2013高一必修四三角函数总练习题 附答案 (包括恒等变换)
- 格式:doc
- 大小:538.00 KB
- 文档页数:6
第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14C.34D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( )A.32B .-32C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34.又π4<α<π2, ∴cos α<sin α,cos α-sin α=-34=-32. 答案 B3.sin15°sin30°sin75°的值等于( ) A.14 B.34 C.18D.38解析 sin15°sin30°sin75° =sin15°cos15°sin30° =12sin30°sin30°=12×12×12=18. 答案 C4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22C.32D. 2解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D 7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c 解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°, ∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( ) A .tan A ·tan B >1 B. tan A ·tan B <1 C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角. 则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫π4-x -sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4 =cos ⎝⎛⎭⎫2x -π2 =sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2C.⎣⎢⎡⎦⎥⎤1-22,1+22D.⎣⎡⎦⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝⎛⎭⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝⎛⎭⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝⎛⎭⎫2x +π4=-1时,y 有最小值1-22. ∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C11.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.335 B.45 C .±35D .±45解析 由sin(π-θ)=2425,得sin θ=2425.∵θ为第二象限的角,∴cos θ=-725.∴cos θ2=±1+cos θ2=± 1-7252=±35. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665 B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.若1+tan α1-tan α=2012,则1cos2α+tan2α=______.解析1cos2α+tan2α=1+sin2αcos2α=sin 2α+cos 2α+2sin αcos αcos 2α-sin 2α=tan 2α+1+2tan α1-tan 2α=(tan α+1)21-tan 2α=1+tan α1-tan α=2012.答案 201214.已知cos2α=13,则sin 4α+cos 4α=________.解 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________.解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;④将函数y =2cos2x 的图像向右平移π24个单位后,将与已知函数的图像重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3 =2·⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3 =2cos ⎝⎛⎭⎫2x -π3+π4 =2cos ⎝⎛⎭⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故③正确. 由④得y =2cos2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量, ∴⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169. 又∵α∈⎣⎡⎦⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎫α+3π4cos ⎝⎛⎭⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝⎛⎭⎫α+π4+π2cos ⎝⎛⎭⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α) =2-2cos 2⎝⎛⎭⎫α+π4cos 2α-sin 2α =1-cos ⎝⎛⎭⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f ⎝⎛⎭⎫π3的值;(2)求f (x )的最大值和最小值. 解 (1)f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3-4cos π3 =2×⎝⎛⎭⎫-12+⎝⎛⎭⎫322-4×12 =-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3⎝⎛⎭⎫cos x -232-73, ∵x ∈R ,cos x ∈[-1,1],∴当cos x =-1时,f (x )有最大值6; 当cos x =23时,f (x )有最小值-73.20.(12分)已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝⎛⎭⎫π2,3π4, ∴x -π4∈⎝⎛⎭⎫π4,π2, 于是sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4sin π4 =7210×22+210×22=45. 解法2:由题设得22cos x +22sin x =210, 即cos x +sin x =15.又sin 2x +cos 2x =1, 从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝⎛⎭⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2sin x cos x =-2425.cos2x =2cos 2x -1=-725.∴sin ⎝⎛⎭⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.21.(12分)已知函数 f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6所以f (x )的最小正周期为π.(2)-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,当2x +π6=π2时,即x =π6,f (x )取得最大值2;当2x +π6=-π6时,即x =-π6,f (x )取得最小值-1.22.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解 (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加,得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.。
一、选择题1.已知θ为锐角,且满足如tan 311tan θθ=,则tan 2θ的值为( ) A .34B .43 C .23D .322.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()3f π()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .143.已知,(0,2)αβπ∈,且满足1sin cos 2αα-=,1cos sin 2ββ-=,则sin()αβ+=( )A .1B .或1C .34-或1 D .1或-14.若sin 3cos 0θθ+=,则2cos sin 2θθ+的值( ) A .2B .2-C .12D .12-5.已知ππ2α<<,且π3sin 45α⎛⎫+= ⎪⎝⎭,则cos α的值为( )A .10B .10-C .10D .10-6.若1sin 34a π⎛⎫-= ⎪⎝⎭,则sin 26a π⎛⎫-= ⎪⎝⎭( )A .78-B .78C .1516-D .15167.已知函数()sin cos f x a x b x =+,其中,a b ∈R ,且0ab ≠,若()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ). A .ππ56f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B .()5π2f x f x ⎛⎫=-⎪⎝⎭C .π4f x ⎛⎫- ⎪⎝⎭是偶函数D .π4f x ⎛⎫+ ⎪⎝⎭是奇函数8.函数2()sin 2f x x x =+-()cos(2)2 3 (0)6g x m x m m π=--+>,若对任意1[0,]4x π∈,存在2[0,]4x π∈,使得12()()g x f x =成立,则实数m 的取值范围是( ) A .4(1,)3B .2(,1]3C .2[,1]3D .4[1,]39.已知α,β均为锐角,5cos()13αβ+=-,3sin()35πβ+=,则sin()3πα-=( )A .3365B .3365-C .6365D .566510.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( ) A .7B .17C .-17D .-711.若0||4πα<<,则下列说法①sin2α>sinα,②cos2α<cosα,③tan2α>tanα,正确的是( ) A .①B .②C .③D .①③12.已知()0,απ∈,sin cos αα+=cos2=α( ) A.BC.9-D.9二、填空题13.给出下列命题:①存在实数α使得sin cos 1αα=; ②存在实数α使得3sin cos 2αα+=; ③5sin 22y x π⎛⎫ ⎪⎝=⎭-是偶函数; ④8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程; ⑤若α、β是第一象限角,且αβ>,则tan tan αβ>, 其中正确命题的序号是______.14.设a ,b 是非零实数,且满足sincos1077tan 21cos sin 77a b a b πππππ+=-,则b a =_______.15.如图,在边长为1的正方形ABCD 中,P ,Q 分别在边BC ,CD 上,且PB QD PQ +=,则PAQ ∠的大小为__________.16.()sin 5013tan10︒+︒的值__________. 17.已知cosα17=,cos(α﹣β)1314=,且0<β<α2π<,则sinβ=_____. 18.已知锐角α,β满足()sin 23sin αββ+=,则()tan cot αβα+=______. 19.已知3tan 4α=-,()1tan 4αβ+=,则tan β=______. 20.已知,,0,2παβγ⎛⎫∈ ⎪⎝⎭,且222cos cos cos 2αβγ++=,则cos cos cos sin sin sin αβγαβγ++++的最小值为______.三、解答题21.函数()3sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中7,03B π⎛⎫⎪⎝⎭,且最高点A 与B 的距离29AB π=+(1)求函数()f x 的解析式;(2)若(),,4363f ππαα⎛⎫∈-= ⎪⎝⎭,求cos2α的值. 22.已知函数21()3cos cos 22f x x x x π⎛⎫=++-⎪⎝⎭. (1)若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,求实数a 的取值范围;(2)若先将()y f x =的图像上每个点横坐标伸长为原来的2倍(纵坐标不变),再将所得图像向左平移6π个单位长度,得到函数()y g x =的图像,求函数1()3y g x=-在区间[],3ππ-内的所有零点之和.23.已知3sin 5α=-,且α为第四象限角 (1)求sin sin(2)2tan()cos()παπααππα⎛⎫++ ⎪⎝⎭---+的值; (2)求1sin 2cos 21sin 2cos 2αααα+-++的值.24.先将函数2sin 23sin 26y x x π⎛⎫=+- ⎪⎝⎭图像上所有点的纵坐标伸长为原来的2倍(横坐标不变),再将所得到的图像横坐标伸长为原来的2倍(纵坐标不变)得到函数()f x 的图像. (1)求函数()f x 的解析式; (2)若α,β满足42()()3f f αβ⋅=,且4παβ+=,设232sin()sin()()cos x x g x xαβ+⋅+=,求函数()g x 在,44x ππ⎡⎤∈-⎢⎥⎣⎦上的最大值. 25.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,ππ22ϕ-<<)的部分图像如图所示,π12,7π12是函数的两个相邻的零点,且图像过()0,1-点.(1)求函数()f x 的解析式;(2)求函数()()π4g x f x f x ⎛⎫=⋅- ⎪⎝⎭的单调增区间以及对称轴方程. 26.(1)化简:(cos 20tan 20sin 40-⋅°°°;(2)证明:()()21tan 31sin 21tan 312sin πx xπx x+--=---.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先利用两角和的正切计算tan tan 2tan 31tan tan 2θθθθθ+=-,再利用二倍角的正切化简前者,结合tan 311tan θθ=可得1tan 2θ=,从而可求tan 2θ.【详解】32222tan tan tan tan 23tan tan 1tan tan 32tan 1tan tan 213tan 1tan 1tan θθθθθθθθθθθθθθ++--===---⨯-, 故32223tan tan tan 33tan 13tan 11tan tan 13tan θθθθθθθθ---===-,故21tan 4θ=, 因为θ为锐角,故1tan 2θ=,故1242tan 21314θ⨯==-, 故选:B. 【点睛】思路点睛:已知θ的三角函数值,求()*n n N θ∈的三角函数值,应利用两角和的三角函数值逐级计算即可.2.C解析:C 【分析】利用辅助角公式,求得()f x 的解析式,根据题意,可求得ϕ的表达式,根据tan a ϕ=,可求得1tan 6a πω⎛⎫=⎪⎝⎭,又根据()3f π=,可求得cos 6πω⎛⎫= ⎪⎝⎭sin 6πω⎛⎫⎪⎝⎭的值,根据同角三角函数的关系,可求得a 的值,即可求得ω的表达式,根据ω的范围,即可求得答案.【详解】()sin cos ),tan f x x a x x a ωωωϕϕ=+=+=,因为22T ππω=<,所以1ω>,因为()f x 在6x π=处取得最大值,所以2,62k k Z πωπϕπ+=+∈,即2,26k k Z ππωϕπ=+-∈,所以1tan tan 2tan 2626tan 6k a ππωππωϕππω⎛⎫⎛⎫=+-=-== ⎪ ⎪⎛⎫⎝⎭⎝⎭ ⎪⎝⎭, 所以1tan 6aπω⎛⎫= ⎪⎝⎭,因为()3f π3πωϕ⎛⎫+=⎪⎝⎭sin 3πωϕ⎛⎫+= ⎪⎝⎭,所以sin sin 2sin cos 3326266k πωπωππωππωπωϕπ⎛⎫⎛⎫⎛⎫⎛⎫+=++-=+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以sin tan cos 666πωπωπω⎛⎫⎛⎫⎛⎫=⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又2222sin cos 166πωπω⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, 解得23a =,又0a >,所以a =1sin 62πω⎛⎫=⎪⎝⎭, 所以2,66k k Z πωππ=+∈或52,66k k Z πωππ=+∈,解得121,k k Z ω=+∈或125,k k Z ω=+∈,又1ω>,所以ω的最小值为13. 故选:C 【点睛】解题的关键是根据题意,求得ϕ的表达式,代入求得tan 6πω⎛⎫⎪⎝⎭,cos 6πω⎛⎫⎪⎝⎭的表达式,再结合同角三角函数关系进行求解,计算量大,考查分析理解,计算化简的能力,属中档题.3.C解析:C 【分析】由两角与差的正弦、余弦公式变形由已知求得sin()4πα-和cos()4πβ+,用平方关系求得cos()4πα-和sin()4πα+,而sin()sin ()()44ππαβαβ⎡⎤+=-++⎢⎥⎣⎦,展开后计算,注意分类讨论. 【详解】∵1sin cos 2αα-=,∴αα=sin()4πα-=1cos sin 2ββ-=ββ-=,cos()44πβ+=,∴cos()44πα-=±,sin()44πα+=±, sin()sin ()()sin()cos()cos()sin()444444ππππππαβαβαβαβ⎡⎤+=-++=-++-+⎢⎥⎣⎦,当7cos()sin()448ππαβ-+=时,17sin()188αβ+=+=, 当7cos()sin()448ππαβ-+=-时,173sin()884αβ+=-=-, 故选:C . 【点睛】关键点点睛:本题考查两角和与差正弦、余弦公式.解题关键是确定已知角和未知角之间的关系,本题中已知等式变形得出4πα-和4πβ+,未知角有()()44ππαβαβ+=-++,这样易确定使用的公式与顺序.4.D解析:D 【分析】先根据题意得tan 3θ=-,再根据正弦的二倍角公式化简得2212tan 1cos sin 21tan 2θθθθ++==-+.解:由sin 3cos 0θθ+=得tan 3θ=-.所以2222222cos sin 2cos 2sin cos cos sin 2cos sin cos sin θθθθθθθθθθθ+++==++ 22222222cos 2sin cos 12tan 51cos cos cos sin 1tan 102cos cos θθθθθθθθθθθ++-====-++, 故选:D. 【点睛】本题解题的关键是将等式2cos sin 2θθ+变形化简得2212tan cos sin 21tan θθθθ++=+,进而求解,考查运算求解能力,是中档题.5.D解析:D 【分析】根据同角三角函数基本关系得出cos 4πα⎛⎫+ ⎪⎝⎭的值,再用两角差的余弦公式即可解题.【详解】 因为ππ2α<<,所以35,444πππα⎛⎫+∈ ⎪⎝⎭,又3sin 45πα⎛⎫+= ⎪⎝⎭,所以4cos 45πα⎛⎫+=- ⎪⎝⎭, 所以cos cos cos cos sin sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43525210=-⨯+⨯=-. 故选:D 【点睛】方法点睛:该题考查的是有关三角函数求值问题,解题方法如下: (1)利用同角三角函数关系式,结合角的范围,求得cos 4πα⎛⎫+ ⎪⎝⎭的值; (2)凑角,利用差角余弦公式求得结果.6.B解析:B 【分析】 化简sin 2cos 2()63a ππα⎛⎫-=- ⎪⎝⎭,再利用二倍角公式化简求值.22sin 2sin[(2)]cos(2)=cos 2()cos 2()632333a ππππππαααα⎛⎫-=-+=--=- ⎪⎝⎭=21712sin ()123168πα--=-⨯=. 故选:B 【点睛】方法点睛:三角恒等变换常用的方法有:三看(看角、看名、看式)三变(变角变名变式),要根据已知条件灵活选择方法化简求值.7.B解析:B 【分析】利用辅助角公式可得()()f x x ϕ=+,又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立知π4f a ⎛⎫==⎪⎝⎭a b =,整理得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项. 【详解】由0ab ≠知0a ≠且0b ≠,利用辅助角公式可得()()sin cos f x a x b x x ϕ=+=+,其中tan baϕ=, 又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫⎪⎝⎭是()f x 的最值,所以πππsin cos 44422f b a a b ⎛⎫=+=+= ⎝⎪⎭, 即22221122a b ab a b +++=,所以2211022a b ab +-=,即()2102a b -=, 所以a b =,tan 1b a ϕ==,可得4πϕ=,所以()sin 4f x x π⎛⎫=+ ⎪⎝⎭,对于选项A :9sin sin 55420f ππππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 5sin sin 66412f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,又因为5912202πππ<<,则59sin sin 1220ππ<,当0a >时,ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,当0a <时,ππ56f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选项A 不正确; 对于选项B:sin sin 5π5π11π3π2244sin 4f x x x x π⎛⎫-=--- ⎪⎝⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭()ππ4sin sin 4x f x x π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭--+,故选项B 正确;对于选项C:sin sin ππ444x x f x π⎛⎫--⎛⎫=+= ⎪⎝⎭ ⎪⎝⎭是奇函数,故选项C 不正确; 对于选项D:si πππ442n sin cos 4f x x x x π⎛⎫⎛⎫=+== ⎪ ⎪⎛⎫+++ ⎪⎭⎝⎭⎝⎭⎝是偶函数,故选项D 不正确, 故选:B 【点睛】关键点点睛:本题的关键点是从已知条件()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫ ⎪⎝⎭是()f x的最值,π422f a ⎛⎫=+= ⎪⎝⎭,从而得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,属于中档题.8.D解析:D 【解析】222221f x sin x x sin x cos x =+-=+-())12222222223sin x x sin x cos x sin x π==+=+()(), 当0,4x π⎡⎤∈⎢⎥⎣⎦时,552[]21[12]3366min x f x sin f x ππππ+∈∴==∴∈,,(),(),, 对于22306g x mcos x m m π=--+()()(>),2[]2[]36662m x mcos x m ππππ-∈--∈,,(),,3[33]2g x m m ∴∈-+-(),, ∵对任意10,4x π⎡⎤∈⎢⎥⎣⎦,存在20,4x π⎡⎤∈⎢⎥⎣⎦,使得()()12g x f x =成立,331232m m ⎧-+≥⎪∴⎨⎪-≤⎩ ,解得实数m 的取值范围是41,3⎡⎤⎢⎥⎣⎦.故选D .【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,9.B解析:B 【分析】由所给三角函数值利用同角三角函数的关系求出()sin αβ+、cos 3πβ⎛⎫+⎪⎝⎭,3πα-记为()3παββ⎛⎫+-+⎪⎝⎭,利用两角差的正弦公式展开代入相应值计算即可.【详解】α,β均为锐角,5cos()013αβ+=-<,,2παβπ⎛⎫∴+∈ ⎪⎝⎭,∴()12sin 13αβ+==,β均为锐角,5,336πππβ⎛⎫∴+∈ ⎪⎝⎭,则1cos 322πβ⎛⎫⎛⎫+∈- ⎪ ⎪ ⎪⎝⎭⎝⎭,4cos 35πβ⎛⎫∴+==- ⎪⎝⎭或45(4152>,舍去),()sin()sin 33ππααββ⎡⎤⎛⎫∴-=+-+ ⎪⎢⎥⎝⎭⎣⎦()()sin cos cos sin 33ππαββαββ⎛⎫⎛⎫=+⋅+-+⋅+ ⎪ ⎪⎝⎭⎝⎭124533313513565⎛⎫⎛⎫=⨯---⨯=- ⎪ ⎪⎝⎭⎝⎭. 故选:B 【点睛】本题考查同角三角函数的关系、两角差的正弦公式、三角函数在各象限的符号,属于中档题.10.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.11.B解析:B 【分析】 取6πα=-判断①③,根据余弦函数的性质结合二倍角公式判断②.【详解】当6πα=-时,1sin 2sin ,sin sin ,sin 2sin 3262ππαααα⎛⎫⎛⎫=-=-=-=-< ⎪ ⎪⎝⎭⎝⎭tan 2tan tan tan ,tan 2tan 363ππαααα⎛⎫⎛⎫=-==-=-< ⎪ ⎪⎝⎭⎝⎭,则①③错误;0||4πα<<,cos cos ||2αα⎛⎫∴=∈ ⎪ ⎪⎝⎭2cos 2cos 2cos cos 1(cos 1)(2cos 1)0αααααα∴-=--=-+<即cos2cos αα<,②正确; 故选:B 【点睛】本题主要考查了求余弦函数的值域以及二倍角的余弦公式的应用,属于中档题.12.A解析:A 【分析】在等式sin cos αα+=cos sin αα-的值,然后利用二倍角的余弦公式可求得cos2α的值. 【详解】()0,απ∈,sin cos 3αα+=,两边平方后得:112sin cos 3αα+=,即1sin cos 3αα=-,sin 0α∴>,cos 0α<,()215cos sin 12sin cos 1233αααα⎛⎫-=-=-⨯-= ⎪⎝⎭,cos sin αα∴-=,则()()22cos 2cos sin cos sin cos sin ααααααα=-=-+==故选:A. 【点睛】本题考查利用二倍角的余弦公式求值,同时也考查了同角三角函数平方关系的应用,考查计算能力,属于中等题.二、填空题13.③④【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;解析:③④ 【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式,结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;利用特殊值法可判断⑤的正误. 【详解】对于命题①,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦, 所以,不存在实数α使得sin cos 1αα=,①错误;对于命题②,sin cos 4πααα⎛⎫⎡+=+∈ ⎪⎣⎝⎭, 所以,不存在实数α使得3sin cos 2αα+=,②错误; 对于命题③,si o 5s 2n c 2i s n 222x y x x ππ⎛⎫⎛⎫== ⎪⎪⎝-⎭-⎭=⎝, ()cos 2cos2x x -=,所以,函数5sin 22y x π⎛⎫⎪⎝=⎭-是偶函数,③正确;对于命题④,当8x π=时,min 53sin 2sin 1842y y πππ⎛⎫=⨯+==-= ⎪⎝⎭, 所以,8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程,命题④正确; 对于命题⑤,取9244παππ=+=,4πβ=,αβ>,但tan 1tan αβ==,⑤错误.因此,正确命题的序号为③④. 故答案为:③④. 【点睛】本题考查有关三角函数命题真假的判断,考查了三角函数的有界性、正弦型函数的奇偶性、对称性以及正切值大小的比较,考查计算能力与推理能力,属于中等题.14.【分析】先把已知条件转化为利用正切函数的周期性求出即可求得结论【详解】因为(tanθ)∴∴tanθ=tan (kπ)∴故答案为【点睛】本题主要考查三角函数中的恒等变换应用考查了两角和的正切公式属于中档题【分析】先把已知条件转化为10721717btana tan tanb tan a πππθπ+⎛⎫==+ ⎪⎝⎭-.利用正切函数的周期性求出3k πθπ=+,即可求得结论.【详解】因为10721717btana tan tanb tan a πππθπ+⎛⎫==+ ⎪⎝⎭-,(tanθb a =) ∴10721k ππθπ+=+ ∴3k πθπ=+.tanθ=tan (k π3π+)=∴ba=. 【点睛】本题主要考查三角函数中的恒等变换应用,考查了两角和的正切公式,属于中档题.15.【分析】先分别设则在中由勾股定理得再分别表示出之后利用正切的和角公式求即可解决【详解】解:设则因为是直角三角形所以由勾股定理得:化简得在中在中所以又因为所以故答案为:【点睛】本题主要考查正切的和角公解析:4π【分析】先分别设PB x =,DQ y =,则在PCQ △中,由勾股定理得1xy x y -=+,再分别表示出tan BAP ∠,tan DAQ ∠,之后利用正切的和角公式求()tan BAP DAQ ∠+∠即可解决.【详解】解:设PB x =,DQ y =,则1CP x =-,1CQ y =-, 因为PCQ △是直角三角形,PB QD PQ +=,所以由勾股定理得:()()()22211x y x y -+-=+,化简得1xy x y -=+, 在ABP △中,tan BPBAP x AB∠==, 在ADQ △中,tan DQDAQ y AD∠==, 所以()tan tan tan 11tan tan 1BAP DAQ x yBAP DAQ DAQ BAP xy∠+∠+∠+∠===-∠∠-,又因为02BAP DAQ π<∠+∠<,所以,=4PAQ π∠故答案为:4π 【点睛】本题主要考查正切的和角公式,数据处理能力与运算能力,是中档题.16.1【分析】由结合辅助角公式可知原式为结合诱导公式以及二倍角公式可求值【详解】解:故答案为:1【点睛】本题考查了同角三角函数的基本关系考查了二倍角公式考查了辅助角公式考查了诱导公式本题的难点是熟练运用解析:1 【分析】由sin10tan10cos10︒︒=︒,结合辅助角公式可知原式为2sin50sin 40cos10︒︒︒,结合诱导公式以及二倍角公式可求值. 【详解】解: ()cos10sin501sin50cos10︒+︒︒+︒=︒⨯︒()2sin50cos30sin10sin 30cos102sin50sin 402sin50cos50cos10cos10cos10︒︒︒+︒︒︒︒︒︒===︒︒︒ ()sin 10902sin50cos50sin100cos101cos10cos10cos10cos10︒+︒︒︒︒︒====︒︒︒︒.故答案为:1. 【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.17.【分析】利用同角三角函数的基本关系式求得的值由的值【详解】依题意则所以所以所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正弦公式考查化归与转化的数学思想方法属于基础题解析:2【分析】利用同角三角函数的基本关系式求得()sin ,sin ααβ-的值,由()sin sin βααβ=--⎡⎤⎣⎦的值. 【详解】 依题意02πβα<<<,则02πβ>->-,所以02παβ<-<,所以sin α==,()sin αβ-==()sin sin βααβ=--⎡⎤⎣⎦()()sin cos cos sin ααβααβ=---1317147147142=⨯-⨯==⨯.【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正弦公式,考查化归与转化的数学思想方法,属于基础题.18.2【分析】将三角函数式配成与由正弦函数和角与差角公式展开即可求解【详解】锐角满足变形可得由正弦和角与差角公式展开可得合并化简可得等式两边同时除以可得即故答案为:2【点睛】本题考查了三角函数式化简求值解析:2 【分析】将三角函数式配成()αβα++与()αβα+-,由正弦函数和角与差角公式展开,即可求解. 【详解】锐角α,β满足()sin 23sin αββ+=变形可得()()sin 3sin αβααβα++=+-⎡⎤⎡⎤⎣⎦⎣⎦ 由正弦和角与差角公式展开可得()()()()sin cos sin cos 3sin cos 3sin cos αβαααβαβαααβ+++=+-+合并化简可得()()4sin cos 2sin cos ααβαβα+=+ 等式两边同时除以()2cos cos αβα+ 可得()2tan tan ααβ=+ 即()tan cot 2αβα+= 故答案为:2 【点睛】本题考查了三角函数式化简求值,角的变化形式,属于中档题.19.【分析】根据以及两角差正切公式求解【详解】故答案为:【点睛】本题考查两角差正切公式考查基本分析求解能力属基础题 解析:1613【分析】根据()βαβα=+-以及两角差正切公式求解. 【详解】13tan()tan 1644tan tan[()]31tan()tan 13116αβαβαβααβα++-=+-===++-故答案为:1613【点睛】本题考查两角差正切公式,考查基本分析求解能力,属基础题.20.【分析】根据同角三角函数关系式及基本不等式可得同理证明另外两组式子成立不等式两边同时相加化简即可得解【详解】由题意知则因为则不等式两边同时加可得开平方可得同理相加可得化简得故答案为:【点睛】本题考查【分析】根据同角三角函数关系式及基本不等式,可得sin sin αβγ+≤,同理证明另外两组式子成立,不等式两边同时相加,化简即可得解. 【详解】由题意知222sin sin sin 1αβγ++=, 则2222sinsin 1sin cos αβγγ+=-=2222sin sin 1sin cos αγββ+=-= 2222sin sin 1sin cos βγαα+=-=因为,,0,2παβγ⎛⎫∈ ⎪⎝⎭,则222sin sin sin sin αβαβ⋅≤+,不等式两边同时加22sin sin αβ+ 可得()()222sin sin 2sin sin αβαβ+≤+开平方可得sin sin αβγ+≤=,同理sin sin βγα+≤=,sin sin γαβ+≤=,相加可得2sin 2sin 2sin αβγαβγ++≤++化简得cos cos cos sin sin sin αβγαβγ++≥++故答案为 【点睛】本题考查了三角函数式的化简求值,同角三角函数关系式的应用,根据基本不等式求最值,属于中档题.三、解答题21.(1)()13sin 26f x x π⎛⎫=- ⎪⎝⎭;(2 【分析】(1)根据最高点A 与点B 的距离AB ==,求得,T ω,点7,03B π⎛⎫ ⎪⎝⎭在图象上求解.(2)由(),,463f ππαα⎛⎫∈-= ⎪⎝⎭,求得sin 2,cos 266ππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,然后由cos2cos 266ππαα⎛⎫=-+ ⎪⎝⎭求解.【详解】(1)最高点A 与点B 的距离AB ==,14,2T πω==, ()13sin ,2f x x ϕ⎛⎫=+ ⎪⎝⎭因为点7,03B π⎛⎫⎪⎝⎭在图象上, 所以773sin 0,36f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭因为2πϕ<,所以6πϕ=-,所以()13sin 26f x x π⎛⎫=-⎪⎝⎭.(2)()43sin 2266f ππααα⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭因为,63ππα⎛⎫∈-⎪⎝⎭, 所以2,622πππα⎛⎫-∈- ⎪⎝⎭,所以cos 26πα⎛⎫-== ⎪⎝⎭, 所以cos2cos 266ππαα⎛⎫=-+⎪⎝⎭, cos 2cos sin 2sin 6666ππππαα⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭6=. 【点睛】 方法点睛:已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 22.(1)1a ≤-,(2)6π 【分析】(1)先对函数()f x 化简变形,然后求出函数()f x 在,32x ππ⎡⎤∈-⎢⎥⎣⎦上的最小值,则可得到实数a 的取值范围;(2)根据题意,利用函数sin()y A x ωϕ=+的图像变换规律,先得到()g x 的解析式,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,再根据正弦函数图像的对称性得到结论 【详解】解:(1)21()cos cos 22f x x x x π⎛⎫=++-⎪⎝⎭21cos (2sin 1)2x x x =+-12cos 2sin(2)226x x x π=-=-, 若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,则只需min ()f x a ≥即可, 因为,32x ππ⎡⎤∈-⎢⎥⎣⎦,所以552[,]666x πππ-∈-,所以当262x ππ-=-即π6x =-时,()f x 取得最小值为1-,所以1a ≤-, (2)先将()f x 的图像上每个点的纵坐标不变,横坐标变为原来的2倍,可得sin()6y x π=-的图像,然后再向左平移6π个单位得到函数()sin g x x =的图像,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,设为1234,,,x x x x ,则根据对称性可知这4个根关于直线32x π=对称,所以1234342x x x x π+++=,所以12346x x x x π+++= 【点睛】关键点点睛:此题考查三角函数恒等变换、正弦函数的定义域和值域,函数恒成立问题,函数sin()y A x ωϕ=+的图像变换规律,第2问解题的关键是运用正弦函数的对称性进行求解,属于中档题 23.(1)45;(2)34-. 【分析】(1)先求出4cos 5α=,再利用诱导公式和同角的三角函数的基本关系化简后可得所求的值.(2)先求出3tan 4α=-,再利用倍角公式和同角的三角函数的基本关系化简后可得所求的值.【详解】(1)因为3sin 5α=-,且α为第四象限角,故4cos 5α=. 原式()cos sin cos t 45an cos ααααα===-⋅-. (2)由(1)得4cos 5α=,故3tan 4α=- 原式222sin cos 2sin sin tan =2sin cos 2cos cos 34ααααααααα==+-+=. 【点睛】思路点睛:三角函数的中的化简求值问题,我们往往从次数的差异、函数名的差异、结构的差异和角的差异去分析,处理次数差异的方法是升幂降幂法,解决函数名差异的方法是弦切互化,而结构上差异的处理则是已知公式的逆用等,最后角的差异的处理则往往是用已知的角去表示未知的角.24.(1)()2cos f x x =;(2)4.【分析】(1)先对函数化简变形可得cos 2y x =,再由三角函数图像变换规律可求出()f x 的解析式;(2)由已知条件可得cos cos 3αβ=,sin sin 6αβ=-2()2tan 3tan 1g x x x =+-,然后令tan [1,1]t x =∈-,则2()231h t t t =+-,从而可求出其最值【详解】(1)原函数化简得到2sin 2cos cos 2sin 2cos 266y x x x x ππ⎡⎤=+=⎢⎥⎣⎦, 将cos 2y x =图像上所有点的纵坐标伸长为原来的2倍(横坐标不变),可得2cos2y x =,再将2cos2y x =的图像横坐标伸长为原来的2倍(纵坐标不变)得到2cos y x =所以()2cos f x x =.(2)由题意知cos cos 3αβ=, 因为4παβ+=所以cos()cos cos sin sin 2αβαβαβ+=-=,解得sin sin 6αβ=-()g x =.222sin cos cos sin cos sin()cos sin sin cos x x x x xαβαβαβ⎤+++⎣⎦=222sin sin cos cos cos x x x x x⎤⎛++⋅⎥ ⎥⎝⎭⎣⎦= 22tan 3tan 1x x =+-令tan [1,1]t x =∈-,2()231h t t t =+-, 则对称轴为34t =-.所以max ()(1)4h t h ==. 【点睛】 关键点点睛:此题考查三角恒等变换公式的应用,考查三角函数图像变换规律,考查数学转化思想,解题的关键是由()()3f f αβ⋅=求出cos cos 3αβ=,再对4παβ+=两边取余弦化简可求出sin sin 6αβ=-()g x 化简可得2()2tan 3tan 1g x x x =+-,再利用换元法可求得结果,属于中档题25.(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭;(2)5ππ11ππ,242242k k ⎡⎤++⎢⎥⎣⎦,k Z ∈,对称轴方程为5π244k x π=+,k Z ∈. 【分析】 (1)先利用图象解得周期和ω,再结合π3f A ⎛⎫=⎪⎝⎭, ()01f =-,解得ϕ和A ,即得解析式;(2)先根据解析式化简()g x ,再利用整体代入法求解单调区间和对称轴方程即可.【详解】解:(1)由图可知7212122T πππ=-=,周期T π=,故22T πω==, 由π12,7π12是函数的两个相邻的零点,则17π2123π12π⎛⎫= ⎪⎭+⎝处取得最大值, 故π2πsin 33f A A ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,得2πsin 13ϕ⎛⎫+= ⎪⎝⎭,即2π2,32k k Z πϕπ+=+∈,又ππ22ϕ-<<,故π6ϕ=-, 由()0sin sin 16f A A πϕ⎛⎫==-=- ⎪⎝⎭,得2A =, 所以()π2sin 26f x x ⎛⎫=- ⎪⎝⎭; (2)()πππππ2sin 22sin 24sin 2cos 262666g x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅--=--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ π4sin 43x ⎛⎫=-- ⎪⎝⎭, 当ππ32π4π2π232k x k +≤-≤+,k Z ∈时,5ππ11ππ242242k k x +≤≤+,()g x 单调递增, 所以()g x 的单调增区间为5ππ11ππ,242242k k ⎡⎤++⎢⎥⎣⎦,k Z ∈, 令ππ4π32x k -=+,对称轴方程为5π244k x π=+,k Z ∈. 【点睛】思路点睛:解决三角函数()sin y A ωx φ=+的图象性质,通常利用正弦函数的图象性质,采用整体代入法进行求解,或者带入验证.26.(1)2-;(2)详见解析.【分析】(1)首先变形sin 20tan 20cos 20=,再通分变形,利用辅助角公式化简求值;(2)利用诱导公式化简正切,即sin tan cos x x x =,代入后化简证明. 【详解】 (1)原式sin 20cos 203cos 20sin 40⎛⎫=-⋅ ⎪⎝ sin 203cos 20cos 20cos 20sin 40⎛⎫-=⋅ ⎪ ⎪⎝⎭ ()2sin 2060cos 20cos 20sin 40-=⋅ 2sin 40cos 20cos 20sin 40-=⋅ 2=- ;(2)原式sin 11tan cos sin 1tan 1cos xx x xx x --==++ ()()()2cos sin cos sin cos sin cos sin cos sin x x x x x x x x x x --==++- ()222222cos sin sin 21sin 2cos sin 1sin sin x x x x x x x x +--==---21sin 212sin x x-=- 【点睛】 思路点睛:三角函数化简求值或证明,如果有正切,正弦和余弦时,第一步先正切化为正弦和余弦公式,第一题通分后利用辅助角公式化简;第二题,也可以左右都化简,证明等于同一个式子.。
高中数学必修4三角函数综合测试题及答案详解(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修4三角函数综合测试题及答案详解(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修4三角函数综合测试题及答案详解(word版可编辑修改)的全部内容。
必修4三角函数综合测试题及答案详解一、选择题1.下列说法中,正确的是( )A.第二象限的角是钝角B.第三象限的角必大于第二象限的角C.-831°是第二象限角D.-95°20′,984°40′,264°40′是终边相同的角2.若点(a,9)在函数y=3x的图象上,则tan错误!的值为()A.0 B。
错误! C.1 D。
错误!3.若|cosθ|=cosθ,|tanθ|=-tanθ,则错误!的终边在()A.第一、三象限B.第二、四象限C.第一、三象限或x轴上D.第二、四象限或x轴上4.如果函数f(x)=sin(πx+θ)(0<θ〈2π)的最小正周期是T,且当x=2时取得最大值,那么( )A.T=2,θ=错误! B.T=1,θ=πC.T=2,θ=π D.T=1,θ=错误!5.若sin错误!=-错误!,且π<x〈2π,则x等于()A。
错误!π B.错误!πC。
错误!π D。
错误!π6.已知a是实数,而函数f(x)=1+a sin ax的图象不可能是( )7.将函数y=sin x的图象向左平移φ(0≤φ〈2π)个单位长度后,得到y=sin错误!的图象,则φ=( )A。
错误! B.错误!C.错误!D.错误!8.若tanθ=2,则错误!的值为( )A.0 B.1C.错误!D.错误!9.函数f(x)=错误!的奇偶性是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数10.函数f(x)=x-cos x在(0,+∞)内( )A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点11.已知A为锐角,lg(1+cos A)=m,lg错误!=n,则lgsin A的值是()A.m+错误!B.m-nC。
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.已知cos θ=-14(-180°<θ<-90°),则cos θ2=( )A .-64B.64C .-38D.38解析: 因为-180°<θ<-90°,所以-90°<θ2<-45°.又cos θ=-14,所以cosθ2=1+cos θ2= 1-142=64,故选B. 答案: B2.已知α∈⎝⎛⎭⎫-π2,0,cos α=45,则tan α2=( )A .3B .-3 C.13D .-13解析: 因为α∈⎝⎛⎭⎫-π2,0,且cos α=45,所以α2∈⎝⎛⎭⎫-π4,0,tan α2=-1-cos α1+cos α=-1-451+45=-13,故选D.3.若α∈⎣⎡⎦⎤7π4,2π,则 1+cos 2α2-1-cos 2α2等于( ) A .cos α-sin α B .cos α+sin α C .-cos α+sin α D .-cos α-sin α解析: ∵α∈⎣⎡⎦⎤7π4,2π, ∴sin α<0,cos α>0,则1+cos 2α2-1-cos 2α2=cos 2α-sin 2α =|cos α|-|sin α|=cos α-(-sin α)=cos α+sin α. 答案: B4.已知sin α+cos α=13,则2cos 2⎝⎛⎭⎫π4-α-1=( )A.89 B.1718 C .-89D .-23解析: ∵sin α+cos α=13,平方可得1+sin 2α=19,可得sin 2α=-89.2cos 2⎝⎛⎭⎫π4-α-1=cos ⎝⎛⎭⎫π2-2α=sin 2α=-89. 答案: C二、填空题(每小题5分,共15分)5.已知tanα2=3,则cos α=________.解析: cos α=cos 2α2-sin 2α2=cos 2α2-sin 2α2cos 2α2+sin 2α2=1-tan 2α21+tan 2α2=1-321+32=-45.答案: -456.若sin α+cos αsin α-cos α=12,则tan 2α等于________.解析: 由sin α+cos αsin α-cos α=12,得2(sin α+cos α)=sin α-cos α, 即tan α=-3.又tan 2α=2tan α1-tan 2α=-61-9=68=34.答案: 347.函数y =32sin 2x +cos 2x 的最小正周期为________. 解析: y =32sin 2x +cos 2x =32sin 2x +cos2x +12=32sin 2x +12cos 2x +12=sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期为π.三、解答题(每小题10分,共20分)8.化简:(1)sin ⎝⎛⎭⎫α+π42cos 2α2+2sin α2cos α2-1. (2)已知π<α<3π2,化简:1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α.解析: (1)原式=sin αcos π4+cos αsinπ4cos α+sin α=22(sin α+cos α)cos α+sin α=22.(2)原式=⎝⎛⎭⎫sin α2+cos α222⎪⎪⎪⎪cosα2-2⎪⎪⎪⎪sin α2+⎝⎛⎭⎫sin α2-cos α222⎪⎪⎪⎪cos α2+2⎪⎪⎪⎪sin α2,∵π<α<3π2,∴π2<α2<3π4.∴cos α2<0,sin α2>0. ∴原式=⎝⎛⎭⎫sin α2+cos α22-2⎝⎛⎭⎫sin α2+cosα2+⎝⎛⎭⎫sin α2-cos α222⎝⎛⎭⎫sin α2-cosα2=-sin α2+cos α22+sin α2-cosα22。
高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。
三角恒等变换(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.函数f (x )=sin 2(2x -π4)的最小正周期是______. 2.sin 15°cos 75°+cos 15°sin 105°=________.3.已知α∈(π2,π),sin α=35,则tan(α+π4)=__________. 4.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是________.5.化简:sin (60°+θ)+cos 120°sin θcos θ的结果为______. 6.已知sin αcos β=1,则sin(α-β)=________.7.若函数f (x )=sin(x +π3)+a sin(x -π6)的一条对称轴方程为x =π2,则a =________. 8.函数y =12sin 2x +sin 2x ,x ∈R 的值域是______. 9.若3sin θ=cos θ,则cos 2θ+sin 2θ的值等于______.10.已知3cos(2α+β)+5cos β=0,则tan(α+β)tan α的值为________.11.若cos θ2=35,sin θ2=-45,则角θ的终边一定落在直线________上. 12.若0<α<π2<β<π,且cos β=-13,sin(α+β)=13,则cos α=________. 13.函数y =sin(x +10°)+cos(x +40°),(x ∈R )的最大值是________.14.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的所有θ的集合为______.二、解答题(本大题共6小题,共90分)15.(14分)已知sin(α+π2)=-55,α∈(0,π). (1)求sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)的值; (2)求cos(2α-3π4)的值.16.(14分)已知函数f (x )=2cos x sin x +23cos 2x - 3.(1)求函数f (x )的最小正周期;(2)求函数f (x )的最大值和最小值及相应的x 的值;(3)求函数f (x )的单调增区间.17.(14分)已知向量a =(cos 3x 2,sin 3x 2),b =(cos x 2,-sin x 2),且x ∈[-π3,π4]. (1)求a ·b 及|a +b |;(2)若f (x )=a ·b -|a +b |,求f (x )的最大值和最小值.18.(16分)已知△ABC 的内角B 满足2cos 2B -8cos B +5=0,若BC →=a ,CA →=b 且a ,b满足:a ·b =-9,|a |=3,|b |=5,θ为a ,b 的夹角.(1)求角B ;(2)求sin(B +θ).19.(16分)已知向量m =(-1,cos ωx +3sin ωx ),n =(f (x ),cos ωx ),其中ω>0,且m ⊥n ,又函数f (x )的图象任意两相邻对称轴的间距为3π2. (1)求ω的值;(2)设α是第一象限角,且f (32α+π2)=2326,求sin (α+π4)cos (4π+2α)的值.20.(16分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin(π2+φ)(0<φ<π),其图象过点(π6,12). (1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在[0,π4]上的最大值和最小值.三角恒等变换1.π2解析 ∵f (x )=12[1-cos(4x -π2)] =12-12sin 4x ∴T =2π4=π2. 2.1解析 原式=sin 15°cos 75°+cos 15°sin 75°=sin 90°=1.3.17解析 ∵α∈(π2,π),sin α=35, ∴cos α=-45, tan α=sin αcos α=-34. ∴tan(α+π4)=1+tan α1-tan α=1-341+34=17. 4.[-π6,0] 解析 f (x )=sin x -3cos x =2sin(x -π3). 令2k π-π2≤x -π3≤2k π+π2(k ∈Z ), 得2k π-π6≤x ≤2k π+5π6(k ∈Z ), 令k =0得-π6≤x ≤5π6. 由此可得[-π6,0]符合题意. 5.32解析 原式=sin 60°cos θ+cos 60°sin θ-12sin θcos θ=sin 60°cos θcos θ=sin 60°=32. 6.1解析 ∵sin αcos β=1,∴sin α=cos β=1,或sin α=cos β=-1,∴cos α=sin β=0.∴sin(α-β)=sin αcos β-cos αsin β=sin αcos β=1.7. 3解析 f (x )=sin(x +π3)-a sin(π6-x ) =sin(x +π3)-a cos(π3+x )=1+a 2sin(x +π3-φ) ∴f (π2)=sin 5π6+a sin π3=32a +12=1+a 2. 解得a = 3.8.⎣⎢⎡⎦⎥⎤1-22,1+22 解析 y =12sin 2x +sin 2x =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22sin(2x -π4)+12, ∵x ∈R , ∴-1≤sin(2x -π4)≤1, ∴y ∈[-22+12,22+12]. 9.75解析 ∵3sin θ=cos θ,∴tan θ=13. cos 2θ+sin 2θ=cos 2θ-sin 2θ+2sin θcos θ=cos 2θ+2sin θcos θ-sin 2θcos 2θ+sin 2θ =1+2tan θ-tan 2θ1+tan 2θ=1+2×13-191+19=75. 10.-4解析 3cos(2α+β)+5cos β=3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)cos α+5sin(α+β)sin α=0,∴2sin(α+β)sin α=-8cos(α+β)cos α, ∴tan(α+β)tan α=-4. 11.24x -7y =0 解析 cos θ2=35,sin θ2=-45,tan θ2=-43, ∴tan θ=2tan θ21-tan 2θ2=-831-169=247. ∴角θ的终边在直线24x -7y =0上.12.429解析 cos β=-13,sin β=223, sin(α+β)=13,cos(α+β)=-223, 故cos α=cos [(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β=(-223)×(-13)+223×13=429. 13.1解析 令x +10°=α,则x +40°=α+30°,∴y =sin α+cos(α+30°)=sin α+cos αcos 30°-sin αsin 30°=12sin α+32cos α =sin(α+60°).∴y max =1.14.⎩⎨⎧⎭⎬⎫θ|θ=2k π+2π3,k ∈Z 解析 ∵f (x )为奇函数,∴f (0)=sin θ+3cos θ=0.∴tan θ=- 3.∴θ=k π-π3,(k ∈Z ). ∴f (x )=2sin(2x +θ+π3) =2sin(2x +k π).当k 为偶数时,f (x )=2sin 2x ,不合题意;当k 为奇数时,f (x )=-2sin 2x ,函数在⎣⎡⎦⎤-π4,0上为减函数. ∴f (x )=-2sin 2x ,∴θ=2π3+2k π,k ∈Z . 15.解 (1)sin(α+π2)=-55,α∈(0,π) ⇒cos α=-55,α∈(0,π)⇒sin α=255. sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)=-cos α-sin αsin α-cos α=-13. (2)∵cos α=-55,sin α=255⇒sin 2α=-45, cos 2α=-35. cos(2α-3π4)=-22cos 2α+22sin 2α=-210. 16.解 (1)原式=sin 2x +3cos 2x =2(12sin 2x +32cos 2x ) =2(sin 2x cos π3+cos 2x sin π3) =2sin(2x +π3). ∴函数f (x )的最小正周期为π.(2)当2x +π3=2k π+π2,即x =k π+π12(k ∈Z )时,f (x )有最大值为2. 当2x +π3=2k π-π2,即x =k π-5π12(k ∈Z )时,f (x )有最小值为-2. (3)要使f (x )递增,必须使2k π-π2≤2x +π3≤2k π+π2(k ∈Z ), 解得k π-5π12≤x ≤k π+π12(k ∈Z ).∴函数f (x )的递增区间为[k π-5π12,k π+π12](k ∈Z ). 17.解 (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x 2=cos 2x , |a +b |=(cos 3x 2+cos x 2)2+(sin 3x 2-sin x 2)2 =2+2cos 2x =2|cos x |,∵x ∈[-π3,π4],∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2(cos x -12)2-32. ∵x ∈[-π3,π4].∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1. 18.解 (1)2(2cos 2B -1)-8cos B +5=0,即4cos 2B -8cos B +3=0,得cos B =12. 又B 为△ABC 的内角,∴B =60°.(2)∵cos θ=a ·b |a |·|b |=-35, ∴sin θ=45. ∴sin(B +θ)=sin B cos θ+cos B sin θ=4-3310. 19.解 (1)由题意,得m ·n =0,所以 f (x )=cos ωx ·(cos ωx +3sin ωx )=1+cos 2ωx 2+3sin 2ωx 2=sin(2ωx +π6)+12. 根据题意知,函数f (x )的最小正周期为3π.又ω>0,所以ω=13. (2)由(1)知f (x )=sin(2x 3+π6)+12,所以f (32α+π2)=sin(α+π2)+12=cos α+12=2326. 解得cos α=513. 因为α是第一象限角,故sin α=1213. 所以sin (α+π4)cos (4π+2α)=sin (α+π4)cos 2α=22sin α+22cos αcos 2α-sin 2α=22(cos α-sin α)=-13214. 20.解 (1)因为f (x )=12sin 2x sin φ+cos 2x cos φ-12sin(π2+φ)(0<φ<π), 所以f (x )=12sin 2x sin φ+1+cos 2x 2cos φ-12cos φ =12sin 2x sin φ+12cos 2x cos φ =12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). 又函数图象过点(π6,12),所以12=12cos(2×π6-φ),即cos(π3-φ)=1, 又0<φ<π,所以φ=π3. (2)由(1)知f (x )=12cos(2x -π3),将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,可知g (x )=f (2x )=12cos(4x -π3), 因为x ∈[0,π4],所以4x ∈[0,π], 因此4x -π3∈[-π3,2π3], 故-12≤cos(4x -π3)≤1. 所以y =g (x )在[0,π4]上的最大值和最小值分别为12和-14.。
三角函数、三角恒等变换及解三角形2. (必修4P 39第2题改编)将函数y =sinx 的图象上所有的点向右平行移动 π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是____________________.答案:y =sin ⎝ ⎛⎭⎪⎫12x -π10 解析:∵ 向右平移π10个单位,∴ 用x -π10代替y =sinx 中的x ;∵ 各点横坐标伸长到原来的2倍,∴ 用12x 代替y =sin ⎝ ⎛⎭⎪⎫x -π10中的x ,∴ y =sin ⎝ ⎛⎭⎪⎫12x -π10.3. “五点法”作图“五点法”作图原理:在确定正弦函数y =sinx 在[0,2π]上的图象形状时,起关键作用的五个点是(0,0)、⎝ ⎛⎭⎪⎫π2,1、(π,0)、⎝ ⎛⎭⎪⎫3π2,-1、 (2π,0). 题型1 依据三角函数的图象求解析式例1 已知函数f(x)=2sin (ωx+φ)(ω>0)的部分图象如图所示,则ω=________.答案:23解析:由图象可知函数的四分之三周期为15π8-⎝ ⎛⎭⎪⎫-3π8=34T ,T =3π,ω=2π3π=23.变式训练已知函数y =Asin (ωx+φ)(A>0,ω>0,|φ|<π2)的部分图象如图所示,则ω=________.答案:3解析:由图知,A =2,将(0,2)、⎝ ⎛⎭⎪⎫π12,2代入函数,得⎩⎪⎨⎪⎧2sin ⎝ ⎛⎭⎪⎫π12w +φ=2,2sin φ=2,∴ ⎩⎪⎨⎪⎧φ=π4,ω=3.题型2 三角函数的图象变换已知函数f(x)=23·sin ⎝ ⎛⎭⎪⎫x 2+π4cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π). (1) 求f(x)的最小正周期;(2) 若将f(x)的图象向右平移π6个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.解:(1) 因为f(x)=3sin ⎝ ⎛⎭⎪⎫x +π2+sinx =3cosx +sinx =2⎝ ⎛⎭⎪⎫32cosx +12sinx =2sin ⎝ ⎛⎭⎪⎫x +π3,所以f(x)的最小正周期为2π.(2) ∵ 将f(x)的图象向右平移π6个单位,得到函数g(x)的图象,∴ g(x)=f ⎝⎛⎭⎪⎫x -π6=2sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -π6+π3=2sin ⎝ ⎛⎭⎪⎫x +π6.∵ x ∈[0,π],∴ x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴ 当x +π6=π2,即x =π3时,sin ⎝ ⎛⎭⎪⎫x +π6=1,g(x)取得最大值2.当x +π6=7π6,即x =π时,sin ⎝ ⎛⎭⎪⎫x +π6=-12,g(x)取得最小值-1. 题型3 五点法作图例3 已知a =(2cosx ,cos2x),b =(sinx ,-3),f(x)=a ·b .(1) 求f(x)的振幅、周期,并画出它在一个周期内的图象; (2) 说明它可以由函数y =sinx 的图象经过怎样的变换得到.解:(1) f(x)=a ·b =sin2x -3cos2x =2sin ⎝⎛⎭⎪⎫2x -π3,周期T =π,,图象如下:(2) f(x)可以由y =sinx 的图象上各点右移π3个单位后,再将纵坐标伸长到原来的2倍,横坐标缩短到原来的12而得到.变式:已知f(x)=cos(ωx+φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32. (1) 求ω和φ的值;(2) 在给定坐标系中作出函数f(x)在[0,π]上的图象; (3) 若f(x)>22,求x 的取值范围.解:(1) 周期T =2πω=π,∴ω=2,∵f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=cos ⎝ ⎛⎭⎪⎫π2+φ=-sinφ=32,-π2<φ<0,∴φ=-π3.(2) f(x)=cos ⎝⎛⎭⎪⎫2x -π3,列表如下: 2x -π3-π30 π2 π 32π 53π x 0 π6 512π 23π 1112π π f(x) 121-112图象如图:(3)∵cos ⎝ ⎛⎭⎪⎫2x -π3>22, ∴2k π-π4<2x -π3<2k π+π4,∴2k π+π12<2x<2k π+7π12,∴k π+π24<x<k π+7π24,k ∈Z ,∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫kπ+π24<x<kπ+7π24,k ∈Z .题型4 函数y =Asin (ωx+φ)的图象与性质的综合应用例4 已知函数f(x)=Asin (ωx+φ)(其中A >0,ω>0,0<φ<π2)的周期为π,且图象上有一个最低点为M ⎝⎛⎭⎪⎫2π3,-3.(1) 求f(x)的解析式;(2) 求函数y =f(x)+f ⎝⎛⎭⎪⎫x +π4的最大值及对应x 的值.解:(1) 由2πω=π,得ω=2.由最低点为M ⎝⎛⎭⎪⎫2π3,-3,得A =3.且2×2π3+φ=3π2+2k π(k∈Z ),0<φ<π2,∴ φ=π6.∴ f(x)=3sin ⎝⎛⎭⎪⎫2x +π6.(2) y =f(x)+f ⎝⎛⎭⎪⎫x +π4=3sin ⎝ ⎛⎭⎪⎫2x +π6+3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4+π6=3sin ⎝ ⎛⎭⎪⎫2x +π6+3cos ⎝ ⎛⎭⎪⎫2x +π6=32sin ⎝ ⎛⎭⎪⎫2x +5π12, ∴ y max =3 2.此时,2x +5π12=2k π+π2,即x =k π+π24,k ∈Z .2. 若函数f(x)=Asin(2x +φ)(A>0,-π2<φ<π2)的部分图象如图所示,则f(0)=________.答案:-1解析:由图象可知A =2,f ⎝ ⎛⎭⎪⎫π3=2,即f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2×π3+φ=2,所以sin ⎝ ⎛⎭⎪⎫2π3+φ=1,即2π3+φ=π2+2k π,k ∈Z ,所以φ=-π6+2k π,k ∈Z .因为-π2<φ<π2,所以当k =0时,φ=-π6,所以f(x)=2sin ⎝ ⎛⎭⎪⎫2x -π6,即f(0)=2sin ⎝ ⎛⎭⎪⎫-π6=2×⎝ ⎛⎭⎪⎫-12=-1.3. (2013·新课标)已知ω>0,函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx+π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案:⎣⎢⎡⎦⎥⎤12,54 解析:由π2+2k π≤π2ω+π4<πω+π4≤3π2+2k π,k ∈Z ,得12+4k≤ω≤54+2k ,k ∈Z .∵ ω>0,∴ 12≤ω≤54.4. 已知角φ的终边经过点P(1,-1),点A(x 1,y 1)、B(x 2,y 2)是函数f(x)=sin (ωx+φ)(ω>0)图象上的任意两点.若|f(x 1)-f(x 2)|=2时,|x 1-x 2|的最小值为π3,则f ⎝ ⎛⎭⎪⎫π2=________. 答案:-22解析:结合三角函数图象,知道函数的最小正周期为2π3,ω=3,角φ的终边经过点P(1,-1),取φ=-π4,f(x)=sin ⎝⎛⎭⎪⎫3x -π4,f ⎝ ⎛⎭⎪⎫π2=sin 5π4=-22. 2.已知函数f(x)=2sin ⎝⎛⎭⎪⎫2x +π4.(1) 求函数y =f(x)的最小正周期及单调递增区间;(2) 若f ⎝⎛⎭⎪⎫x 0-π8=-65,求f(x 0)的值. 解:(1) T =2π2=π,增区间为⎣⎢⎡⎦⎥⎤-38π+k π,18π+k π,k ∈Z .(2) f ⎝ ⎛⎭⎪⎫x 0-π8=-65,即sin(2x 0)=-35,所以cos(2x 0)=±45,f(x 0)=2sin ⎝ ⎛⎭⎪⎫2x 0+π4=2(sin2x 0+cos2x 0)=25或-725. 3. 已知a >0,函数f(x)=-2asin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f(x)≤1.(1) 求常数a 、b 的值;(2) 设g(x)=f ⎝⎛⎭⎪⎫x +π2且lgg(x)>0,求g(x)的单调区间.解:(1) ∵ x∈⎣⎢⎡⎦⎥⎤0,π2,∴ 2x +π6∈⎣⎢⎡⎦⎥⎤π6,76π. ∴ sin ⎝⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴-2asin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a],∴f (x)∈[b,3a +b]. 又∵-5≤f(x)≤1,∴b =-5,3a +b =1,因此a =2,b =-5. (2) 由(1)知a =2,b =-5,∴ f(x)=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1,g(x)=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1.又由lgg(x)>0,得g(x)>1,∴ 4sin ⎝⎛⎭⎪⎫2x +π6-1>1,∴ sin ⎝⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z .由2kπ+π6<2x +π6≤2k π+π2(k∈Z ),得g(x)的单调增区间为⎝ ⎛⎦⎥⎤kπ,k π+π6(k∈Z ).由2kπ+π2≤2x +π6<2kπ+5π6,得g(x)的单调减区间为⎣⎢⎡⎭⎪⎫kπ+π6,k π+π3(k∈Z ).4. 设a =⎝⎛⎭⎪⎫sin2π+2x4,cosx +sinx ,b =(4sinx ,cosx -sinx),f(x)=a·b . (1) 求函数f(x)的解析式;(2) 已知常数ω>0,若y =f(ωx)在区间⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,求ω的取值范围;(3) 设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π6≤x≤23π,B ={x||f(x)-m|<2},若AB ,求实数m 的取值范围.解:(1) f(x)=sin2π+2x4·4sinx +(cosx +sinx)·(cosx-sinx) =4sinx·1-cos ⎝ ⎛⎭⎪⎫π2+x 2+cos2x=2sinx(1+sinx)+1-2sin 2x =2sinx +1, 所以所求解析式为f(x)=2sinx +1. (2) ∵f(ωx)=2sinωx+1,ω>0, 由2kπ-π2≤ωx ≤2k π+π2,得f(ωx)的增区间是⎣⎢⎡⎦⎥⎤2kπω-π2ω,2k πω+π2ω,k ∈Z . ∵f (ωx)在⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,∴⎣⎢⎡⎦⎥⎤-π2,2π3⎣⎢⎡⎦⎥⎤-π2ω,π2ω. ∴-π2≥-π2ω且2π3≤π2ω,∴ω∈⎝ ⎛⎦⎥⎤0,34. (3) 由|f(x)-m|<2,得-2<f(x)-m <2, 即f(x)-2<m <f(x)+2. ∵AB ,∴当π6≤x ≤23π时,不等式f(x)-2<m <f(x)+2恒成立.∴f(x)max -2<m <f(x)min +2,∵f(x)max =f ⎝ ⎛⎭⎪⎫π2=3,f(x)min =f ⎝ ⎛⎭⎪⎫π6=2, ∴m ∈(1,4).例1 已知sin ⎝ ⎛⎭⎪⎫A +π4=7210,A ∈⎝ ⎛⎭⎪⎫π4,π2.(1) 求cosA 的值;(2) 求函数f(x)=cos2x +52sinAsinx 的值域.解:(1) 因为π4<A<π2,且sin ⎝ ⎛⎭⎪⎫A +π4=7210,所以π2<A +π4<3π4,cos ⎝⎛⎭⎪⎫A +π4=-210.所以cosA =cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫A +π4-π4=cos ⎝ ⎛⎭⎪⎫A +π4cos π4+sin ⎝⎛⎭⎪⎫A +π4sin π4=-210·22+7210·22=35. (2) 由(1)可得sinA =45.所以f(x)=cos2x +52sinAsinx=1-2sin 2x +2sinx =-2⎝⎛⎭⎪⎫sinx -122+32,x ∈R .因为sinx ∈[-1,1],所以,当sinx =12时,f(x)取最大值32;当sinx =-1时,f(x)取最小值-3.所以函数f(x)的值域为⎣⎢⎡⎦⎥⎤-3,32. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,C =π3,a =5,△ABC 的面积为10 3. (1) 求b ,c 的值;(2) 求cos ⎝⎛⎭⎪⎫B -π3的值.解:(1) 由已知,C =π3,a =5,因为S △ABC =12absinC ,即103=12b ·5sin π3,解得b =8.由余弦定理可得:c 2=25+64-80cos π3=49, 所以c =7.(2) 由(1)有cosB =25+49-6470=17,由于B 是三角形的内角,易知sinB =1-cos 2B =437,所以cos ⎝⎛⎭⎪⎫B -π3=cosBcos π3+sinBsin π3=17×12+437×32=1314.例4 已知向量m =⎝ ⎛⎭⎪⎫sinA ,12与n =(3,sinA +3cosA)共线,其中A 是△ABC 的内角.(1) 求角A 的大小;(2) 若BC =2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状. 解:(1) 因为m∥n ,所以sinA ·(sinA +3cosA)-32=0.所以1-cos2A 2+32sin2A -32=0,即32sin2A -12cos2A =1, 即sin ⎝ ⎛⎭⎪⎫2A -π6=1.因为A∈(0,π),所以2A -π6∈⎝ ⎛⎭⎪⎫-π6,11π6.故2A -π6=π2,A =π3.(2) 由余弦定理,得4=b 2+c 2-bc. 又S △ABC =12bcsinA =34bc ,而b 2+c 2≥2bcbc +4≥2bc bc ≤4(当且仅当b =c 时等号成立),所以S △ABC =12bcsinA =34bc≤34×4= 3.当△ABC 的面积取最大值时,b =c.9.在锐角△ABC 中,m =(1,cosB),n =(sinB ,-3),且m⊥n .(1) 求角B 的大小;(2) 若△ABC 面积为103,b =7,求此三角形周长.解:(1) m·n =sinB -3cosB ,∵ m ⊥n ,∴ m ·n =0, ∴ sinB -3cosB =0.∵ △ABC 为锐角三角形,∴ cosB ≠0,∴ tanB = 3.∵ 0<B<π2,∴ B =π3.(2) ∵ S △ABC =12acsinB =34ac ,由题设34ac =103,2=a 2+c 2-2accosB ,得49=a 2+c 2-ac ,∴ (a+c)2=(a 2+c 2-ac)+3ac =49+120=169.∴ a+c =13,∴ 三角形周长是20.。
5山东省莱州一中高一数学试题-三角恒等变换测试题第I 卷、选择题(本大题共 12个小题,每小题5分,共60分)4.已知 tan 3,tan44A-B — C775.,都是锐角,且sin513 3316 A 、 B— 65651 3A 0,1B 1,1C 丄,32 21、cos 24 cos36 cos66 cos54 的值为(3 2. cos 5 ,,sin 212 13是第三象限角,则 cos (33 6563 6556 6516 653. tan 20 tan 40 • 3tan20 tan 40 的值为(5,则 tan 2的值为()11— D — 8 4 8则sin 的值是(55663 C 、 D 、 — 6565C - 3D .3)6., x (34 ,)且 cos x 3 —则cos2x 的值是 54 472424A 、 —B 、 —C 、25 2525251,144 7.函数y sin x cos x 的值域是(8.已知等腰三角形顶角的余弦值等于4,则这个三角形底角的正弦值为()J10 V10 3J10 3J10AB C D10 10 10 109.要得到函数y 2sin 2x的图像,只需将y , 3sin 2x cos2x的图像()A、向右平移一个单位B、向右平移一个单位C向左平移—个单位D向左平移—个单位6 12 6 12 10. 函数y .x sin 、3 cos的图像的一条对称轴方程是( )2 2A、1 5 5x B 、x C 、x D 、x —3 3 3 311. 已知1cosx sin x2,则tanx的值为( )1 cosx sin xA、4B4 3 3、-- C 、 D 、3 34 412若0,—0, 且ta n 「tan -,则2 ( )4 2 7A、5 2 7 3B 、C 、D 、6 3 12 4二、填空题(本大题共 4 小题,每小题5分,共20分.请把答案填在题中的横线上)13. .在ABC中,已知tanA ,tanB是方程3x2 7x 2 0的两个实根,则tanC _______________3sin 2x 2cos 2x 砧14. 已知tanx 2,贝U 的值为_____________________cos2x 3sin 2x15. 已知直线IJ/12, A是"J之间的一定点,并且A点到「J的距离分别为0山2 , B是直线I?上一动点,作AC AB,且使AC与直线|1交于点C,则ABC面积的最小值为___________________ 。
一、 填空题1. 若cos 2α2sin (α+135°)=-12,则sin α+cos α的值为__________.2. 已知sin 2α=35⎝⎛⎭⎫π2<2α<π,tan (α-β)=12,则tan (α+β)=________.3. 已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y =2x 上,则sin ⎝⎛⎭⎫2θ+π4的值为__________.4. 已知tan (3π-α)=2,则2cos 2α2-sin α-1sin α+cos α=________.5. 若tan θ=3,则sin 2θ1+cos 2θ=__________.6. 如果|cos θ|=15,5π2<θ<3π,那么sin θ2的值是__________.7. 若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=__________.8. 函数f(x)=cos 2x -3sin x +1(0<x<2π)的零点是__________.9. 已知向量a =(sin θ,1),b =(cos θ,-2),θ为第二象限角.若a ∥b ,则5-cos 2θ1-cos 2θ+3tan 2θ=________.10. 已知α,β均为锐角,且cos (α+β)=sin αsin β,则tan α的最大值是________.二、 解答题 11. 求值:(1) (tan 10°-3)cos 10°sin 50°;(2) ⎝⎛⎭⎫1cos 280°—3cos 210°·1cos 20°.12已知tan ⎝⎛⎭⎫α+π4=-3,求2sin αcos αsin 2α-sin αcos α+1的值.13已知函数f(x)=sin ⎝⎛⎭⎫2x -π4-22·sin 2x.(1) 求函数f(x)的最小正周期;(2) 求函数f(x)图象的对称轴方程、对称中心的坐标;(3) 当0≤x ≤π2时,求函数f(x)的最大、最小值.1. -12解析:由已知得cos 2α-sin 2α-sin α+cos α=(cos α+sin α)(cos α-sin α)-sin α+cos α=cos α+sin α=-12.2. -2 解析:由题意,可得cos 2α=-45,则tan 2α=-34,tan (α+β)=tan [2α-(α-β)]=tan 2α-tan (α-β)1+tan 2αtan (α-β)=-2.3. 210 解析:由三角函数的定义得tan θ=2,cos θ=±55,所以tan 2θ=2tan θ1-tan 2θ=-43,cos 2θ=2cos 2θ-1=-35,所以sin 2θ=cos 2θtan 2θ=45,所以sin (2θ+π4)=22(sin 2θ+cos 2θ)=22×(45-35)=210.4. -3 解析:由诱导公式得tan (3π-α)=-tan α=2,故2cos 2α2-sin α-1sin α+cos α=cos α-sin αsin α+cos α=1-tan αtan α+1=-3.5. 3 解析:sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3.6. -155 解析:∵ 5π2<θ<3π,|cos θ|=15,∴ cos θ<0,cos θ=-15.∵ 5π4<θ2<32π,∴ sin θ2<0.又sin 2θ2=1-cos θ2=35,∴ sin θ2=-155.7. -12 解析:∵ α是第三象限角,cos α=-45,∴ sin α=-35.∴ 1+tan α21-tan α2=cos α2+sinα2cos α2-sinα2=⎝⎛⎭⎫cos α2+sin α2⎝⎛⎭⎫cos α2+sin α2⎝⎛⎭⎫cos α2-sin α2⎝⎛⎭⎫cos α2+sin α2 =1+sin αcos α=1-35-45=-12.8. π6或5π6解析:令f(x)=0,得1-2sin 2x -3sin x +1=0,2sin 2x +3sin x -2=0,(sin x +2)(2sin x -1)=0,∵ -1≤sin x ≤1,sin x +2≠0,∴ 2sin x -1=0,即sin x =12.又0<x<2π,∴ x =π6或5π6.9. 7 解析:∵ a ∥b ,∴ -2sin θ-cos θ=0,∴ tan θ=-12.又5-cos 2θ1-cos 2θ+3tan 2θ=2+sin 2θsin 2θ+6tan θ1-tan 2θ=3sin 2θ+2cos 2θsin 2θ-4=3+2tan 2θ-4=7. 10. 24解析:由已知得sin α=cos (α+β)sin β=cos αcos βsin β-sin αsin βsin β,两边同除以cos α,并整理得tan α=sin βcos β1+sin 2β=sin 2β3-cos 2β=0-(-sin 2β)3-cos 2β,∵ α,β均为锐角,∴ 0-(-sin 2β)3-cos 2β可以看成是单位圆的下半圆上的动点(cos 2β,-sin 2β)与定点(3,0)连线的斜率,其最大斜率为132-1=24.11. 解:(1) 原式=⎝⎛⎭⎫sin 10°cos 10°-3cos 10°sin 50°=sin 10°-3cos 10°cos 10°·cos 10°sin 50°=-2cos 40°sin 50°=-2.(2) ∵ 1cos 280°-3cos 210°=cos 210°-3cos 280°cos 280°cos 210°=(cos 10°+3sin 10°)(cos 10°-3sin 10°)cos 210°sin 210°=4(sin 30°cos 10°+cos 30°sin 10°)(sin 30°cos 10°-cos 30°sin 10°)cos 210°sin 210°=4sin 40°sin 20°14sin 220°=16sin 40°sin 20°=32cos 20°,∴ 原式=32.12. 解:∵ tan α=tan ⎝⎛⎭⎫α+π4-π4=tan ⎝⎛⎭⎫α+π4-11+tan ⎝⎛⎭⎫α+π4=2,∴ 2sin αcos αsin 2α-sin αcos α+1=2sin αcos αsin 2α-sin αcos α+sin 2α+cos 2α=2tan α2tan 2α-tan α+1=47. 13. 解:f(x)=22sin 2x -22cos 2x -22·1-cos 2x 2=22sin 2x +22cos 2x -2=sin ⎝⎛⎭⎫2x +π4- 2.(1) 函数f(x)的最小正周期为π.(2) 令2x +π4=k π+π2(k ∈Z ),得x =12k π+π8,所以函数f(x)图象的对称轴方程是x=12k π+π8(k ∈Z ). 令2x +π4=k π(k ∈Z ),得x =12k π-π8,所以函数f(x)图象的对称中心的坐标是(12k π-π8,-2)(k ∈Z ). (3) 当0≤x ≤π2时,π4≤2x +π4≤5π4,-22≤sin ⎝⎛⎭⎫2x +π4≤1,所以当x =π2时,f(x)取最小值-322,当x =π8时,f(x)取最大值为1- 2.。
三角函数总复习
一、选择题
1、sin (-
6π19)的值是( ) A . 21 B .-21 C .23 D .-2
3 2.若α是第二象限角,且3
2sin =α,=αcos ( ) A 、31 B 、31- C 、35 D 、3
5- 3.函数y=sin2xcos2x 的最小正周期是( )
A.2π
B. 4π
C.
4π D.2π 4、函数)252sin(π+
=x y 的图像的一条对称轴方程是( ) A 、2π
-=x B 、4π
-=x C 、8π
=x D 、4
5π=x 5、函数)4sin(π+
=x y 的单调递增区间是( ) A 、],2[ππ B 、]4,0[π C 、 ]0,[π- ]2,4[π
π 6、用五点法作x y 2sin 2=的图象时,首先应描出的五点的横坐标可以是( )
A .ππππ
2,23,,2,0 B.ππππ,4
3,2,4,0 C .ππππ4,3,2,,0 D .32,2,3,6,0ππππ
7、θ是第二象限角,且满足cos sin 22θ
θ
-=2θ是 ( )象限角 A 第一 B 第二 C 第三 D 可能是第一,也可能是第三
8、如果函数)20).(sin()(πθθπ<<+=x x f 的最小正周期是T ,且当2=x 时取得最大值,那么( )
A 、T =2 2
π
θ= B 、T =1,πθ= C 、T =2,πθ= D 、T =1,2πθ= 9、函数)4(sin )4(sin 22π
π
--+=x x y 是( )
A 、周期为π的奇函数
B 、周期为π的偶函数
C 、周期为π2的奇函数
D 、周期为π2的偶函数
10、已知sin 2α
=,sin()2αβ-=(0,),(0,)2παπβ∈∈,则β等于( )
A
34π B 3π C 4π D 6
π 11.已知3sin(),45
x π-=则sin 2x 的值为 ( ) (A) 1925 (B)1625 (C)1425 (D) 725
12、若cos 2θ,则44sin cos θθ+的值为( ) A 1318 B 1118 C 79 D 49
13、已知函数()sin()(,0)4f x x x R π
ωω=+∈>的最小正周期为π,将()y f x =的图像向左平移ϕ
个单位长度,所得图像关于y 轴对称,则ϕ的一个值是( )
A 2π
B 38π
C 4π
D 8
π 14、函数)0)(sin()(>+=ωϕωx M x f 在区间],[b a 上是增函数,且M b f M a f =-=)(,)(, 则)cos()(ϕω+=x M x g 在],[b a 上 ( )
A 是增函数
B 是减函数
C 可以取得最大值M
D 可以取得最小值M -
15.函数),2
,0)(sin(R x x A y ∈π<
ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为 ( ) (A ))48sin(
4π+π-=x y (B ))4
8sin(4π-π=x y (C ))48sin(4π-π-=x y (D ))48sin(4π+π=x y
16.设212tan13cos66,,21tan 13a b c ===+ 则有( ) (A)a b c >> (B)a b c << (C) b c a << (D) a c b <<
二、填空题
17.在角集合⎭
⎬⎫⎩⎨⎧∈+==Z ,43k k M ππαα,终边位于π4-到π2-之间的角为_______ 18.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是
19.已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<
>),y =)(x f 的部分图像如下图,则=)24(π
f .
20.已知,32cos sin -
=-βα32sin cos -=-βα,则=+)sin(βα 21.设角35
,6απ=-则22
2sin()cos()cos()
1sin sin()cos ()παπαπααπαπα+--+++--+的值等于______________. 22.若方程a x x =+cos sin 3在]2,0[π上恰有两个不同的实数解,则a 的取值范围为________
三、解答题
23、已知tan 2,tan 3αβ==,又,(0,
)2παβ∈,求αβ+
24、求值:)5tan 5tan 1(10sin 20sin 220cos 1︒-︒
⋅︒-︒︒+
25.(本小题满分12分)
已知函数f (x )=x
x cos 2sin 1- (Ⅰ)求f (x )的定义域;(Ⅱ)设α是第四象限的角,且tan α=34-
,求f (α)的值
26、已知函数()sin()f x A x ωϕ=+,
x R ∈ (其中0,0,02A πωϕ>><<)的图像与x 轴的交点中,相邻两个交点之间的距离均为2
π,且图像上一个最低点为2(,2)3M π- (1) 求()f x 的解析式,并指出它的振幅、初相、相位和频率。
(2) 如何将x y sin =的图像变换得到函数)(x f
(3) 当,122x ππ⎡⎤∈⎢
⎥⎣
⎦时,求()f x 的值域
27、设函数2()sin cos f x x x x a ωωω=++(其中0,a R ω>∈),且()f x 的图象在y 轴右侧的第一个最高点的横坐标为6
π。
(Ⅰ)求ω的值;(Ⅱ)如果()f x 在区间5[,]36
ππ-a 的值。
1~5 ADDAB 6~10 BCAAC
11~16 DBBCAD
二、填空题
17、3
13,4ππ-- 18、2 19 3 20、32 21、3
34 22、(-2,1)∪(1,2) 三、解答题
,24、原式
=
22222cos 101tan 52sin102sin 102tan 5cos 10cos102sin102sin10cos10sin10cos102cos10sin10cos102sin 202sin10cos102sin 30cos102cos30sin102sin102
︒-︒=-︒︒︒
︒︒=-︒︒︒︒
︒=-︒︒︒-︒=︒
︒-︒︒+︒︒=︒
= 25、
26、(1)因为相邻的两个交点之间的距离为π/2,所以 周期T=π/2*2=π
又图像上一个最低点为M(2π/3,-2)
有A=2
即f(x)=2sin(2x+φ)过M(2π/3,-2),
所以-2=2sin(2*2π/3+φ)
2*2π/3+φ=3/2π
φ=π/6,所以 f(x)的解析式
f(x)=2sin(2x+π/6)
(2)当x∈[π/12,π/2],
根据图象可知
2x+π/6=π/2时取最大值2(此时x=π/6可以) x=π/2时取最小值-1
所以f(x)的值域为[-1,2]
f(x)的值域为
27。