连和两座桥相连,用“-”表示桥 (1) A 只有一座桥相连时,有A-B-D-C ,A-B-D-C ,A-C-B-D ,A-C-D-B , A-D-B-C ,A-D-C-B 共6种;(2) A 有两座桥相连时,有C-A-B-D ,D-A-B-C ,D-A-C-B ,B-A-C-D , B-A-D-C ,C-A-D-B 共6种; 故共有12种. 故选:B 【点睛】本题考查了分类计数原理的应用,考查了学生分析理解,逻辑推理的能力,属于中档题.5.C解析:C 【分析】将条件转化为31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项,然后写出31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项,即可分析出答案. 【详解】因为231(1)nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,所以31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项为:4131,0,1,2,,rr n r r n r r n n T C x C x r n x --+⎛⎫=== ⎪⎝⎭所以当n 取5,6,7,8时,方程40,41,42n r n r n r -=-=-=无解检验可得7n = 故选:C 【点睛】本题考查的是二项式定理的知识,在解决二项式展开式的指定项有关的问题的时候,一般先写出展开式的通项.6.A解析:A 【分析】设方格纸上的小方格的边长为1,按正方形的边长进行分类讨论,求出每种情况下正方形的个数,由加法原理即可得答案. 【详解】设方格纸上的小方格的边长为1,当正方形的边长为1时,有4×4=16个正方形, 当正方形的边长为2时,有3×3=9个正方形, 当正方形的边长为3时,有2×2=4个正方形, 当正方形的边长为4时,有1×1=1个正方形, 则有16+9+1+4=30个正方形; 故选:A . 【点睛】本题涉及分类计数原理的应用,属于基础题,进行分类讨论是解题的关键.7.B解析:B 【分析】取1x =解得3a =,展开式中含3x 项有两种情况,相加得到答案. 【详解】令1x =得4(1)264a +⋅=,所以3a =.所以4(3)(1)x x ++展开式中含3x 项为33223443C C 18x x x x ⋅+⋅=,所以展开式中含3x 项的系数为18, 故选B . 【点睛】本题考查了二项式定理,把握展开式中含3x 项的两种情况是解题的关键.8.C解析:C 【分析】由分步乘法计数原理先由5种食物中选择3种,共35C 种情况; 第二步,将3种食物编号,用列举法列举所有情况即可; 【详解】由分步乘法计数原理:第一步:由5种食物中选择3种,共35C 种情况; 第二步:将3种食物编号为A,B,C ,则甲乙选择的食物的情况有:()AB C ,,()AB AC ,,()AB BC ,,()AC B ,,()AC BC ,,()BC A ,,()A BC ,,()BC AC ,,()B AC ,,()BC AB ,,()AC AB ,,()C AB ,共12种情况,因此他们一共吃到了3种不同食品的情况有3512C 120=种.故选C 【点睛】本题主要考查分步乘法计数原理,按定义逐步计算,最后求乘积即可,属于常考题型.9.C解析:C 【分析】根据题意,分2种情况讨论: ①A 不参加任何竞赛,此时只需要将,,,B C D E 四个人全排列,对应参加四科竞赛即可;②A 参加竞赛,依次分析A 与其他四人的情况数目,由分步计数原理可得此时参加方案的种数,进而由分类计数原理计算可得结论. 【详解】A 参加时参赛方案有31342348C A A = (种),A 不参加时参赛方案有4424A = (种),所以不同的参赛方案共72种,故选C. 【点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.10.A解析:A 【解析】种类有(1)甲1,乙1,丙1,方法数有35A 60=;(2)甲2,乙1,丙1;或甲1,乙2,丙1;或甲1,乙1,丙2——方法数有2115323C C C 180⨯=;(3)甲2,乙2,丙1;或甲1,乙2,丙2;或甲2,乙1,丙2——方法数有22533C C 90⨯⋅=.故总的方法数有6018090330++=种.【点睛】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手. (1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”; (2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等; (3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决; (4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.11.D解析:D 【解析】 因为2132020x x C C -+=,所以213x x -=+ 或21320x x -++=,所以4x = 或6x =,选D.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解. 【详解】有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.21【分析】由二项式定理得出的展开式的通项进而得出的展开式即可得出答案【详解】的展开式的通项为则故答案为:【点睛】本题主要考查了二项式定理的应用属于中档题解析:21 【分析】由二项式定理得出622x x ⎛⎫- ⎪⎝⎭的展开式的通项,进而得出622x x ⎛⎫- ⎪⎝⎭的展开式,即可得出答案. 【详解】622x x ⎛⎫- ⎪⎝⎭的展开式的通项为()621231662(2)rrrr r rr T C x C xx --+⎛⎫=-=- ⎪⎝⎭则622x x ⎛⎫- ⎪⎝⎭ 00121192263334405536666666666(2)(2)(2)(2)(2)(2)(2)C x C x C x C x C x C x C x --+++++=-+------0126129630(3)(6)21m m m m ∴+++⋯+=+++++-+-=故答案为:21 【点睛】本题主要考查了二项式定理的应用,属于中档题.14.-48【分析】令x=1解得a=1再利用的通项公式进而得出【详解】令x=1=2解得a=1又的通项公式令5−2r=35−2r=5解得r=1r=0∴该展开式中的系数为=−80+32=−48故答案为:−48解析:-48 【分析】令x =1,解得a =1,再利用512x x ⎛⎫- ⎪⎝⎭的通项公式,进而得出. 【详解】令x =1,()()5112a +-=2,解得a =1.又512x x ⎛⎫- ⎪⎝⎭的通项公式()5521512r r rr r T C x --+=-⋅,令5−2r =3,5−2r =5. 解得r =1,r =0.∴该展开式中4x 的系数为()()141505512+12C C --=−80+32=−48, 故答案为:−48. 【点睛】本题考查二项式定理的应用,根据通项公式求系数,属于中等题.15.7【分析】先将问题转化成二项式的展开式中没有常数项项和项利用二项展开式的通项公式求出第项然后即可求解【详解】因为的展开式中没有项所以的展开式中没有常数项项和项的展开式的通项为所以方程当且时无解检验可解析:7 【分析】先将问题转化成二项式31()nx x+的展开式中没有常数项、x 项和2x 项,利用二项展开式的通项公式求出第1r +项,然后即可求解 【详解】因为()2233111()(12)()n n x x x x x x x++=+++的展开式中没有2x 项 所以31()nx x+的展开式中没有常数项、x 项和2x 项 31()n x x+的展开式的通项为341,0,1,2r n r r r n rr n n T C x x C x r n ---+===所以方程40,41,42n r n r n r -=-=-=,当*N n ∈且58n ≤≤时无解 检验可得7n = 故答案为:7 【点睛】二项式(+)na b 的展开式的通项为:1,0,1,2r n r r r n T C a b r n -+==16.58024【分析】依题意得的取值是1到10的整数满足的个数等于总数减去和的个数【详解】集合中共有个元素其中的只有1个元素的有个元素故满足条件的元素个数为59049-1-1024=58024【点睛】本解析:58024 【分析】依题意得12310+x x x x +++⋯的取值是1到10的整数,满足123101+9x x x x ≤+++≤…的个数等于总数减去12310+0x x x x +++⋯=和12310+10x x x x +++⋯=的个数.【详解】集合A 中共有个元素10359049= ,其中12310+0x x x x +++⋯=的只有1个元素,12310+10x x x x +++⋯=的有1021024= 个元素,故满足条件“123101+9x x x x ≤+++≤…”的元素个数为59049-1-1024=58024. 【点睛】本题考查计数原理,方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.17.19【分析】6门学科(3门理科3门文科)中选择3门学科可以分为全为理科有理科有文科全为文科决定至少选择一门理科学科包括前两种考虑起来比较麻烦故用间接法:用总数减去全为文科的数量【详解】根据题意从物理解析:19 【分析】6门学科(3门理科,3门文科)中选择3门学科可以分为全为理科,有理科有文科,全为文科,决定至少选择一门理科学科包括前两种,考虑起来比较麻烦,故用间接法:用总数减去全为文科的数量. 【详解】根据题意,从物理、化学、生物、政治、历史、地理6门学科任选3门,有3620C =种选取方法 ,其中全部为文科科目,没有理科科目的选法有331C =种, 所以至少选择一门理科学科的选法有20-1=19种; 故答案为19,【点睛】本题考查排列组合.方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.18.4或9【解析】分析:先根据组合数性质得解方程得结果详解:因为=所以因此点睛:组合数性质:解析:4或9.【解析】分析:先根据组合数性质得383828x x x x 或=-+-=,解方程得结果详解:因为28C x =3828C x -,所以383828x x x x 或=-+-=因此49.x x ==或点睛:组合数性质:11111,,.m n m m m m k k n n n n n n n C C C C C kC nC -++-+-=+== 19.60【解析】的展开式的通项公式为令得∴的系数为故答案为60解析:60【解析】62x ⎛ ⎝的展开式的通项公式为()366621661222x rr x r r r r T C x C x ---+⎛⎛⎫==-⋅ ⎪ ⎝⎭⎝ 令3632r -=得2r∴3x 的系数为2622612602C -⎛⎫-⋅⋅= ⎪⎝⎭故答案为6020.【分析】由分别写出和的展开式通项分别令的指数为求出对应的参数值代入通项可得出关于的等式进而可求得实数的值【详解】的展开式通项为所以的展开式通项为令可得由题意可得解得故答案为:【点睛】方法点睛:对于求 解析:2【分析】由()()()()6661111ax x x ax x -+=+-+,分别写出()61x +和()61ax x +的展开式通项,分别令x 的指数为3,求出对应的参数值,代入通项可得出关于a 的等式,进而可求得实数a 的值.【详解】 ()()()()6661111ax x x ax x -+=+-+, ()61x +的展开式通项为16k k k T C x +=⋅,所以,()61ax x +的展开式通项为1166r r r r r A axC x aC x ++=⋅=⋅,令313k r =⎧⎨+=⎩,可得32k r =⎧⎨=⎩,由题意可得3266201510C aC a-=-=-,解得2a=.故答案为:2.【点睛】方法点睛:对于求多个二项式的和或积的展开式中某项的系数问题,要注意排列、组合知识的运用,还要注意有关指数的运算性质.对于三项式问题,一般是通过合并其中的两项或进行因式分解,转化成二项式定理的形式去求解.三、解答题21.(1)38;(2)48;(3)10.【分析】(1)先计算出三位同学选择课程的选法种数以及三位同学选择的课程互不相同的选法种数,利用古典概型的概率公式可求得结果;(2)考虑甲、乙两位同学不选同一门课程的选法种数,并求出丙选课程的选法种数,利用分步乘法计数原理可求得结果;(3)分两种情况讨论:①有两位同学选择《数学史》;②三位同学都选择《数学史》.分别计算出两种情况下不同的选课种数,利用分类加法计数原理可得结果.【详解】(1)三位同学选择课程共有3464=种情况;三位同学选择的课程互不相同共有3424A=种情况,所求概率为243 648=;(2)甲、乙两位同学不选择同一门课程共有2412A=种情况,丙有4种不同的选择,所以甲、乙两位同学不能选择同一门课程共有12448⨯=种情况;(3)分两种情况讨论:①有两位同学选择《数学史》,共有21339C C⨯=种不同的情况;②有三位同学选择《数学史》共有1种情况.综上所述,总共有9110+=种不同的选课种数.【点睛】本题主要考查了等可能事件的概率,分步计数原理分类计数原理,排列组合的基本应用,属于中等题.22.(1) 13;(2) 22.【分析】(1)由题意可以分2类,红球3个,红球2个和白球1个,根据计数原理即可得到答案.(2)从中任取4个球,使总分不少于6分情况有:红球2个和白球2个,红球3个和白球1个,根据计数原理即可得到答案.【详解】解:(1 )从中任取3个球,红球的个数不比白球少的取法:红球3个,红球2个和白球1个.当取红球3个时,取法有1种;当取红球2个和白球1个时,.取法有213412C C=种.根据分类计数原理,红球的个数不少于白球的个数的取法有11213+=种.(2 )使总分不少于6分情况有两种:红球2个和白球2个,红球3个和白球1个.第一种,红球2个和白球2个,取法有223418C C =种;第二种,红球3个和白球1个,取法有31344C C =种,根据分类计数原理,使总分不少于6分的取法有18422+=种.【点睛】本题考查计算原理,组合及组合数公式,考查理解辨析能力与运算求解能力,考查分类讨论思想,是基础题.23.(1)24;(2)84【分析】(1)根据题意,使用插空法,把3个人看成是坐在座位上的人,往5个空座的空档插,由组合知识,分析可得答案;(2)分析题意,可将原问题转化为10个元素之间有9个间隔,要求分成7份,每份不空,使用插空法,相当于用6块档板插在9个间隔中,计算可得答案.【详解】解:(1)由题意知有5个座位都是空的,我们把3个人看成是坐在座位上的人,往5个空座的空档插,由于这5个空座位之间共有4个空,3个人去插,共有3424A =(种). (2)根据题意,将10个名额,分配给7所学校,每校至少有1个名额,可以转化为10个元素之间有9个间隔,要求分成7份,每份不空;相当于用6块档板插在9个间隔中,共有6984C =种不同方法.所以名额分配的方法共有84种.【点睛】本题考查排列、组合的综合运用,要求学生会一些特殊方法的使用,如插空法、倍分法等;但首先应该会转化为对应问题的模型.24.此数列的前25项之和与前26项之和相等且最大,25261300S S ==.【分析】根据题意,由排列、组合数的性质,可得不等式112522113n n n n -≤⎧⎨-≤-⎩,解可得n 的范围,结合n ∈N ,可得n 的值,进而可得首项a 1,对7777﹣15变形,结合二项式定理可得m 的值,从而可得数列的公差,即可得数列的通项公式,根据等差数列的性质,设其前k 项之和最大,则()10440104410k k -≥⎧⎨-+⎩<,解可得k=25或k=26,可得答案. 【详解】由已知得:112522113n n n n-≤⎧⎨-≤-⎩,又,2n N n ∈∴=, 1122272325113105105n n n n C A C A C A ---∴-=-=- 10985410032⨯⨯=-⨯=⨯故1100a =. ()7777771576115-=+- 7717617777767676115C C =+⋅+⋅⋅⋅+⋅+- ()7614,*M M N =-∈,所以777715-除以19的余数是5,即5m =52m x ⎛- ⎝的展开式的通项51552r rr r T C x -+⎛⎫⎛= ⎪ ⎝⎭⎝ ()()52553551,0,1,2,3,4,52r r r rC x r --⎛⎫=-= ⎪⎝⎭,若它为常数项,则550,33r r -=∴=,代入上式44T d ∴=-=.从而等差数列的通项公式是:1044n a n =-,……10分设其前k 项之和最大,则()10440104410n k -≥⎧⎨-+<⎩,解得k=25或k=26, 故此数列的前25项之和与前26项之和相等且最大,25261001044252513002S S +-⨯==⨯=. 【点睛】 本题考查二项式定理的应用,排列组合数的性质和等差数列的性质,关键由排列、组合数的性质得出首项,根据二项式定理得到m 的值,从而得到公差.25.(1)352x -;(2)1-. 【解析】分析:(1)先根据展开式中所有项的系数和为164得到n=6,再求展开式中二项式系数最大的项.(2)先求出112n x ⎛⎫- ⎪⎝⎭的展开式中的一次项和常数项,再求()1212n x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项.详解:(1)由题意,令1x =得11264n⎛⎫= ⎪⎝⎭,即6n =, 所以112n x ⎛⎫- ⎪⎝⎭展开式中二项式系数最大的项是第4项, 即334631522T C x x ⎛⎫=-=- ⎪⎝⎭. (2)112n x ⎛⎫- ⎪⎝⎭展开式的第1k +项为.()166110,1,2,...,622k kkk k k T C C x k x -+⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭, 由1k -=-,得1k =;由0k -=,得0k =.所以()1212n x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为 11612112x C x -⎛⎫⨯-+⨯=- ⎪⎝⎭. 点睛:(1)本题主要考查二项式定理,考查二项式展开式的系数和二项式系数,考查展开式中的特定项,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)本题的难点在第2问,展开式的常数项有两种生成方式,一是由(x+2)的一次项“x”和112n x ⎛⎫- ⎪⎝⎭的“1x -”项相乘得到,二是由(x+2)的常数项“2”和112nx ⎛⎫- ⎪⎝⎭的常数项相乘得到,再把两个相加即得.26.(1)1,(2)3216x - 【解析】由题意知,第五项系数为44(2)n C ⋅-,第三项的系数22(2)n C ⋅-,则有4422(2)10(2)n n C C ⋅-=⋅-,解8n =. (1)令1x =得各项系数的和为8(12)1-=.(2)通项公式828218822()(2)r r r r r r r r T C C x x ---+=⋅⋅-=⋅-⋅,令83222r r --=, 则1r =,故展开式中含32x 的项为32216T x =-.。
第一章 计数原理本章练测满分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.将3个不同的小球放入4个盒子中,则不同的放法种数为( ) A .81 B .64 C .12 D .142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A .140种 B.84种 C.70种 D.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数为( )A .33AB .334AC .523533A A A -D .2311323233A A A A A +4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是( ) A.20 B .16 C .10 D .65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( )A .男生2人,女生6人B .男生3人,女生5人C .男生5人,女生3人D .男生6人,女生2人6.82x ⎛ ⎝的展开式中的常数项是( )A.7 B .7- C .28 D .28- 7.5(12)(2)x x -+的展开式中3x 的项的系数是( )A.120 B .120- C .100 D .100-8.22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是( ) A .180 B .90 C .45 D .3609.从字母,,,,,a b c d e f 中选出4个数字排成一列,其中一定要选出a 和b ,并且必须相邻(a 在b 的前面),共有排列方法( )种.A.36B.72C.90D.144 10.从不同号码的5双鞋中任取4只,其中恰好有1 双的取法种数为( )A .120B .240C .280D .6011.把10)x -根据二项式定理展开,展开式的第8项的系数是( )A .135B .135-C .-D .12.2122nx x ⎛⎫+⎪⎝⎭的展开式中,2x 的系数是224,则21x 的系数是( )A.14B.28C.56D.112二、填空题(本大题共4小题,每小题4分,共16分)13.在50件产品中有4件是次品,从中任意抽了5件,至少有3件是次品的抽法共有 ______________种(用数字作答).14.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法.15.由0,1,3,5,7,9这六个数字可组成_____个没有重复数字的六位奇数.16.在10(x 的展开式中,6x 的系数是 .三、解答题(本大题共6小题,共74分) 17.(12分)判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组有10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它们的积,可以得到多少个不同的积?18.(12分)6个人坐在一排10个座位上,问:(1)空位不相邻的坐法有多少种?(2)4个空位只有3个相邻的坐法有多少种?(3)4个空位至多有2个相邻的坐法有多少种? 19.(12分)有6个球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?20.(12分)已知21nxx⎛⎫-⎪⎝⎭展开式中的二项式系数的和比7(32)a b+展开式中的二项式系数的和大128,求21nxx⎛⎫-⎪⎝⎭展开式中的系数最大的项和系数最小的项.21.(12分)(1)在的展开式中,若第3项与第6项系数相等,且n等于多少?(2)若n⎛⎝的展开式奇数项的二项式系数之和为128,求展开式中二项式系数最大的项. 22.(14分)已知5025001250(2),a a x a x a x=++++其中01250,,,,a a a a是常数,计算22 024*******()().a a a a a a a a++++-++++[第一章计数原理本章练测答题纸得分:二、填空题13. 14. 15. 16.三、解答题17.18.19.20.21.22.第一章 计数原理本章练测答案一、选择题1.B 解析:每个小球都有4种可能的放法,所以共有44464⨯⨯=种放法. 2.C 解析:抽出的3台电视机中甲型1台乙型2台的取法有种;甲型2台乙型1台的取法有种.根据分类加法计数原理可得总的取法有+=40+30=70(种).3.C 解析:不考虑限制条件有,若甲、乙两人都站中间有种排法,所以符合题意的排法有种.4.B 解析:不考虑限制条件有25A 种选法,若a 当副组长有14A 种选法,故2154A A 16-=为所求. 5.B 解析:设男学生有x 人,则女学生有(8x -)人,则21383C C A 90,x x -= 即(1)(8)30235,3所以x x x x --==⨯⨯=,.6.A 解析:148888833188811C ()((1)()C (1)()C 222r r r r r r r r r r r r r x T x x ------+==-=-.令6866784180,6,(1)()C 732r r T --===-=.7.B 解析:555332255(12)(2)2(12)(12)2C (2)C (2)x x x x x x x x -+=-+-=+-+-+233355(4C 16C )120x x =+-+=-+.8.A 解析:只有第六项的二项式系数最大,则10n =,551021101022C ()2C rr r r r r r T x x --+==,令2310550,2,4C 1802r r T -====.9.A 解析:从,,,c d e f 中选2个,有24C 种方法,把,a b 看成一个整体,3个元素全排列,有33A 种方法,共计2343C A 36=种排法. 10.A 解析:先从5双鞋中任取1双,有15C 种方法,再从8只鞋中任取2只,有28C 种取法,但需要排除4种成双的情况,所以有28C 4-种取法,则共计1258C (C 4)120-=种取法.11.D 解析:7377810C ()T x =-=,系数为.12.A 解析:222221221C (2)()2C 2r n r r n r r n r r n n T x xx---+==,令222,1n r r n -==-, 则211222C 224,C 56,4n n n n n --===,再令52862C 14822,5,4得r r T x x --=-===. 二、填空题13.4 186 解析:至少有3件次品包括有3件次品或有4件次品,故抽法共有3241446446C C C C +=4186(种). 14.8640 解析:先排女生有种排法,再排男生有种排法,共有种排法.15.480 解析:0既不能排首位,也不能排在末尾,即有,其余的数字有,共有.16.1890 解析:10110C (rrrr T x -+=,令466510106,4,9C 1890r r T x x -====.三、解答题17.解:(1)①是排列问题,共通了211A 110=封信;②是组合问题,共握手211C 55=次.(2)①是排列问题,共有210A 90=种选法;②是组合问题,共有210C 45=种选法. (3)①是排列问题,共有28A 56=个商;②是组合问题,共有28C 28=个积.18.解:6个人排有66A 种坐法,6人排好后包括两端共有7个“间隔”可以插入空位. (1)空位不相邻相当于将4个空位安插在上述7个“间隔”中,有47C 35=种插法,故空位不相邻的坐法有6467A C 25200=种. (2)将相邻的3个空位当作一个元素,另一空位当作另一个元素,往7个“间隔”里插,有27A 种插法,故4个空位中只有3个相邻的坐法有6267A A 30240=种. (3)4个空位至多有2个相邻的情况有三类:①4个空位各不相邻有47C 种坐法;②4个空位2个相邻,另有2个不相邻有1276C C 种坐法; ③4个空位分两组,每组都有2个相邻,有27C 种坐法.综上所述,应有6412267767A (C C C C )115920++=种坐法. 19.解:分三类:若取1个黑球,和另三个球,排4个位置,有44A 24=种排法; 若取2个黑球,从另三个球中选2个排4个位置,2个黑球是相同的,自动进入,不需要排列,即有2234C A 36=种排法;若取3个黑球,从另三个球中选1个排4个位置,3个黑球是相同的,自动进入,不需要排列,即有1134C A 12=种排法;所以有24361272++=种排法.20.解:由722128,8得n n -==,821x x ⎛⎫- ⎪⎝⎭的通项281631881C ()()(1)C r r r r r r r T x x x--+=-=-.当4r =时,项的系数最大,即4570T x =为展开式中的系数最大的项;当35或r =时,项的系数最小,即74656,56T x T x =-=-为展开式中的系数最小的项. 21.解:(1)由已知得25C C 7.n nn =⇒= (2)由已知得1351C C C 128,2128,8n n n nn -+++===,所以展开式中二项式系数最大的项是444418C (70T x +==22.解:设50()(2)f x =,令1x =,得5001250(2a a a a ++++=,令1x =-,得5001250(2a a a a -+-+=,225024501349()()a a a a a a a a ++++-++++=50500125001250()()(23)(2 1.a a a a a a a a ++++-+-+=-=。
【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x第一章综合测试题一、选择题1.设东、西、南、北四面通往山顶的路各有?2、3、3、4?条路,只从一面上山,而从任意一面下山的走法最多,应( )A.从东边上山C.从南边上山B.从西边上山D.从北边上山2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为?y=x2,值域为{1,4}的“同族函数”共有( )A.7?个B.8?个?C.9?个D.10?个3.5?名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为( )2A.C5 B.25C.52 D.A2524.6?个人分乘两辆不同的汽车,每辆车最多坐?4?人,则不同的乘车方法数为( )A.40 B.50 C.60 D.705.在航天员进行的一项太空实验中,先后要实施?6?个程序,其中程序 A?只能出现在第一步或最后一步,程序?B?和?C?实施时必须相邻,请问实验顺序的编排方法共有( )A.24?种B.48?种C.96?种D.144?种6.有甲、乙、丙三项任务,甲需?2?人承担,乙、丙各需?1?人承担,从?10?人中选派?4?人承担这三项任务,不同的选法有( )A.2?520 B.2?025 C.1?260 D.5?0408?10.已知?x-x展开式中常数项为?1120,其中实数8?10.已知?x-x展开式中常数项为?1120,其中实数?a?是常数,则展在第?3?道上,货车?B?不能停在第?1?道上,则?5?列火车的停车方法共有 ( )A.78?种B.72?种C.120?种D.96?种8.已知(1+x)n=a0+a1x+a2x2+…+anxn,若?a0+a1+a2+…+an =16,则自然数?n?等于( )A.6 B.5 C.4 D.39.6?个人排队,其中甲、乙、丙?3?人两两不相邻的排法有( )A.30?种B.144?种?C.5?种D.4?种? a?? ?开式中各项系数的和是( )A.28?B.38?C.1?或?38 D.1?或?2811.有?A、B、C、D、E、F?共?6?个集装箱,准备用甲、乙、丙三辆卡车运送,每台卡车一次运两个,若卡车甲不能运?A?箱,卡车乙不能运B?箱,此外无其他任何限制;要把这?6?个集装箱分配给这?3?台卡车运送,则不同的分配方案的种数为( )A.168 B.84 C.56 D.4212.从?2?名女教师和?5?名男教师中选出三位教师参加?20xx?年高考某考场的监考工作.要求一女教师在室内流动监考,另外两位教师固定在室内监考,问不同的安排方案种数为( )A.30 B.180?C.630 D.1?08013.已知(x+2)n?的展开式中共有?5?项,则?n=________,展开式中的常数项为________.(用数字作答)14.5?个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有____种.15.已知(x+1)6(ax-1)2?的展开式中含?x3?项的系数是?20,则?a?的值等于________.16.用数字?2,3?组成四位数,且数字?2,3?至少都出现一次,这样的四位数共有________个.(用数字作答)17.某书店有?11?种杂志,2?元?1?本的?8?种,1?元?1?本的?3?种,小张用10?元钱买杂志(每种至多买一本,10?元钱刚好用完),求不同的买法有多少种(用数字作答).18.4?个相同的红球和?6?个相同的白球放入袋中,现从袋中取出?4?个球;若取出的红球个数不少于白球个数,则有多少种不同的取法?9(12?分)从?1?到?6?的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻的四位数有几个?(所有结果均用数值表示)20?已知(1+2?x)n?的展开式中,某一项的系数恰好是它的前一项系数5的?2?倍,而且是它的后一项系数的6,试求展开式中二项式系数最大的项.21?某单位有三个科室,为实现减负增效,每科室抽调2?人,去参加再就业培训,培训后这?6?人中有?2?人返回原单位,但不回到原科室工作,且每科室至多安排?1?人,问共有多少种不同的安排方法.22.10?件不同厂生产的同类产品:(1)在商品评选会上,有?2?件商品不能参加评选,要选出?4?件商品,并排定选出的?4?件商品的名次,有多少种不同的选法?(2)若要选?6?件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法?1,D2,由题意,问题的关键在于确定函数定义域的个数:第一步,先确定函数值?1?的原象:因为?y=x2,当?y=1?时,x=1?或?x=-1,为此有三种情况:即{1},{-1},{1,-1};第二步,确定函数值?4?的原象,因为?y=4?时,x=2?或?x=-2,为此也有三种情况:{2},{-2},{2,-2}.由分步计数原理,得到:3×3=9?个.选?C.3,B,4B44 22 85C?当?A?出现在第一步时,再排?A,B,C?以外的三个程序,有?A33种,A?与?A,B44 22 8成?4?个可以排列程序?B、C?的空档,此时共有?A33A1A2种排法;当?A?出现在最后一步时的排法与此相同,故共有?2A33A1A2=96?种编排方法.6A?先从?10?人中选出?2?人承担甲任务有?C10种选法,再从剩下的?8?人中选出2?人分别承担乙、丙任务,有?A28种选法,由分步乘法计数原理共有?C10A2=2?520?种不同的选法.故选?A.7不考虑不能停靠的车道,5?辆车共有?5!=120?种停法.A?停在?3?道上的停法:4!=24(种);B?种停在?1?道上的停法:4!=24(种);A、B?分别停在?3?道、1?道上的停法:3!=6(种).故符合题意的停法:120-24-24+6=78(种).故选?A.令?x=1,得?2n=16,则?n=4.故选?C.4分两步完成:第一步,其余?3?人排列有?A33种排法;第二步,从?4?个可插空档中任选?3?个给甲、乙、丙?3?人4站有?A34种插法.由分步乘法计数原理可知,一共有?A3A3=144?种.B r 810,CTr+1=(-a)rC8x8-2r,令?8-2r=0 r=4.∴T5=C4(-a)4=1?120,∴a=±2.当?a=2?时,和为?1;当?ar 8时,和为?38.4 4 4 311,D 分两类:①甲运?B?箱,有?C1·?C2·?C2种;②甲不运?B?箱,有?C2·?C4 4 4 34 4 4 3∴不同的分配方案共有?C1·?C2·?C2+C2·?C2·?C24 4 4 3,A?分两类进行:第一类,在两名女教师中选出一名,从?5?名男教师中选出两名,且该女教师只能在室2 5 5内流动监考,有?C1·?C2种选法;第二类,选两名女教师和一名男教师有?C2·2 5 55 2 2 5 5 2教师中选一名作为室内流动监考人员,即有?C2·?C1·?C1共?10?种选法,∴共有?C1·?C2+C2·?5 2 2 5 5 2A13.4 16 ∵展开式共有?5?项,∴n=4,常数项为?C4424=16.414. 甲、乙两人之间至少有一人,就是甲、乙两人不相邻,则有?A3·?A2=72(种).15. 0?或?5 16,14?因4为四位数的每个数位上都有两种可能性,其中四个数字全是?2?或?3?的情况不合题意,所以适合题意的四位数有?24-2=14?个.17.解析分两类:第一类,买?5?本?2?元的有?C58?种;第二类,买?4?本?2?元的和?2?本?1?元的有?C48×C23种.故共有?C58+C48×C23=266?种不同的买法种数.18.解析依题意知,取出有?4?个球中至少有?2?个红球,可分三类:①取出的全是红球有?C44种方法;②20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 6取出的?4?个球中有20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 64 6 4 6理,共有?C4+C3·?C1+C2·?C4 6 4 6319.解析(1)四位数共有?C23C2A4=216?个.333 3(2)上述四位数中,偶数排在一起的有?C23C2A3A2=10833 3(3)两个偶数不相邻的四位数有?C23C2A2A2=108?个.56∴Ckn2k=6Ckn+1·?2k+ ∴?Ckn2k=6Ckn+1·?2k+1, ? k k5解得?n=7.∴展开式中二项式系数最大两项是:37T4=C37(2?x)3=280x2与?T5=C4(2?x)4=560x2.721. 6?人中有?2?人返回原单位,可分两类:2(1)2?人来自同科室:C13C1=6?种;23 2 2 3 2 2(2)2?人来自不同科室:C2C1C1,然后?2?人分别回到科室,但不回原科室有?3?种方法,故有?3 2 2 3 2 236?种.由分类计数原理共有?6+36=42?种方法22.解析(1)10?件商品,除去不能参加评选的?2?件商品,剩下?8?件,从中选出?4?件进行排列,有?A48=1?680(或8C4·?A4)(种).8(2)分步完成.先将获金质奖章的两件商品布置在?6?个位置中的两个位置上,有?A26种方法,再从剩下的8 6 8 88?件商品中选出?4?件,布置在剩下的?4?个位置上,有?A4种方法,共有?A2·?A4=50?400(或?C4·?8 6 8 8。
高二数学(shùxué) 排列、组合、二项式定理测试题一、选择题(本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.)1、两位到旅游的外国游客要与2021奥运会的桔祥物福娃〔5个〕合影纪念,要求排成一排,两位游客相邻且不排在两端,那么不同的排法一共有〔〕A.1440 B.960 C.720 D.4802、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,那么不同的选排方法一共有〔〕A.96种 B.180种 C.240种 D.280种3、5个人分4张无座足球票,每人至多分一张,而且必须分完,不同的分发种数有〔〕A.种 B.种 C.种 D.种4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是〔〕A . 10种 B. 20种 C. 30种 D . 60种5、且,问一一共可以组成多少个不同对数的值?〔〕A . 30个 B. 21个 C. 17个 D . 18个6、在一次羽毛球预选赛中,某小组一共有5个球队进展(jìnzhǎn)双循环赛(每两队之间赛两场),胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等那么要比净胜球数或者进球总数).赛完后一个队的积分可出现的不同情况种数为〔〕A.22种B.23种 C.24种 D.25种7、令的展开式中含项的系数,那么数列的前n项和为〔〕A.B.C.D.8、假设,那么= 〔〕A.32 B.1 C.-1 D.-329、二项式展开式中含有常数项,那么常数项是第〔〕项A 5B 6C 7D 810、四面体的顶点和各棱中点一共10个点,在其中取4个不一共面的点,那么不同的取法一共有〔〕A.150种B.147种 C.144种D.141种11、假设(jiǎshè)x∈A那么∈A,就称A是伙伴关系集合,集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为〔〕A.15 B.16 C.28 D.2512、设a、b、m为整数〔m>0),假设a和b被m除得的余数一样,那么称a和b 对模ma≡b(mod m)。
高中数学修2-3 第一章单元测试题《计数原理》(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C910+C810等于()A.45B.55C.65 D.以上都不对2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种3.在(x2+3x+2)5的展开式中x的系数为()A.140 B.240C.360 D.8004.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A.16种B.36种C.42种D.60种5.5人站成一排,甲乙之间恰有一个人的站法有()A.18种B.24种C.36种D.48种6.关于(a-b)10的说法,错误的是()A.展开式中的二项式系数之和为1 024B.展开式中第6项的二项式系数最大C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小7.图1如图1,用五种不同的颜色给图中的A,B,C,D,E,F六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共()A.1 240种B.360种C.1 920种D.264种8.某计算机商店有6台不同的品牌机和5台不同的兼容机,从中选购5台,且至少有品牌机和兼容机各2台,则不同的选购方法有()A.1 050种B.700种C.350种D.200种9.设(1-3x)9=a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9|的值为()A.29B.49C.39D.5910.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48C.36 D.2411.某同学忘记了自己的QQ号的后六位,但记得QQ号后六位是由一个1,一个2,两个5和两个8组成的,于是用这六个数随意排成一个六位数,输入电脑尝试,那么他找到自己的QQ号最多尝试次数为()A.96 B.180C.360 D.72012.设(1+x)n=a0+a1x+…+a n x n,若a1+a2+…+a n=63,则展开式中系数最大项是()A .15x 3B .20x 3C .21x 3D .35x 3二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.某科技小组有女同学2名、男同学x 名,现从中选出3名去参加展览.若恰有1名女生入选时的不同选法有20种,则该科技小组中男生的人数为________.14.(1.05)6的计算结果精确到0.01的近似值是________. 15.观察下列各式:C 01=40; C 03+C 13=41; C 05+C 15+C 25=42; C 07+C 17+C 27+C 37=43;……照此规律,当n ∈N *时,C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=________.16.设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图2所示,则a =________.图2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知⎩⎪⎨⎪⎧C x n =C 2xn ,C x +1n=113C x -1n ,试求x ,n 的值.18.(本小题满分12分)利用二项式定理证明:49n +16n -1(n ∈N *)能被16整除.19.(本小题满分12分)一个口袋内有4个不同的红球,6个不同的白球, (1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?20.(本小题满分12分)设(2x-1)10=a0+a1x+a2x2+…+a10x10,求下列各式的值:(1)a0+a1+a2+…+a10;(2)a6.21.(本小题满分12分)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)排成前后两排,前排3人,后排4人;(2)全体站成一排,甲不站排头也不站排尾;(3)全体站成一排,女生必须站在一起;(4)全体站成一排,男生互不相邻.22.(本小题满分12分)已知集合A={x|1<log2x<3,x∈N*},B={4,5,6,7,8}.(1)从A∪B中取出3个不同的元素组成三位数,则可以组成多少个?(2)从集合A中取出1个元素,从集合B中取出3个元素,可以组成多少个无重复数字且比4 000大的自然数?高中数学修2-3 第一章单元测试题《计数原理》参考答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·银川一中检测)C910+C810等于()A.45B.55C.65 D.以上都不对【解析】C910+C810=C110+C210=55,故选B.【答案】 B2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种【解析】5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,故选D.【答案】 D3.在(x2+3x+2)5的展开式中x的系数为()A.140 B.240C.360 D.800【解析】由(x2+3x+2)5=(x+1)5(x+2)5,知(x+1)5的展开式中x的系数为C45,常数项为1,(x+2)5的展开式中x的系数为C45·24,常数项为25.因此原式中x 的系数为C45·25+C45·24=240.【答案】 B4.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A.16种B.36种C.42种D.60种【解析】分两类.第一类:同一城市只有一个项目的有A34=24种;第二类:一个城市2个项目,另一个城市1个项目,有C23·C24·A22=36种,则共有36+24=60种.【答案】 D5.(2016·广州高二检测)5人站成一排,甲乙之间恰有一个人的站法有() A.18种B.24种C.36种D.48种【解析】首先把除甲乙之外的三人中随机抽出一人放在甲乙之间,有3种可能,甲乙之间的人选出后,甲乙的位置可以互换,故甲乙的位置有2种可能,最后,把甲乙及其中间的那个人看作一个整体,与剩下的两个人全排列是A33=6,所以3×2×6=36(种),故答案为C.【答案】 C6.关于(a-b)10的说法,错误的是()A.展开式中的二项式系数之和为1 024B.展开式中第6项的二项式系数最大C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小【解析】由二项式系数的性质知,二项式系数之和为210=1 024,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数且其绝对值最大,所以是系数中最小的.【答案】 C7.图1(2016·潍坊高二检测)如图1,用五种不同的颜色给图中的A,B,C,D,E,F 六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共()A.1 240种B.360种C.1 920种D.264种【解析】由于A和E或F可以同色,B和D或F可以同色,C和D或E可以同色,所以当五种颜色都选择时,选法有C13C12A55种;当五种颜色选择四种时,选法有C45C13×3×A44种;当五种颜色选择三种时,选法有C35×2×A33种,所以不同的涂色方法共C13C12A55+C45C13×3×A44+C35×2×A33=1 920.故选C.【答案】 C8.某计算机商店有6台不同的品牌机和5台不同的兼容机,从中选购5台,且至少有品牌机和兼容机各2台,则不同的选购方法有() 【导学号:97270029】A.1 050种B.700种C.350种D.200种【解析】分两类:(1)从6台不同的品牌机中选3台和从5台不同的兼容机中选2台;(2)从6台不同的品牌机中选2台和从5台不同的兼容机中选3台.所以不同的选购方法有C36C25+C26C35=350种.【答案】 C9.设(1-3x)9=a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9|的值为()A.29B.49C.39D.59【解析】由于a0,a2,a4,a6,a8为正,a1,a3,a5,a7,a9为负,故令x=-1,得(1+3)9=a0-a1+a2-a3+…+a8-a9=|a0|+|a1|+…+|a9|,故选B.【答案】 B10.(2016·山西大学附中月考)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48C.36 D.24【解析】在长方体中,对每一条棱都有两个面(侧面或底面)和一个对角面(对不在同一个面上的一对互相平行的棱的截面)与它平行,可构成3×12=36个“平行线面组”,对每一条面对角线,都有一个面与它平行,可组成12个“平行线面组”,所以“平行线面组”的个数为36+12=48,故选B.【答案】 B11.(2016·吉林一中高二期末)某同学忘记了自己的QQ号的后六位,但记得QQ号后六位是由一个1,一个2,两个5和两个8组成的,于是用这六个数随意排成一个六位数,输入电脑尝试,那么他找到自己的QQ号最多尝试次数为() A.96 B.180C.360 D.720【解析】由这6个数字组成的六位数个数为A66A22A22=180,即最多尝试次数为180.故选B.【答案】 B12.设(1+x)n=a0+a1x+…+a n x n,若a1+a2+…+a n=63,则展开式中系数最大项是()A.15x3B.20x3C.21x3D.35x3【解析】令x=0,得a0=1,再令x=1,得2n=64,所以n=6,故展开式中系数最大项是T4=C36x3=20x3.故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.某科技小组有女同学2名、男同学x 名,现从中选出3名去参加展览.若恰有1名女生入选时的不同选法有20种,则该科技小组中男生的人数为________.【解析】 由题意得C 12·C 2x =20,解得x =5. 【答案】 514.(1.05)6的计算结果精确到0.01的近似值是________.【解析】 (1.05)6=(1+0.05)6=C 06+C 16×0.05+C 26×0.052+C 36×0.053+…=1+0.3+0.037 5+0.002 5+…≈1.34.【答案】 1.3415.(2015·山东高考)观察下列各式:C 01=40; C 03+C 13=41; C 05+C 15+C 25=42; C 07+C 17+C 27+C 37=43;……照此规律,当n ∈N *时,C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=________.【解析】 观察每行等式的特点,每行等式的右端都是幂的形式,底数均为4,指数与等式左端最后一个组合数的上标相等,故有C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=4n -1. 【答案】 4n -116.(2014·安徽高考)设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图2所示,则a =________.图2【解析】 由题意知A 0(0,1),A 1(1,3),A 2(2,4).故a 0=1,a 1=3,a 2=4.由⎝ ⎛⎭⎪⎫1+x a n 的展开式的通项公式知T r +1=C r n ⎝ ⎛⎭⎪⎫x a r (r =0,1,2,…,n ).故C 1n a =3,C 2n a 2=4,解得a =3.【答案】 3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知⎩⎪⎨⎪⎧ C x n =C 2x n ,C x +1n =113C x -1n ,试求x ,n 的值. 【导学号:97270030】【解】 ∵C x n =C n -x n =C 2x n ,∴n -x =2x 或x =2x (舍去),∴n =3x .由C x +1n =113C x -1n,得 n !(x +1)!(n -x -1)!=113·n !(x -1)!(n -x +1)!, 整理得3(x -1)!(n -x +1)!=11(x +1)!(n -x -1)!,3(n -x +1)(n -x )=11(x +1)x .将n =3x 代入,整理得6(2x +1)=11(x +1),∴x =5,n =3x =15.18.(本小题满分12分)利用二项式定理证明:49n +16n -1(n ∈N *)能被16整除.【证明】 49n +16n -1=(48+1)n +16n -1=C 0n ·48n +C 1n ·48n -1+…+C n -1n ·48+C n n+16n -1 =16(C 0n ·3×48n -1+C 1n ·3×48n -2+…+C n -1n ·3+n ). 所以49n +16n -1能被16整除.19.(本小题满分12分)一个口袋内有4个不同的红球,6个不同的白球,(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?【解】 (1)将取出4个球分成三类情况:①取4个红球,没有白球,有C 44种;②取3个红球1个白球,有C 34C 16种;③取2个红球2个白球,有C 24C 26种,故有C 44+C 34C 16+C 24C 26=115种.(2)设取x 个红球,y 个白球,则⎩⎪⎨⎪⎧ x +y =5,0≤x ≤4,2x +y ≥7,0≤y ≤6,故⎩⎪⎨⎪⎧ x =2,y =3或⎩⎪⎨⎪⎧ x =3,y =2或⎩⎪⎨⎪⎧x =4,y =1.因此,符合题意的取法共有C 24C 36+C 34C 26+C 44C 16=186种. 20.(本小题满分12分)设(2x -1)10=a 0+a 1x +a 2x 2+…+a 10x 10,求下列各式的值:(1)a 0+a 1+a 2+…+a 10;(2)a 6.【解】 (1)令x =1,得a 0+a 1+a 2+…+a 10=(2-1)10=1.(2)a6即为含x6项的系数,T r+1=C r10(2x)10-r·(-1)r=C r10(-1)r210-r·x10-r,所以当r=4时,T5=C410(-1)426x6=13 440x6,即a6=13 440.21.(本小题满分12分)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)排成前后两排,前排3人,后排4人;(2)全体站成一排,甲不站排头也不站排尾;(3)全体站成一排,女生必须站在一起;(4)全体站成一排,男生互不相邻.【解】(1)共有A77=5 040种方法.(2)甲为特殊元素.先排甲,有5种方法,其余6人有A66种方法,故共有5×A66=3 600种方法.(3)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有A44种方法,再将4名女生进行全排列,有A44种方法,故共有A44×A44=576种方法.(4)(插空法)男生不相邻,而女生不做要求,所以应先排女生,有A44种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A35种方法,故共有A44×A35=1 440种方法.22.(本小题满分12分)已知集合A={x|1<log2x<3,x∈N*},B={4,5,6,7,8}.(1)从A∪B中取出3个不同的元素组成三位数,则可以组成多少个?(2)从集合A中取出1个元素,从集合B中取出3个元素,可以组成多少个无重复数字且比4 000大的自然数?【解】由1<log2x<3,得2<x<8,又x∈N*,所以x为3,4,5,6,7,即A={3,4,5,6,7},所以A∪B={3,4,5,6,7,8}.(1)从A∪B中取出3个不同的元素,可以组成A36=120个三位数.(2)若从集合A中取元素3,则3不能作千位上的数字,有C35·C13·A33=180个满足题意的自然数;若不从集合A中取元素3,则有C14C34A44=384个满足题意的自然数.所以,满足题意的自然数的个数共有180+384=564.。
阶段质量检测(一) 计 数 原 理(考试时间:120分钟 试卷总分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.从4名女同学和3名男同学中选1人主持本班的某次班会,则不同的选法种数为________.2.(湖南高考改编)⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 2y 3的系数是________.3.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学 、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是________.4.将字母a ,a ,b ,b ,c ,c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有________种.5.(湖北高考改编)若二项式⎝⎛⎭⎪⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =________. 6.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有________种.7.C 16+C 26+C 36+C 46+C 56=________.8.用4种不同的颜色涂入如图所示的矩形,,C ,D 中,要求相邻的矩形涂色不同,则不同的涂色方法共有________种. 9.“2012”含有数字0,1,2,且有两个数字2,则含有数字0,1,2,且有两个相同数字2或1的四位数的个数为________.10.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有________种.11.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是________.12.(重庆高考改编)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.13.⎝ ⎛⎭⎪⎫x +2x 2n展开式中只有第六项的二项式系数最大,则展开式中的常数项是________.14.()x +14(x -1)5的展开式中x 4的系数为________.二、解答题(本大题共6小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)有三个袋子,其中第一个袋子装有红色小球20个,每个球上标有1至20中的一个号码.第二个袋子装有白色小球15个,每个球上标有1至15中的一个号码.第三个袋子装有黄色小球8个,每个球上标有1至8中的一个号码.(1)从袋子里任取一个小球,有多少种不同的取法?(2)从袋子里任取红、白、黄色球各一个,有多少种不同的取法?16.(本小题满分14分)有0,1,2,3,4,5共六个数字. (1)能组成多少个没有重复数字的四位偶数;(2)能组成多少个没有重复数字且为5的倍数的五位数.17.(本小题满分14分)在(1-x 2)20的展开式中,如果第4r 项和第r +2项的二项式系数相等,(1)求r 的值;(2)写出展开式中的第4r 项和第r +2项.18.(本小题满分16分)设(2x -1)10=a 0+a 1x +a 2x 2+…+a 10x 10,求下列各式的值. (1)a 0+a 1+a 2+…+a 10; (2)a 6.19.(本小题满分16分)6个人坐在一排10个座位上,问:(1)空位不相邻的坐法有多少种?(2)4个空位只有3个相邻的坐法有多少种? (3)4个空位至多有2个相邻的坐法有多少种?20.(本小题满分16分)10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果:(1)4只鞋子没有成双的; (2)4只鞋子恰成两双;(3)4只鞋中有2只成双,另2只不成双.答案 1.解析:由题意可得不同的选法为C 17=7种. 答案:72.解析:由二项展开式的通项可得,第四项T 4=C 35⎝ ⎛⎭⎪⎫12x 2(-2y )3=-20x 2y 3,故x 2y 3的系数为-20. 答案:-203.解析:设男学生有x 人,则女学生有(8-x )人,则C 2x C 18-x A 33=90,即x (x -1)(8-x )=30=2×3×5,所以x =3,8-x =5. 答案:3,54.解析:由分步计数原理,先排第一列,有A 33种方法,再排第二列,有2种方法,故共有A 33×2=12种排列方法. 答案:125.解析:T r +1=C r7(2x )7-r⎝ ⎛⎭⎪⎫a x r=C r 727-r a r x 7-2r,令7-2r =-3,得r =5,即T 5+1=C 5722a 5x -3=84x -3,解得a =1. 答案:16.解析:从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共在C 24·C 34·C 34=96种.答案:967.解析:∵C 06+C 16+C 26+C 36+C 46+C 56+C 66=26=64,∴C 16+C 26+C 36+C 46+C 56=64-2=62. 答案:628.解析:分四步依次涂A ,B ,C ,D .开始涂A 有4种涂法;再涂B 有3种涂法;然后涂C 有2种涂法;最后涂D ,由于D 和A ,B 不相邻,所以D 可以和A 或B 同色,也可以和A ,B 不同色,所以共有3种涂法.由分步计数原理得,共有4×3×2×3=72(种).答案:729.解析:由题意可分情况讨论:含有两个1或两个2的四位数,先排0有3个位置可以选,然后排另外一个不重复的数字有3个位置可以选,剩下的排重复的数字,所以满足要求的数共有2C 13C 13C 22=18个.答案:1810.解析:分两类:甲、乙两个宿舍中一个住4人、另一个住3人或一个住5人,另一个住2人,所以不同的分配方案共有C 37A 22+C 27A 22=35×2+21×2=112种.答案:11211.解析:分三类:第一类,前5个题目的3个,后4个题目的3个C 35C 34;第二类,前5个题目的4个,后4个题目的2个C 45C 24;第三类,前5个题目的5个,后4个题目的1个C 55C 14,由分类计数原理得C 35C 34+C 45C 24+C 55C 14=74. 答案:7412.解析:依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A 33A 34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A 22A 22A 33=24,因此满足题意的排法种数为144-24=120. 答案:12013.解析:只有第六项的二项式系数最大,则n =10,T r +1=C r10·()x 10-r ⎝ ⎛⎭⎪⎫2x 2r=2r C r 10x 5-52r ,令5-52r =0,得r =2,T 3=4C 210=180.答案:18014.解析:()x +14(x -1)5=(x -1)5(x 2+4x x +6x +4x +1),x 4的系数为C 35×(-1)3+C 25×6+C 15×(-1)=45.答案:4515.解:(1)从第一个袋子中取一个小球有20种取法;从第二个袋子中取一个小球有15种取法;从第三个袋子中取一个小球有8种取法.由分类计数原理可知共有20+15+8=43种取法.(2)分三步:第一步,从第一个袋子中取一个红色球有20种取法;第二步,从第二个袋子中取一个白色球有15种取法;第三步,从第三个袋子中取一个黄色球有8种取法.由分步计数原理可知共有20×15×8=2 400种取法.16.解:(1)符合要求的四位偶数可分为三类:第一类,0在个位时有A 35个;第二类,2在个位时有A 14A 24个;第三类,4在个位时有A 14A 24个;由分类计数原理知,共有四位偶数A 35+A 14A 24+A 14A 24=156(个).(2)五位数中5的倍数可分为两类;第一类,个位上的数字是0的五位数有A 45个;第二类,个位上的数字是5的五位数有A 14A 34个.故满足条件的五位数有A 45+A 14A 34=216(个).17.解:(1)第4r 项和第r +2项的二项式系数分别是C 4r -120和C r +120, C 4r -120=C r +120⇔4r -1=r +1或4r -1+r +1=20,解得r =4或r =23(舍去).所以r =4.(2)T 4r =T 16=C 1520·(-x 2)15=-15 504x 30,T r +2=T 6=C 520(-x 2)5=-15 504x 10.18.解:(1)令x=1,得a0+a1+a2+…+a10=(2-1)10=1.(2)a6即为含x6项的系数,T r+1=C r10(2x)10-r(-1)r=C r10(-1)r210-r x10-r,所以当r=4时,T5=C410(-1)426x6=13 440x6,即a6=13 440.19.解:6个人排有A66种坐法,6人排好后包括两端共有7个“间隔”可以插入空位.(1)空位不相邻相当于将4个空位安插在上述7个“间隔”中,有C47=35种插法,故空位不相邻的坐法有A66C47=25 200种.(2)将相邻的3个空位当作一个元素,另一空位当作另一个元素,往7个“间隔”里插,有A27种插法,故4个空位中只有3个相邻的坐法有A66A27=30 240种.(3)4个空位至多有2个相邻的情况有三类:①4个空位各不相邻有C47种坐法;②4个空位2个相邻,另有2个不相邻有C17C26种坐法;③4个空位分两组,每组都有2个相邻,有C27种坐法.综上所述,应有A66(C47+C17C26+C27)=115 920种坐法.20.解:(1)从10双鞋子中选取4双,有C410种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步计数原理,选取种数为N=C410·24=3 360(种).即4只鞋子没有成双有3 360种不同取法.(2)从10双鞋子中选取2双有C210种取法,所以选取种数为N=C210=45(种)即4只鞋子恰成两双有45种不同取法.(3)先选取一双有C110种选法,再从9双鞋中选取2双有C29种选法,每双鞋只取一只各有2种取法.根据分步计数原理,不同取法为N=C110C29·22=1 440(种).。
第一章 计数原理(时间:120分钟 满分:150分)学号:______ 班级:______ 姓名:______ 得分:______一、选择题(本大题共12小题,每小题5分,共60分)1. 教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( ) A .10种 B .32种 C .25种 D .16种2. 9(2)a b +中第9的二项式系数是 ( )A .99CB .9992C C .89CD .8892C3. 在9(1)x -的展开式中系数最大的项是 ( ) A .5 B .6 C .5和6 D .74. 如图,用4种不同的颜色涂入图中的矩形,,,A B C D 中,要求相邻的矩形涂色不同,则不同的涂法有( )A .72种B .48种C .24种D .12种5. 若nx )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,则n 等于( ) A .5 B .7 C .9 D .116. 将数字1,2,3,4,5,6拼成一列,记第i 个数为(126)i a i = ,,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法种数为( )A .18B .30C .36D .487. 若29230123(1)(3)(2)(2)(2)x x a a x a x a x +-=+-+-+-1111(2)a x +⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为 ( )A.0B.5-C.5D.2558. 下列问题中,答案为6666A A ·的种数是( ) A .6男6女排成一行,同性都不相邻的排法数B .6男6女排成一行,女性都不相邻的排法数C .6男6女分六个兴趣不同的小组,每组一男一女的分组种数D .6男6女排成前后两排的排法数 9. ()()533121x x-⋅+ 的展开式中x 的系数是( )A .4- B.2- C.2 D.410. 某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有A .36种B .42种C .48种D .54种11.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“0000⨯⨯⨯⨯⨯⨯⨯”到“9999⨯⨯⨯⨯⨯⨯⨯”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为A .2000B .4096C .5904D .832012. 6名同学报考,,A B C 三所院校,如果每一所院校至少有1人报考,则不同的报考方法共有( ). A .216种 B .540种 C .729种 D .3240种 二、填空题(本大题共6小题,每小题5分,共30分)13. 若621x ax ⎛⎫+ ⎪⎝⎭的二项展开式中3x 的系数为5,2则a =__________. 14. 有3张都标着字母A ,6张分别标着数字1,2,3,4,5,6的卡片,若任取其中6张卡片组成牌号,则可以组成的不同牌号的总数等于 .(用数字作答)15. 有五名男同志去外地出差,住宿安排在三个房间内,要求甲乙两人不住同一房间,且每个房间最多住二人,则不同的住宿安排有 种(用数字作答)16. 若1()2nx x+的展开式中前三项的系数成等差数列,则展开式中4x 项的系数为 。
第一章 计数原理单元测试题一、选择题(本大题共12小题,每小题4分,共48分)1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A .10种B .20种C .25种D .32种2.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有 A .36种 B .48种C .96种D .192种 3. 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种4. 某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) A.()2142610C A 个B.242610A A 个C.()2142610C 个D.242610A 个5. 从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有(A)40种 (B) 60种(C) 100种 (D) 120种 6. 由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有( )A.72B.60C.48D.527.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第( )个数. A.6 B.9 C.10 D.88.AB 和CD 为平面内两条相交直线,AB 上有m 个点,CD 上有n 个点,且两直线上各有一个与交点重合,则以这m+n-1个点为顶点的三角形的个数是( ) A.2121m n n m C C C C + B. 21121m n n m C C C C -+C. 21211m n n m C C C C +-D.2111211---+m n n m C C C C9.设()10102210102x a x a x a a x +⋅⋅⋅+++=-,则 ()()292121020a a a a a a +⋅⋅⋅++-+⋅⋅⋅++的值为( )A.0B.-1C.1D.10. 2006年世界杯参赛球队共32支,现分成8个小组进行单循环赛,决出16强(各组的前2名小组出线),这16个队按照确定的程序进行淘汰赛,决出8强,再决出4强,直到决出冠、亚军和第三名、第四名,则比赛进行的总场数为( )A.64B.72C.60D.5611.用二项式定理计算9.985,精确到1的近似值为( )A.99000B.99002C.99004D.9900512. 从不同号码的五双靴中任取4只,其中恰好有一双的取法种数为 ( ) A.120 B.240C.360D.72 二、 填空题(本大题共4小题,每小题4分,共16分)13. 今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 种不同的方法(用数字作答).14. 用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有 个(用数字作答).15. 若(2x 3+x1)n 的展开式中含有常数项,则最小的正整数n 等于 . 16. 从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有_____种。
(用数字作答)三、解答题(本大题共5小题,共56分。
解答应写出文字说明、证明过程或演算步骤。
)17.如图,电路中共有7个电阻与一个电灯A ,若灯A 不亮,分析因电阻断路的可能性共有多少种情况。
18.从1到9的九个数字中取三个偶数四个奇数,试问:①能组成多少个没有重复数字的七位数?②上述七位数中三个偶数排在一起的有几个?③在①中的七位数中,偶数排在一起、奇数也排在一起的有几个?④在①中任意两偶然都不相邻的七位数有几个?19.把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列成一个数列.(1) 43251是这个数列的第几项? (2) 这个数列的第96项是多少? (3) 求这个数列的各项和.20.(本小题满分12分)求证:能被25整除。
21.(本小题满分14分)已知naa⎪⎪⎭⎫⎝⎛-33的展开式的各项系数之和等于53514⎪⎪⎭⎫⎝⎛-bb展开式中的常数项,求naa⎪⎪⎭⎫⎝⎛-33展开式中含的项的二项式系数.单元测试卷参考答案排列、组合、二项式定理一、选择题:(每题5分,共60分)1、D 解析:5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,选D2、C 解析.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有23344496C C C ⋅⋅=种,选C3、解析:5名志愿者先排成一排,有55A 种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有5524A ⋅⋅=960种不同的排法,选B4、A 解析:某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有()2142610C A 个,选A 5、B 解析:从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有225360C A =种,选B6、B 解析:只考虑奇偶相间,则有33332A A 种不同的排法,其中0在首位的有3322A A 种不符合题意,所以共有33332A A 603322=-A A 种.7、C 解析: 比12340小的分三类:第一类是千位比2小为0,有633=A 个; 第二类是千位为2 ,百位比3小为0,有222=A 个; 第三类是十位比4小为0,有1个.共有6+2+1=9个,所以12340是第10个数.8、D 解析:在一条线上取2个点时,另一个点一定在另一条直线上,且不能是交点. 9、C 解析: 由()10102210102x a x a x a a x +⋅⋅⋅+++=-可得:当1=x 时,()101022101011112a a a a +⋅⋅⋅+++=-10210a a a a +⋅⋅⋅+++=当1-=x 时,()1032101012a a a a a +⋅⋅⋅+-+-=+10210a a a a +⋅⋅⋅++-=()()292121020a a a a a a +⋅⋅⋅++-+⋅⋅⋅++∴()10210a a a a +⋅⋅⋅+++=()103210a a a a a +⋅⋅⋅+-+-()()()()[]112121212101010=+-=+-=.10、A 解析:先进行单循环赛,有48824=C 场,在进行第一轮淘汰赛,16个队打8场,在决出4强,打4场,再分别举行2场决出胜负,两胜者打1场决出冠、亚军,两负者打1场决出三、四名,共举行:48+8+4+2+1+1=64场. 11、C 解析:()559.98100.02=-()2514235510100.02100.02C C =-⨯⨯+⨯⨯()⋅⋅⋅+⨯⨯+323502.010C 9900406.04101035≈⋅⋅⋅+-+-=.12、A 解析:先取出一双有15C 种取法,再从剩下的4双鞋中取出2双,而后从每双中各取一只,有121224C C C 种不同的取法,共有15C 120121224=C C C 种不同的取法.二、 填空题(每小题4分,共16分)13、1260 解析: 由题意可知,因同色球不加以区分,实际上是一个组合问题,共有4239531260C C C =14、24 解析:可以分情况讨论:① 若末位数字为0,则1,2,为一组,且可以交换位置,3,4,各为1个数字,共可以组成33212A ⋅=个五位数;② 若末位数字为2,则1与它相邻,其余3个数字排列,且0不是首位数字,则有2224A ⋅=个五位数;③ 若末位数字为4,则1,2,为一组,且可以交换位置,3,0,各为1个数字,且0不是首位数字,则有222(2)A ⋅⋅=8个五位数,所以全部合理的五位数共有24个15、7 解析:若(2x 3+x1)n 的展开式中含有常数项,31(2)n rn rr r nT Cx --+=⋅为常数项,即732r n -=0,当n =7,r =6时成立,最小的正整数n 等于7.16、36种 解析.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,不同的选法共有123434336C A ⋅=⨯⨯=种三、解答题(共六个小题,满分74分) 17.解:每个电阻都有断路与通路两种状态,图中从上到下的三条支线路,分别记为支线a 、b 、c ,支线a ,b 中至少有一个电阻断路情况都有22―1=3种;………………………4分支线c 中至少有一个电阻断路的情况有22―1=7种,…………………………………6分 每条支线至少有一个电阻断路,灯A 就不亮, 因此灯A 不亮的情况共有3×3×7=63种情况.………………………………………10分 18. 解:①分步完成:第一步在4个偶数中取3个,可有34C 种情况;第二步在5个奇数中取4个,可有45C 种情况;第三步3个偶数,4个奇数进行排列,可有77A 种情况,所以符合题意的七位数有34C 45C 10080077=A 个.………3分②上述七位数中,三个偶数排在一起的有个.34C 14400335545=A A C ……6分③上述七位数中,3个偶数排在一起,4个奇数也排在一起的有34C 57602224335545=A A A C C 个.……………………………………………9分④上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空档,共有28800353445=A C A 个.…………………………………12分19.解:⑴先考虑大于43251的数,分为以下三类 第一类:以5打头的有:44A =24第二类:以45打头的有:33A =6 第三类:以435打头的有:22A=2………………………………2分 故不大于43251的五位数有:()8822334455=++-A A A A (个)即43251是第88项.…………………………………………………………………4分⑵数列共有A=120项,96项以后还有120-96=24项, 即比96项所表示的五位数大的五位数有24个, 所以小于以5打头的五位数中最大的一个就是该数列的第96项.即为45321.…8分⑶因为1,2,3,4,5各在万位上时都有A 个五位数,所以万位上数字的和为:(1+2+3+4+5)·A ·10000……………………………………………………………10分同理它们在千位、十位、个位上也都有A 个五位数,所以这个数列各项和为:(1+2+3+4+5)·A ·(1+10+100+1000+10000) =15×24×11111=3999960……………………………………………………………12分 20.证明:因45322-+⋅+n n n 4564-+⋅=n n ()45154-++⋅=n n ………………3分()45155555.41222211-++++⋅⋅⋅+++=----n C C C C n n n n n n n n n ……………………8分()nC C C n n n n n n n 255555.4222211++⋅⋅⋅+++=---……………………………………10分 显然()2222115555---+⋅⋅⋅+++n n n n n n n C C C 能被25整除,25n 能被25整除, 所以45322-+⋅+n n n 能被25整除 (12)分21. 设53514⎪⎪⎭⎫⎝⎛-b b 的展开式的通项为()rr rr b b C T ⎪⎪⎭⎫ ⎝⎛-=-+5145351 ()5,4,3,2,1,0,451651055=⋅⋅⎪⎪⎭⎫ ⎝⎛-=--r b C r rr r.………………………………6分若它为常数项,则2,06510=∴=-r r,代入上式732=∴T .即常数项是27,从而可得na a ⎪⎪⎭⎫⎝⎛-33中n=7,…………………10分同理733⎪⎪⎭⎫⎝⎛-a a 由二项展开式的通项公式知,含的项是第4项,其二项式系数是35.…………………………………………………………14分。