2018届高三教学质量检测试卷(二模)文科数学试题 含答案
- 格式:doc
- 大小:2.37 MB
- 文档页数:9
2018届黑龙江省大庆市高三第二次教学质量检测文科数学试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D.【答案】B【解析】,,故选.2. 复数( )A. B. C. D.【答案】C【解析】,故选C.3. 若满足,则的最大值为( )A. 1B. 3C. 9D. 12【答案】C【解析】根据不等式组画出可行域如图所示:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最大,此时,有最大值为.故选C.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4. 已知,则( )A. -6B. 6C.D.【答案】A【解析】原式.故选A.5. 已知等差数列中,,则( )A. 3B. 7C. 13D. 15【答案】D【解析】由于数列为等差数列,依题意得.解得,所以.6. 执行下面的程序框图,则输出的=( )A. B.C. D.【答案】C【解析】模拟程序的运行过程,分析循环中各变量值的变化情况,可得程序的作用是求和.故选C.7. 已知是两个不同的平面,是两条不重合的直线,则下列命题中错误的是( )A. 若,则B. 若,则C. 若,则D. 若,则与所成的角和与所成的角相等【答案】B【解析】B选项错误.如下图所示,平面,平面与平面相交于,但是与不平行.故选B.8. 在古代,直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.三国时期吴国数学家赵爽用“弦图”( 如图) 证明了勾股定理,证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实.”这里的“实”可以理解为面积.这个证明过程体现的是这样一个等量关系:“两条直角边的乘积是两个全等直角三角形的面积的和(朱实二 ),4个全等的直角三角形的面积的和(朱实四) 加上中间小正方形的面积(黄实) 等于大正方形的面积(弦实)”. 若弦图中“弦实”为16,“朱实一”为,现随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为( )A. B. C. D.【答案】D【解析】∵弦图中“弦实”为16,“朱实一”为∴大正方形的面积为16,一个直角三角形的面积为设“勾”为,“股”为,则,解得或.∵∴,即.∴∴小正方形的边长为∴随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为.故选D.9. 已知双曲线的左顶点为,过双曲线的右焦点作轴的垂线交于点,点位于第一象限,若为等腰直角三角形,则双曲线的离心率为( )A. B. 2 C. D.【答案】B【解析】依题意得,由于三角形为等腰直角三角形,则,,两边除以得,解得.故选B.10. 某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A. B. C. D.【答案】C【解析】由三视图可知,该几何体为三棱锥,可以看作正方体的一个角.故其外接球直径为正方体的对角线,即,所以外接球的体积为,故选C.【点睛】本小题主要考查几何体外接球的表面积与体积有关的知识.在求有关几何体外接球有关的题目中,有一种类型是将几何体补形成长方体或者正方体的题目.如本题中,几何体为三棱锥,恰好是正方体的一个角,故三棱锥的外接球,恰好为正方体的外接球.再结合正方体对角线的求法求得外接球的直径,进而求得外接球的表面积.11. 下面是追踪调查200个某种电子元件寿命(单位:)频率分布直方图,如图:其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )①寿命在300-400的频数是90;②寿命在400-500的矩形的面积是0.2;③用频率分布直方图估计电子元件的平均寿命为:④寿命超过的频率为0.3A. ①B. ②C. ③D. ④【答案】B【解析】若①正确,则对应的频率为,则对应的频率为,则②错误;电子元件的平均寿命为,则③正确;寿命超过的频率为,则④正确,故不符合题意;若②正确,则对应的频率为,则①错误;电子元件的平均寿命为,则③错误;寿命超过的频率为,则④错误,故符合题意.故选B.12. 设函数,则使得成立的的取值范围是( )A. B.C. D.【答案】A【解析】当时,,且为增函数.同理当时,,所以函数为偶函数.故函数关于轴对称,且左减右增.要使,则需,两边平方化简得,解得,故选A.【点睛】本小题主要考查函数的图象与性质,考查利用函数的奇偶性解不等式.得到一个函数,要首先研究函数的定义域,接着研究函数的奇偶性及单调性等等知识.通过观察可发现函数符合偶函数的定义,即.通过定义验证可知,函数为偶函数,根据图象的对称性列不等式可求得的取值范围.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数,这个函数的图象在处的切线方程为__________.【答案】.【解析】切点为,,即斜率为,由点斜式得.14. 已知,若,则的最大值为__________.【答案】0.【解析】..15. 已知数列的前项和为,若,则__________.【答案】.【解析】当时,,解得.当时,,两式相减得,即,数列是公比为的等比数列,故.当时上式也满足,故.16. 已知点及抛物线的焦点,若抛物线上的点满足,则的横坐标为__________.【答案】.【解析】抛物线焦点为,设,由两点间距离公式得,解得. 【点睛】本小题主要考查抛物线的几何性质,考查两点间的距离公式,对方程的求解需要一定的运算能力.首先根据抛物线的标准方程,写出抛物线的交点坐标.其次设出抛物线上一点的坐标,在设点的坐标的时候,考虑到是二次的,故设其纵坐标,横坐标用纵坐标来表示,然后根据两点间的距离公式列方程,求得点的横坐标.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知.(Ⅰ)求的值域;(Ⅱ)若为的中线,已知,求的长.【答案】(Ⅰ).(Ⅱ).【解析】【试题分析】(1)利用二倍角公式和辅助角公式,将函数化简为,求得的取值范围,进而求得函数的最大值与最小值,即可求得函数的值域.(2)由(1)求得,利用余弦定理求得,根据勾股定理的逆定理可判断出三角形为直角三角形.由此求得的长.【试题解析】(Ⅰ),化简得.因为,所以,当时,取得最大值1,当或时,取得最小值,所以,,所以的值域为.(Ⅱ)因为,,由(Ⅰ)知,,又因为,根据余弦定理得,所以.因为,所以为直角三角形, 为直角.故在中,,所以.18. 为了解高校学生平均每天使用手机的时间长短是否与性别有关,某调查小组随机抽取了25 名男生、10名女生进行为期一周的跟踪调查,调查结果如表所示:平均每天使用手机小时平均每天使用手机(I)在参与调查的平均每天使用手机不超过3小时的7名女生中,有4人使用国产手机,从这7名女生中任意选取2人,求至少有1人使用国产手机的概率;(II) 根据列联表,是否有90%的把握认为学生使用手机的时间长短与性别有关(的观测值精确到0.01).附:参考公式:【答案】(Ⅰ).(Ⅱ)没有90%的把握认为学生使用手机的时间长短与性别有关.【解析】【试题分析】(I)利用列举法列举出所有的基本事件,共有种,其中符合题意的有种,故概率为.(II)计算,所以没有90%的把握认为学生使用手机的时间长短与性别有关.【试题解析】(Ⅰ)设名女生中,使用国产手机的4人分别为,使用非国产手机的3人为.从7人中任选2人,共有21种情况,分别是,,,,,,.其中,事件“至少有1人使用国产手机”包含18种情况,所以,答:至少有1人使用国产手机的概率.(Ⅱ)由列联表得:.由于,所以没有90%的把握认为学生使用手机的时间长短与性别有关.19. 如图,在矩形中,,,是的中点,将沿向上折起,使平面平面(Ⅰ)求证:;(Ⅱ)求点到平面的距离.【答案】(Ⅰ)证明见解析.(Ⅱ)1.【解析】【试题分析】(I)利用勾股定理,证明,根据面面垂直的性质定理可得平面,进而.(II)取中点,连接.面面垂直的性质定理可得平面,即是三棱锥的高.利用等体积法解方程求得点到平面的距离.【试题解析】(Ⅰ)证明:由题意可知,,,,所以,在△中,,所以;因为平面平面且是交线,平面所以平面,因为平面,所以(Ⅱ)解:取中点,连接.因为且为中点,所以.因为面,面面,是交线,所以平面,故长即为点到平面的距离,算得.由(Ⅰ)可知,,是直角三角形,,所以..设点到平面的距离为,因为,所以,解得,故点到平面的距离为.20. 已知椭圆的焦距为,且过点. (Ⅰ)求椭圆的方程;(Ⅱ)设分别是椭圆的下顶点和上顶点,是椭圆上异于的任意一点,过点作轴于为线段的中点,直线与直线交于点为线段的中点,为坐标原点,求证:【答案】(Ⅰ).(Ⅱ)证明见解析.【解析】【试题分析】(I)依题意可知,将点代入椭圆方程,结合,解出的值,即求得椭圆的方程.(II)设,,则,.将的坐标代入椭圆方程,求得的关系式.利用点斜式写出直线的方程,由此求得点的坐标,利用中点坐标求得点的坐标.代入,由此证得.【试题解析】(Ⅰ)由题设知焦距为,所以.又因为椭圆过点,所以代入椭圆方程得因为,解得,故所求椭圆的方程是.(Ⅱ)设,,则,.因为点在椭圆上,所以.即.又,所以直线的方程为.令,得,所以.又,为线段的中点,所以.所以,.因页 11第,所以,即.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和圆锥曲线的位置关系,考查利用向量的数量积证明两条直线垂直的方法.要求椭圆的标准方程,即求得的值,需要两个条件,题目给定椭圆的焦距和椭圆上一点的坐标,由此可以建立方程,解,联立方程组可求得的值.21. 已知函数的.(Ⅰ)求函数的单调区间;(Ⅱ)比较与的大小,并证明. 【答案】(Ⅰ)的单调递增区间是和,单调递减区间是.(Ⅱ),证明见解析.【解析】【试题分析】(I)对函数求导得,由此可得函数单调递增区间是和,单调递减区间是.(II)构造函数,利用导数求得函数的最小值为正数,由此证得.【试题解析】 (Ⅰ)由可得,,令,得,, 令,得或,令,得.故的单调递增区间是和,单调递减区间是.(Ⅱ).证明如下: 设,则.显然为增函数, 因为,, 所以存在唯一的使得. 当时,,当时,.所以在处取得最小值,且.又,所以,所以,因为,所以,所以,所以.【点睛】本小题主要考查利用导数求函数的单调区间,考查利用导数证明不等式.第一问求函数的单调区间,首先求得函数的解析式和定义域,然后对函数求导,对导函数因式分解,由此求得函数的单调区间.要证明函数不等式,可先将函数函数化为一边为零,利用导数求得另一边的最小值为正数,由此证得不等式成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的方程为,直线的极坐标方程为.(I )写出的极坐标方程和的平面直角坐标方程;(Ⅱ) 若直线的极坐标方程为,设与的交点为与的交点为求的面积.【答案】(Ⅰ)的极坐标方程为;的平面直角坐标系方程为;(Ⅱ).【解析】试题分析:(Ⅰ)根据,,即可得到的极坐标方程和的平面直角坐标方程;(Ⅱ)分别将代入的极坐标方程得,,即可求出的面积.试题解析:(Ⅰ)直角坐标与极坐标互化公式为,,∵圆的普通方程为,∴把代入方程得,,∴的极坐标方程为,的平面直角坐标方程为;(Ⅱ)分别将代入的极坐标方程得;,. ∴的面积为页12第页 13第∴的面积为.23. 选修4-5:不等式选讲 已知函数 (Ⅰ)求不等式的解集; (Ⅱ)当时,不等式恒成立,求实数的取值范围.【答案】(Ⅰ).(Ⅱ).【解析】试题分析:(Ⅰ)分类讨论,去掉绝对值,分别求解不等式,进而得到不等式的解集;(Ⅱ)当时,,设,求出在上的最大值,即可求得实数的取值范围.试题解析:(Ⅰ)由题意知,需解不等式.当时,上式化为,解得;当时,上式化为,无解; 当时,①式化为,解得.∴的解集为或.(Ⅱ)当时,,则当,恒成立. 设,则在上的最大值为.∴,即,得.∴实数的取值范围为.。
2018年山东省潍坊高三二模试卷(文科数学)一、选择题:本大题共l0小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数i满足z(1+i)=2i,则在复平面内z对应的点的坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)2.设全集U=R,集合A={x|2x>1},B={x|﹣1≤x≤5},则(∁A)∩B等于()UA.[﹣1,0)B.(0,5] C.[﹣1,0] D.[0,5]3.已知命题p、q,“¬p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为()A.(x﹣2)2+(y±2)2=3 B.C.(x﹣2)2+(y±2)2=4 D.5.执行如图所示的程序框图,则输出的k的值是()A.3 B.4 C.5 D.66.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13 B.17 C.19 D.217.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .升 B .升 C .升 D .升8.函数y=a |x|与y=sinax (a >0且a ≠1)在同一直角坐标系下的图象可能是( )A .B .C .D .9.三棱锥S ﹣ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥AC ,又SA=AB=AC=1,则球O 的表面积为( )A .B .C .3πD .12π10.设,若函数y=f (x )+k 的图象与x 轴恰有三个不同交点,则k的取值范围是( )A .(﹣2,1)B .[0,1]C .[﹣2,0)D .[﹣2,1)二、填空题:本大题共5小题,每小题5分,共25分.11.已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点的坐标为(3,4),则cos2α= .12.已知某几何体的三视图如图所示,则该几何体的体积为13.若x、y满足条件,则z=x+3y的最大值是.14.设a>0,b>0,若是4a和2b的等比中项,则的最小值为.15.如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,点F为抛物线焦点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是.三、解答题:本大题共6小题,共75分.应写出证明过程或演算步骤.16.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?17.已知=(2sinx ,sinx+cosx ),=(cosx ,sinx ﹣cosx ),函数f (x )=•.(Ⅰ)求函数f (x )的单调递减区间;(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b 2+a 2﹣c 2=ab ,若f (A )﹣m >0恒成立,求实数m 的取值范围.18.如图,底面是等腰梯形的四棱锥E ﹣ABCD 中,EA ⊥平面ABCD ,AB ∥CD ,AB=2CD ,∠ABC=.(Ⅰ)设F 为EA 的中点,证明:DF ∥平面EBC ;(Ⅱ)若AE=AB=2,求三棱锥B ﹣CDE 的体积.19.已知数列{a n }的前n 项和,数列{b n }满足3n ﹣1b n =a 2n ﹣1(I )求a n ,b n ;(Ⅱ)设T n 为数列{b n }的前n 项和,求T n .20.已知函数f(x)=x3﹣x﹣.(Ⅰ)判断的单调性;(Ⅱ)求函数y=f(x)的零点的个数;(Ⅲ)令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围.21.已知双曲线C: =1的焦距为3,其中一条渐近线的方程为x﹣y=0.以双曲线C的实轴为长轴,虚轴为短轴的椭圆记为E,过原点O的动直线与椭圆E交于A、B两点.(Ⅰ)求椭圆E的方程;(Ⅱ)若点P为椭圆的左顶点,,求|的取值范围;(Ⅲ)若点P满足|PA|=|PB|,求证为定值.2018年山东省潍坊高三数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共l0小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数i满足z(1+i)=2i,则在复平面内z对应的点的坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)【考点】复数的基本概念;复数代数形式的乘除运算.【分析】把已知等式两边同时乘以,然后利用复数的除法运算化简,则答案可求.【解答】解:由z(1+i)=2i,得.∴在复平面内z对应的点的坐标是(1,1).故选:A.A)∩B等于()2.设全集U=R,集合A={x|2x>1},B={x|﹣1≤x≤5},则(∁UA.[﹣1,0)B.(0,5] C.[﹣1,0] D.[0,5]【考点】交、并、补集的混合运算.【分析】求出A中不等式的解集确定出A,根据全集U=R求出A的补集,找出A补集与B的交集即可.【解答】解:由A中的不等式变形得:2x>1=20,得到x>0,∴A=(0,+∞),∵全集U=R,∴∁A=(﹣∞,0],U∵B=[﹣1,5],A)∩B=[﹣1,0].∴(∁U故选:C.3.已知命题p、q,“¬p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据复合命题真假之间的关系,以及充分条件和必要条件的定义进行判断即可.【解答】解:若¬p为真,则p且假命题,则p∧q为假成立,当q为假命题时,满足p∧q为假,但p真假不确定,∴¬p为真不一定成立,∴“¬p为真”是“p∧q为假”的充分不必要条件.故选:A.4.若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为()A.(x﹣2)2+(y±2)2=3 B.C.(x﹣2)2+(y±2)2=4 D.【考点】圆的标准方程.【分析】由已知圆C经过(1,0),(3,0)两点,且与y轴相切.可得圆心在直线x=2上,且半径长为2.设圆的方程为(x﹣2)2+(y﹣b)2=4.将点(1,0)代入方程即可解得.从而得到圆C的方程.【解答】解:∵圆C经过(1,0),(3,0)两点,∴圆心在直线x=2上.可设圆心C(2,b).又∵圆C与y轴相切,∴半径r=2.∴圆C的方程为(x﹣2)2+(y﹣b)2=4.∵圆C经过点(1,0),∴(1﹣2)2+b2=4.∴b2=3.∴.∴圆C的方程为.故选:D.5.执行如图所示的程序框图,则输出的k的值是()A.3 B.4 C.5 D.6【考点】程序框图.【分析】根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦满足条件就退出循环,输出结果.【解答】解:模拟执行程序,可得:k=1,s=1,第1次执行循环体,s=1,不满足条件s>15,第2次执行循环体,k=2,s=2,不满足条件s>15,第3次执行循环体,k=3,s=6,不满足条件s>15,第4次执行循环体,k=4;s=15,不满足条件s>15,第5次执行循环体,k=5;s=31,满足条件s>31,退出循环,此时k=5.故选:C.6.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13 B.17 C.19 D.21【考点】系统抽样方法.【分析】根据系统抽样的定义即可得到结论.【解答】解:∵高三某班有学生56人,用系统抽样的方法,抽取一个容量为4的样本,∴样本组距为56÷4=14,则5+14=19,即样本中还有一个学生的编号为19,故选:C.7.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为()A.升B.升C.升D.升【考点】等比数列的通项公式.【分析】设此等差数列为{an },公差d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,可得4a1+6d=3,3a1+21d=4,联立解出即可得出.【解答】解:设此等差数列为{an},公差d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,则4a1+6d=3,3a1+21d=4,联立解得a1=,d=.∴a5=+4×=.故选:C.8.函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象可能是()A.B.C.D.【考点】函数的图象.【分析】结合函数图象的对折变换法则和正弦型函数的伸缩变换,分当a>1时和当0<a<1时两种情况,分析两个函数的图象,比照后,可得答案.【解答】解:当a>1时,函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象为:当0<a<1时,函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象为:比照后,发现D满足第一种情况,故选D9.三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA=AB=AC=1,则球O的表面积为()A.B.C.3π D.12π【考点】球的体积和表面积.【分析】根据题意,三棱锥S﹣ABC扩展为正方体,正方体的外接球的球心就是正方体体对角线的中点,求出正方体的对角线的长度,即可求解球的半径,从而可求三棱锥S﹣ABC的外接球的表面积.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA=AB=AC=1,三棱锥扩展为正方体的外接球,外接球的直径就是正方体的对角线的长度,∴球的半径R=.球的表面积为:4πR2=4π•()2=3π.故选:C.10.设,若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是()A.(﹣2,1)B.[0,1] C.[﹣2,0)D.[﹣2,1)【考点】函数的图象.【分析】作出函数y=f(x)的图象,由题意可得,函数y=f(x)与y=﹣k的图象有3个交点,结合图象求得结果..【解答】解:设,画出y=f(x)和y=﹣k的图象,如图所示:由图象得:﹣2≤k<1函数y=f(x)与y=﹣k的图象有3个交点,即函数y=f(x)+k的图象与x轴恰有三个公共点;故选:D二、填空题:本大题共5小题,每小题5分,共25分.11.已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边上一点的坐标为(3,4),则cos2α= ﹣.【考点】任意角的三角函数的定义;二倍角的余弦.【分析】根据任意角的三角函数的定义求得cosα=的值,再利用二倍角公式cos2α=2cos2α﹣1,计算求得结果.【解答】解:由题意可得,x=3、y=4、r=5,∴cosα==,∴cos2α=2cos2α﹣1=﹣,故答案为:﹣.12.已知某几何体的三视图如图所示,则该几何体的体积为12【考点】由三视图求面积、体积.【分析】由三视图知几何体为三棱柱,且三棱柱的高为4,底面是直角三角形,且直角三角形的两直角边长分别为3,2,把数据代入棱柱的体积公式计算.【解答】解:由三视图知几何体为三棱柱,且三棱柱的高为4,底面是直角三角形,且直角三角形的两直角边长分别为3,2,∴几何体的体积V=×3×2×4=12.故答案为:12.13.若x、y满足条件,则z=x+3y的最大值是11 .【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=x+3y得y=,平移直线y=,当直线y=经过点A时,对应的直线的截距最大,此时z也最大,由,解得,即A(2,3),此时z=2+3×3=11,故答案为:1114.设a>0,b>0,若是4a和2b的等比中项,则的最小值为2.【考点】基本不等式;等比数列的通项公式.【分析】是4a和2b的等比中项,可得4a•2b=,2a+b=1.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:是4a和2b的等比中项,∴4a•2b=,∴2a+b=1.又a>0,b>0,则=(2a+b)=5++≥5+2×=9,当且仅当a=b=时取等号.则的最小值为2.故答案为:2.15.如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,点F为抛物线焦点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是.【考点】抛物线的简单性质.【分析】直线y=k(x+1)(k>0)恒过定点P(﹣1,0),由此推导出|OB|=|AF|,由此能求出点B的坐标,从而能求出k的值.【解答】解:设抛物线C:y2=4x的准线为l:x=﹣1直线y=k(x+1)(k>0)恒过定点P(﹣1,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则|OB|=|AF|,∴|OB|=|BF|,点B的横坐标为,∴点B的坐标为B(,),把B(,)代入直线l:y=k(x+1)(k>0),解得k=.故答案为.三、解答题:本大题共6小题,共75分.应写出证明过程或演算步骤.16.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?【考点】几何概型;列举法计算基本事件数及事件发生的概率.【分析】分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到.【解答】解:如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积π•R2,阴影部分的面积为,则在甲商场中奖的概率为:;如果顾客去乙商场,记3个白球为a1,a2,a3,3个红球为b1,b2,b3,记(x,y)为一次摸球的结果,则一切可能的结果有:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a1,b3)(a2,a3),(a2,b1),(a2,b2),(a2,b3),(a3,b1),(a3,b2),(a3,b3),(b1,b2),(b1,b3),(b2,b3),共15种,摸到的是2个红球有(b1,b2),(b1,b3),(b2,b3),共3种,则在乙商场中奖的概率为:P2=,又P1<P2,则购买该商品的顾客在乙商场中奖的可能性大.17.已知=(2sinx,sinx+cosx),=(cosx,sinx﹣cosx),函数f(x)=•.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+a2﹣c2=ab,若f(A)﹣m>0恒成立,求实数m的取值范围.【考点】余弦定理;平面向量数量积的运算;三角函数中的恒等变换应用.【分析】(Ⅰ)利用向量的数量积公式,结合辅助角公式,化简函数,利用正弦函数的单调递减区间,求函数f(x)的单调递减区间.(Ⅱ)由已知利用余弦定理可求cosC,由范围C∈(0,π),可求C的值,由题意2sin(2A﹣)>m恒成立,由A∈(0,),可求sin(2A﹣)∈(﹣,1],进而可得m的范围.【解答】解:(Ⅰ)∵=(2sinx,sinx+cosx),=(cosx,sinx﹣cosx),函数f(x)=•.∴f(x)=sin2x+sin2x﹣cos2x=2sin(2x﹣),∵令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,∴函数f(x)的单调递减区间为:[kπ+,kπ+],k∈Z.(Ⅱ)∵b2+a2﹣c2=ab,∴cosC===,由C∈(0,π),可得:C=,∵f(A)﹣m=2sin(2A﹣)﹣m>0恒成立,即:2sin(2A﹣)>m恒成立,∵A∈(0,),2A﹣∈(﹣,),∴sin(2A﹣)∈(﹣,1],可得:m≤﹣1.18.如图,底面是等腰梯形的四棱锥E﹣ABCD中,EA⊥平面ABCD,AB∥CD,AB=2CD,∠ABC=.(Ⅰ)设F为EA的中点,证明:DF∥平面EBC;(Ⅱ)若AE=AB=2,求三棱锥B﹣CDE的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)取EB的中点G,连接FG,CG,利用F为EA的中点,证明四边形CDFG为平行四边形,即可证明:DF∥平面EBC;(Ⅱ)等腰梯形ABCD中,作CH⊥AB于H,求出点B到CD的距离,即可求三棱锥B﹣CDE的体积.【解答】(Ⅰ)证明:取EB的中点G,连接FG,CG,∵F为EA的中点,∴FG∥AB,FG=AB,∵AB∥CD,AB=2CD,∴FG∥CD,FG=CD,∴四边形CDFG为平行四边形,∴DF∥CG,∵DF⊄平面EBC,CG⊂平面EBC,∴DF∥平面EBC;(Ⅱ)解:等腰梯形ABCD中,作CH⊥AB于H,则BH=,在Rt△BHC中,∠ABC=60°,则CH=tan60°=,即点C到AB的距离d=,则点B到CD的距离为,∵EA⊥平面ACD,∴三棱锥B﹣CDE的体积为V==.E﹣BDC19.已知数列{a n }的前n 项和,数列{b n }满足3n ﹣1b n =a 2n ﹣1(I )求a n ,b n ;(Ⅱ)设T n 为数列{b n }的前n 项和,求T n . 【考点】数列的求和;数列递推式.【分析】(Ⅰ)当n ≥2时利用a n =S n ﹣S n ﹣1计算即得结论,再代入得到b n =,(Ⅱ)通过错位相减法即可求出前n 项和. 【解答】解:(Ⅰ)∵S n =n 2+2n ,∴当n ≥2时,a n =S n ﹣S n ﹣1=(n 2+2n )﹣(n ﹣1)2﹣2(n ﹣1)=2n+1(n ≥2), 又∵S 1=1+2=3即a 1=1满足上式, ∴数列{a n }的通项公式a n =2n+1; ∴3n ﹣1b n =a 2n ﹣1=2(2n ﹣1)+1=4n ﹣1,∴b n =,(Ⅱ)T n =+++…++,∴T n =+++…++,∴T n =3+4(++…+)﹣=3+4•﹣=5﹣∴T n =﹣20.已知函数f (x )=x 3﹣x ﹣.(Ⅰ)判断的单调性;(Ⅱ)求函数y=f (x )的零点的个数;(Ⅲ)令g (x )=+lnx ,若函数y=g (x )在(0,)内有极值,求实数a 的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;利用导数求闭区间上函数的最值.【分析】(Ⅰ)化简,并求导数,注意定义域:(0,+∞),求出单调区间;(Ⅱ)运用零点存在定理说明在(1,2)内有零点,再说明f (x )在(0,+∞)上有且只有两个零点;(Ⅲ)对g (x )化简,并求出导数,整理合并,再设出h (x )=x 2﹣(2+a )x+1,说明h (x )=0的两个根,有一个在(0,)内,另一个大于e ,由于h (0)=1,通过h ()>0解出a 即可.【解答】解:(Ⅰ)设φ(x )==x 2﹣1﹣(x >0),则φ'(x )=2x+>0,∴φ(x )在(0,+∞)上单调递增;(Ⅱ)∵φ(1)=﹣1<0,φ(2)=3﹣>0,且φ(x )在(0,+∞)上单调递增,∴φ(x )在(1,2)内有零点,又f (x )=x 3﹣x ﹣=x•φ(x ),显然x=0为f (x )的一个零点,∴f (x )在(0,+∞)上有且只有两个零点;(Ⅲ)g (x )=+lnx=lnx+,则g'(x )==,设h (x )=x 2﹣(2+a )x+1,则h (x )=0有两个不同的根x 1,x 2,且有一根在(0,)内,不妨设0<x 1<,由于x 1x 2=1,即x 2>e ,由于h (0)=1,故只需h ()<0即可,即﹣(2+a )+1<0,解得a >e+﹣2,∴实数a 的取值范围是(e+﹣2,+∞).21.已知双曲线C :=1的焦距为3,其中一条渐近线的方程为x ﹣y=0.以双曲线C 的实轴为长轴,虚轴为短轴的椭圆记为E ,过原点O 的动直线与椭圆E 交于A 、B 两点. (Ⅰ)求椭圆E 的方程;(Ⅱ)若点P 为椭圆的左顶点,,求|的取值范围;(Ⅲ)若点P 满足|PA|=|PB|,求证为定值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)由已知条件推导出,,由此能求出椭圆E 的方程.(Ⅱ)由已知条件知P (﹣,0),设G (x 0,y 0),由,推导出G (﹣,0),由此能求出的取值范围.(Ⅲ)由|PA|=|PB|,知P 在线段AB 垂直平分线上,由椭圆的对称性知A ,B 关于原点对称,由此能够证明为定值.【解答】(Ⅰ)解:∵双曲线C : =1的焦距为3,∴c=,∴,①∵一条渐近线的方程为x ﹣y=0,∴,②由①②解得a 2=3,b 2=,∴椭圆E 的方程为.(Ⅱ)解:∵点P 为椭圆的左顶点,∴P (﹣,0),设G (x 0,y 0),由,得(x 0+,y 0)=2(﹣x 0,﹣y 0),∴,解得,∴G(﹣,0),设A(x1,y1),则B(﹣x1,﹣y1),||2+||2=()2++(x1﹣)2+=2+2+=2+3﹣x+=+,又∵x1∈[﹣,],∴∈[0,3],∴,∴的取值范围是[].(Ⅲ)证明:由|PA|=|PB|,知P在线段AB垂直平分线上,由椭圆的对称性知A,B关于原点对称,①若A、B在椭圆的短轴顶点上,则点P在椭圆的长轴顶点上,此时==2()=2.②当点A,B,P不是椭圆的顶点时,设直线l的方程为y=kx(k≠0),则直线OP的方程为y=﹣,设A(x1,y1),由,解得,,∴|OA|2+|OB|2==,用﹣代换k,得|OP|2=,∴==2,综上所述: =2.。
2018郴州二模文科数学word含答案。
湖南省郴州市2018届高三第二次教学质量监测文数试题郴州市2018届高三第二次教学质量监测试卷文科数学一、选择题:本题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x∈R| x^2-x-2<0},B={-1,0,1},则AB=()A。
{-1,0,1} B。
{-1} C。
{1} D。
Ø2.已知复数z满足(1+2i)z=4+3i,则z的虚部是()A。
-1 B。
1 C。
-i D。
i3.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍。
若在正方形图案上随机取一点,则该点取自黑色区域的概率为()A。
π/8 B。
π/16 C。
1-π/8 D。
1-π/164.已知等差数列的前15项和S15=3,则a2+a13+a9=()A。
7 B。
15 C。
6 D。
85.已知双曲线y^2/m-x^2/9=1的一个焦点在直线x+y=5上,则双曲线的渐近线方程为()A。
y=±3x/4 B。
y=±4x/3 C。
y=±2x/3 D。
y=±3x/46.函数f(x)=Asin(ωx+φ)(其中A>0,φ<π/2)的部分图象如图所示,将函数f(x)的图象向右平移π/12个长度单位可得g(x)sin[2x+(π/4)]的图象。
则函数f(x)的图象向左平移π/24个长度单位可得()A。
g(x)sin[2x+(π/12)] B。
g(x)sin[2x+(π/6)] C。
g(x)sin[2x+(π/4)] D。
g(x)sin[2x+(π/3)]7.某几何体的三视图如图所示,则该几何体的体积为()A。
3π+1 B。
3π+1/2 C。
9π/4+1/2 D。
9π/48.若实数x,y满足约束条件{x+2y-1≥0;x-y-1≤0},则3x+4y+2的最小值为()A。
XXX2018届高三下学期二诊模拟文科数学word含答案18届高三文科数学下学期二诊模拟考试数学试题(文科)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合 $A,B,C,D$,则 $D$,则的面积为(。
)。
2.已知复数 $z$ 为纯虚数,且 $|z|=1$,则 $z$ 的取值为(。
)。
3.若向量 $\vec{a}=(1,2)$,$\vec{b}=(3,4)$,则$\vec{a}+\vec{b}$ 的模长为(。
)。
4.为了解户籍性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农民户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是(。
)。
5.一个棱锥的三视图如图所示,则该棱锥的外接球的体积是(。
)。
6.若 $\log_{a}x=\log_{b}y=\log_{c}z=k$,则$\log_{abc}xyz$ 的值为(。
)。
7.按照如图所示的程序框图,若输入的为2018,为8,则输出的结果为(。
)。
8.若实数 $x$ 满足 $\sqrt{x+3}+\sqrt{3-x}=2$,则 $x$ 的取值范围是(。
)。
9.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为(。
)。
10.在 $\triangle ABC$ 中,$\angle B=120^{\circ}$,$\angle C=15^{\circ}$,边上的高恰为边长的一半,则 $\angle A$ 的度数为(。
)。
11.等差数列 $\{a_n\}$,各项都为正数,且其前项之和为45,设 $a_1=a_2=a_3=1$,其中,若 $a_4$ 中的最小项为5,则公差不能为(。
昆明市2018届高三复习教学质量检测文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,0,1}A =-,2{|}B x x x ==,则A B ⋂=( ) A .{1} B .{1}- C .{0,1} D .{1,0}-2.已知,a b R ∈,复数21ia bi i+=+,则a b +=( ) A .2 B .1 C .0 D .-23.若角α的终边经过点(1,,则sin α=( )A .12-B ..12 D .4. “搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A .这半年中,网民对该关键词相关的信息关注度呈周期性变化B .这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差 D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值5.已知直线:l y m +与圆22:(3)6C x y +-=相交于A 、B 两点,若||AB =m 的值等于( )A .-7或-1B .1或7 C.-1或7 D .-7或1 6.执行下面的程序框图,如果输入1a =,1b =,则输出的S =( )A .54B .33 C. 20 D .77.一个简单几何体的三视图如图所示,其中正视图是等腰直角三角形,侧视图是边长为2的等边三角形,则该几何体的体积等于( )A .3B .3 C..28. 若直线(01)x a a π=<<与函数tan y x =的图像无公共点,则不等式tan 2x a ≥的解集为( ) A .{|,}62x k x k k Z ππππ+≤<+∈ B .{|,}42x k x k k Z ππππ+≤<+∈ C. {|,}32x k x k k Z ππππ+≤<+∈ D .{|,}44x k x k k Z ππππ-≤≤+∈9.设函数24,1()ln 1,1x x a x f x x x ⎧-+<=⎨+≥⎩的最小值是1,则实数a 的取值范围是( )A .(,4]-∞B .[4,)+∞ C.(,5]-∞ D .[5,)+∞ 10.数列{}n a 满足1(1)n n n a a n ++=-⋅,则数列{}n a 的前20项的和为( )A .-100B .100 C. -110 D .11011.已知1F ,2F 是椭圆2222:1(0)x y E a b a b+=>>的两个焦点,过原点的直线l 交E 于,A B 两点,220AF BF ⋅=,且22||34||AF BF =,则E 的离心率为( ) A .12 B . 34 C.27 D .5712.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是( ) A .(,]e -∞ B .(,)e -∞ C. (,)e -+∞ D .[,)e -+∞二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知变量x ,y 满足3040240x x y x y +≥⎧⎪-+≤⎨⎪+-≤⎩,则3z x y =+的最小值为 .14.已知向量a ,b 满足a b ⊥,||1a =,|2|22a b +=,则||b = . 15.在ABC △中,角,,A B C 所对的边分别是,,a b c ,若1cos 4C =,3c =,且cos cos a bA B=,则ABC△的面积等于 .16. 如图,等腰PAB △所在平面为α,PA PB ⊥,6AB =.G 是PAB 的重心.平面α内经过点G 的直线l 将PAB △分成两部分,把点P 所在的部分沿直线l 翻折,使点P 到达点'P ('P ∉平面α).若'P 在平面α内的射影H 恰好在翻折前的线段AB 上,则线段'P H 的长度的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 中,4524a a a +=,3621a a-=. (1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n S .18.在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标x 和y ,制成下图,其中“*”表示甲村贫困户,“+”表示乙村贫困户.若00.6x <<,则认定该户为“绝对贫困户”,若0.60.8x ≤≤,则认定该户为“相对贫困户”,若0.81x <≤,则认定该户为“低收入户”;若100y ≥,则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”. (1)从乙村的50户中随机选出一户,求该户为“绝对贫困户”的概率;(2)从甲村所有“今年不能脱贫的非绝对贫困户”中任选2户,求选出的2户均为“低收入户”的概率; (3)试比较这100户中,甲、乙两村指标y 的方差的大小(只需写出结论).19.如图,直三棱柱111ABC A B C -中,M 是AB 的中点.(1)证明:1//BC 平面1MCA ;(2)若122AB A M MC ===,BC =1C 到平面1MCA 的距离.20.设抛物线2:2(0)C y px p =>的焦点为F ,准线为l .已知点A 在抛物线C 上,点B 在l 上,ABF 是边长为4的等边三角形. (1)求p 的值;(2)在x 轴上是否存在一点N ,当过点N 的直线l '与抛物线C 交于Q 、R 两点时,2211||||NQ NR +为定值?若存在,求出点N 的坐标,若不存在,请说明理由.21.函数()1x f x e x =--,()(cos 1)x g x e ax x x =++. (1)求函数()f x 的极值;(2)若1a >-,证明:当(0,1)x ∈时,()1g x >.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆O 的方程为224x y +=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是2cos21ρθ=. (1)求圆O 的参数方程和曲线C 的直角坐标方程;(2)已知M ,N 是曲线C 与x 轴的两个交点,点P 为圆O 上的任意一点,证明:22||||PM PN +为定值.23.选修4-5:不等式选讲 已知函数()|1|f x x =-.(1)解不等式(2)(4)6f x f x ++≥;(2)若a 、b R ∈,||1a <,||1b <,证明:()(1)f ab f a b >-+.试卷答案一、选择题1-5:CABDC 6-10: CDBBA 11、12:DA二、填空题16. 三、解答题17. 解:(1)由45236421a a a a a +=⎧⎨-=⎩,得112301a d a d -=⎧⎨-=⎩,解得132a d =⎧⎨=⎩.所以,数列{}n a 的通项公式为21n a n =+. (2)111(21)(23)n n n b a a n n +==++111()22123n n =-++, 所以{}n b 的前n 项和1111111()235572123n S n n =-+-++-++111()232369nn n =-=++. 所以69n nS n =+.18.解:(1)由图知,在乙村50户中,指标0.6x <的有15户, 所以,从乙村50户中随机选出一户,该户为“绝对贫困户”的概率为1535010P ==. (2)甲村“今年不能脱贫的非绝对贫困户”共有6户,其中“相对贫困户”有3户,分别记为1A ,2A ,3A .“低收入户”有3户,分别记为1B ,2B ,3B ,所有可能的结果组成的基本事件有:12{,}A A , 13{,}A A , 11{,}A B , 12{,}A B , 13{,}A B , 23{,}A A , 21{,}A B , 22{,}A B , 23{,}A B ,31{,}A B , 32{,}A B , 33{,}A B , 12{,}B B , 13{,}B B , 23{,}B B .共15个,其中两户均为“低收入户”的共有3个, 所以,所选2户均为“低收入户”的概率31155P ==. (3)由图可知,这100户中甲村指标y 的方差大于乙村指标y 的方差.19.解:(1)连接1AC ,设1AC 与1AC 的交点为N ,则N 为1AC 的中点,连接MN ,又M 是AB 的中点,所以1//MN BC .又MN ⊂平面1MCA ,1BC ⊂/平面1MCA ,所以1//BC 平面1MCA . (2)由22AB MC ==,M 是AB 的中点,所以90ACB ︒∠=,在直三棱柱中,12A M =,1AM =,所以1AA =又BC =AC =,1AC 190AMC ︒∠=. 设点1C 到平面1MCA 的距离为h ,因为1AC 的中点N 在平面1MCA 上, 故A 到平面1MCA 的距离也为h ,三棱锥1A AMC -的体积113AMC V S AA =⋅=1MCA 的面积1112S A M MC =⋅=,则1133V Sh h ===h = 故点1C 到平面1MCA20. 解:(1)由题知,||||AF AB =,则AB l ⊥.设准线l 与x 轴交于点D ,则//AB DF .又ABF 是边长为4的等边三角形,60ABF ︒∠=,所以60BFD ︒∠=,1||||cos 422DF BF BFD =⋅∠=⨯=,即2p =. (2)设点(,0)N t ,由题意知直线l '的斜率不为零, 设直线l '的方程为x my t =+,点11(,)Q x y ,22(,)R x y ,由24x my t y x=+⎧⎨=⎩得,2440y my t --=,则216160m t ∆=+>,124y y m +=,124y y t ⋅=-. 又222222211111||()()(1)NQ x t y my t t y m y =-+=+-+=+,同理可得2222||(1)NR m y =+,则有2211||||NQ NR +=22221211(1)(1)m y m y +=++221222212(1)y y m y y +=+2121222212()2(1)y y y y m y y +-=+222222168216(1)(22)m t m tm t m t++=++. 若2211||||NQ NR +为定值,则2t =,此时点(2,0)N 为定点. 又当2t =,m R ∈时,0∆>,所以,存在点(2,0)N ,当过点N 的直线l '与抛物线C 交于Q 、R 两点时,2211||||NQ NR +为定值14. 21.解:(1)函数()1x f x e x =--的定义域为(,)-∞+∞,()1x f x e '=-,由()0f x '>得0x >, ()0f x '<得0x <,所以函数()f x 在(,0)-∞单调递减,在(0,)+∞上单调递增,所以函数()f x 只有极小值(0)0f =.(2)不等式()1g x >等价于1cos 1x ax x x e++>,由(1)得:1xe x ≥+. 所以111x e x <+,(0,1)x ∈,所以11(cos 1)(cos 1)1x ax x x ax x x e x ++->++-+cos 1xax x x x =+++1(cos )1x a x x =+++.令1()cos 1h x x a x =+++,则21()sin (1)h x x x '=--+,当(0,1)x ∈时,()0h x '<, 所以()h x 在(0,1)上为减函数,因此,1()(1)cos12h x h a >=++, 因为1cos1cos32π>=,所以,当1a >-时,1cos102a ++>,所以()0h x >,而(0,1)x ∈,所以()1g x >.22.解:(1)圆O 的参数方程为2cos 2cos x y αα=⎧⎨=⎩,(α为参数),由2cos21ρθ=得:222(cossin )1ρθθ-=,即2222cos sin 1ρθρθ-=,所以曲线C 的直角坐标方程为221x y -=.(2)由(1)知(1,0)M -,(1,0)N ,可设(2cos ,2sin )P αα,所以22||||PM PN +=2222(2cos 1)(2sin )(2cos 1)(2sin )αααα+++-+54cos 54cos 10αα=++-=所以22||||PM PN +为定值10.23.解:(1)由(2)(4)6f x f x ++≥得:|21||3|6x x -++≥,当3x <-时,2136x x -+--≥,解得3x <-;当132x -≤≤时,2136x x -+++≥,解得32x -≤≤-; 当12x >时,2136x x -++≥,解得43x ≥;综上,不等式的解集为4{|2}3x x ≤-≥或.(2)证明:()(1)|1||f ab f a b ab a b >-+⇔->-, 因为||1a <,||1b <,即21a <,21b <,所以22|1|||ab a b ---=2222212a b ab a ab b -+-+-=22221a b a b --+=22(1)(1)0a b -->,所以22|1|||ab a b ->-,即|1|||ab a b ->-,所以原不等式成立.。
佛山市2018届高三教学质量检测(二)数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,若,,则( )A. B. C. D.2.若复数满足,则( )A.1 B. C.2 D.33.已知函数,则“”是“”的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件4.设满足约束条件,则的最小值为( )A.4 B.0 C.2 D.-45.若抛物线的焦点在直线上,则等于( )A.4 B.0 C.-4 D.-66.某同学用收集到的 6 组数据对制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线的方程为,相关系数为.现给出以下3个结论:①;②直线恰好过点;③;其中正确结论是( )A.①② B.①③ C.②③ D.①②③7. 执行如图所示的程序框图,当输出的时,则输入的的值为( )A.-2 B.-1 C. D.8.如图是一种螺栓的简易三视图,其螺帽俯视图是一个正六边形,则由三视图尺寸,该螺栓的表面积为( )A. B. C.D.9.甲乙丙丁四个人背后各有 1个号码,赵同学说:甲是2号,乙是3号;钱同学说:丙是2号,乙是4号;孙同学说:丁是2号,丙是3号;李同学说:丁是1号,乙是3号.他们每人都说对了一半,则丙是( )A.1号 B.2号 C.3号 D.4号10.已知双曲线的左焦点为,右顶点为,虚轴的一个端点为,若为等腰三角形,则该双曲线的离心率为( )A. B. C. D.11.已知函数的图象在区间上不单调,则的取值范围为( ) A. B. C. D.12.已知函数,曲线关于直线对称,现给出如结论:①若,则存在,使;。
2018年高考数学二模试卷(文科)一、选择题(共11小题,每小题5分,满分55分)1.(5分)设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.102.(5分)在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为()A.80 B.0.8 C.20 D.0.23.(5分)在△ABC中,C=60°,AB=,那么A等于()A.135°B.105°C.45°D.75°4.(5分)已知:如图的夹角为的夹角为30°,若等于()A.B.C.D.25.(5分)若集合,B={1,m},若A⊆B,则m的值为()A.2 B.﹣1 C.﹣1或2 D.2或6.(5分)设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若平面α∥β,l⊂α,m⊂β,则l∥m;命题q:l∥α,m⊥l,m⊂β,则β⊥α,则下列命题为真命题的是()A.p或q B.p且q C.¬p或q D.p且¬q7.(5分)已知x,y满足约束条件的最小值是()A.B.C.D.18.(5分)2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金兔卡”,享受一定优惠政策.如后四位数为“2663”、“8685”为“金兔卡”.则这组号码中“金兔卡”的张数()A.484 B.972 C.966 D.4869.(5分)有三个命题①函数的反函数是y=(x+1)2(x∈R)②函数f(x)=lnx+x﹣2的图象与x轴有2个交点;③函数的图象关于y轴对称.其中真命题是()A.①③B.②C.③D.②③10.(5分)若长度为定值的线段AB的两端点分别在x轴正半轴和y轴正半轴上移动,O为坐标原点,则△OAB的重心、内心、外心、垂心的轨迹不可能是()A.点B.线段C.圆弧D.抛物线的一部分11.(5分)若关于x的不等式|x﹣1|<ax(a≠0)的解集为开区间(m,+∞),其中m∈R,则实数a的取值范围为()A.a≥1 B.a≤﹣1 C.0<a<1 D.﹣1<a<0二、填空题(共5小题,每小题5分,满分25分)12.(5分)一个与球心距离为1的平面截球所得的圆面面积为2π,则球的表面积为.13.(5分)已知二项式展开式中的项数共有九项,则常数项为.14.(5分)已知过椭圆的右焦点在双曲线的右准线上,则双曲线的离心率为.15.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.16.(5分)在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设.①若∃x0∈(2,+∞),使f(x0)=m成立,则实数m的取值范围为;②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为.三、解答题(共6小题,满分70分)17.(12分)已知=(cosx+sinx,sinx),=(cosx﹣sinx,2cosx).(I)求证:向量与向量不可能平行;(II)若•=1,且x∈[﹣π,0],求x的值.18.(12分)已知某高中某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.(I)求男生被抽取的人数和女生被抽取的人数;(I)若从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;(II)若本班学生考前心理状态好的概率为0.8,求调查中恰有3人心理状态良好的概率.19.(12分)如图所示,在正方体ABCD﹣A1B1C1D1中,AB=a,E为棱A1D1中点.(I)求二面角E﹣AC﹣B的正切值;(II)求直线A1C1到平面EAC的距离.20.(12分)已知f(x)=tx3﹣2x2+1.(I)若f′(x)≥0对任意t∈[﹣1,1]恒成立,求x的取值范围;(II)求t=1,求f(x)在区间[a,a+3](a<0)上的最大值h(a).21.(12分)已知{a n}是正数组成的数列,a1=1,且点在函数y=x2+1的图象上.数列{b n}满足b1=0,b n+1=b n+3an(n∈N*).(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若c n=a n b n cosnπ(n∈N*),求数列{c n}的前n项和S n.22.(10分)若圆C过点M(0,1)且与直线l:y=﹣1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点.(Ⅰ)求曲线E的方程;(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l 上,求证:t与均为定值.参考答案与试题解析一、选择题(共11小题,每小题5分,满分55分)1.(5分)设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.10【分析】由a4=9,a6=11利用等差数列的性质可得a1+a9=a4+a6=20,代入等差数列的前n项和公式可求.【解答】解:∵a4=9,a6=11由等差数列的性质可得a1+a9=a4+a6=20故选B【点评】本题主要考查了等差数列的性质若m+n=p+q,则a m+a n=a p+a q和数列的求和.解题的关键是利用了等差数列的性质:利用性质可以简化运算,减少计算量.2.(5分)在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为()A.80 B.0.8 C.20 D.0.2【分析】由已知中在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,我们出该组的频率,进而根据样本容量为100,求出这一组的频数.【解答】解:∵样本的频率分布直方图中,共有5个长方形,又∵中间一个小长方形的面积等于其它4个小长方形的面积和的,则该长方形对应的频率为0.2又∵样本容量为100,∴该组的频数为100×0.2=20故选C【点评】本题考查的知识点是频率分布直方图,其中根据各组中频率之比等于面积之比,求出该组数据的频率是解答本题的关键.3.(5分)在△ABC中,C=60°,AB=,那么A等于()A.135°B.105°C.45°D.75°【分析】由C的度数求出sinC的值,再由c和a的值,利用正弦定理求出sinA 的值,由c大于a,根据大边对大角,得到C大于A,得到A的范围,利用特殊角的三角函数值即可求出A的度数.【解答】解:∵C=60°,AB=c=,BC=a=,∴由正弦定理=得:sinA===,又a<c,得到A<C=60°,则A=45°.故选C【点评】此题考查了正弦定理,三角形的边角关系,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.4.(5分)已知:如图的夹角为的夹角为30°,若等于()A.B.C.D.2【分析】将向量沿与方向利用平行四边形原则进行分解,构造出三角形,由题目已知,可得三角形中三边长及三个角,然后解三角形即可得到答案.【解答】解:如图所示:根据平行四边形法则将向量沿与方向进行分解,则由题意可得OD=λ,CD=μ,∠COD=30°,∠OCD=90°,∠Rt△OCD中,sin∠COD=sin30°===,∴=2,故选D.【点评】对一个向量根据平面向量基本定理进行分解,关键是要根据平行四边形法则,找出向量在基底两个向量方向上的分量,再根据已知条件构造三角形,解三角形即可得到分解结果.5.(5分)若集合,B={1,m},若A⊆B,则m的值为()A.2 B.﹣1 C.﹣1或2 D.2或【分析】由已知中集合,解根式方程可得A={2},结合B={1,m},及A⊆B,结合集合包含关系的定义,可得m的值.【解答】解:∵集合={2}又∵B={1,m}若A⊆B则m=2故选A【点评】本题考查的知识点是集合关系中的参数取值问题,其中解根式方程确定集合A是解答本题的关键,解答中易忽略根成有意义的条件,而错解为A={﹣1}6.(5分)设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若平面α∥β,l⊂α,m⊂β,则l∥m;命题q:l∥α,m⊥l,m⊂β,则β⊥α,则下列命题为真命题的是()A.p或q B.p且q C.¬p或q D.p且¬q【分析】对于命题p,q,只要把相应的平面和直线放入长方体中,找到反例即可.【解答】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.7.(5分)已知x,y满足约束条件的最小值是()A.B.C.D.1【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的线段的长度问题,注意最后要平方.【解答】解:先根据约束条件画出可行域,z=x2+y2,表示可行域内点到原点距离OP的平方,点P到直线3x+4y﹣4=0的距离是点P到区域内的最小值,d=,∴z=x2+y2的最小值为故选B.【点评】本题利用直线斜率的几何意义,求可行域中的点与原点的斜率.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.8.(5分)2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金兔卡”,享受一定优惠政策.如后四位数为“2663”、“8685”为“金兔卡”.则这组号码中“金兔卡”的张数()A.484 B.972 C.966 D.486【分析】据题意,对卡号的后4位分3种情况讨论:①、后4位中含有2个8,进而细分为1°其他数字不重复,2°其他数字也相同,由排列、组合数公式可得其情况数目,②、后4位中含有2个6的卡片,同①可得其情况数目,③、含有2个8、2个6,由组合数公式可得其情况数目;最后由事件之间的关心计算可得答案.【解答】解:根据题意,对卡号的后4位分3种情况讨论:①、后4位中含有2个8,1°若其他数字不重复,在其中任取2个其他的数字,与2个8进行全排列,有×A44×C92种情况,2°若其他数字也相同,易得有9×C42种情况,共有×A44×C92+9×C42=486张,②、同理后4位只中含有2个6的卡片有486张,③、后4位中含有2个8、2个6,有C42=6张,共有486+486﹣6=966张;故选C.【点评】本题考查分步计数原理的应用,考查带有约束条件的数字问题,分类讨论时,注意事件之间的关系,要做到不重不漏.9.(5分)有三个命题①函数的反函数是y=(x+1)2(x∈R)②函数f(x)=lnx+x﹣2的图象与x轴有2个交点;③函数的图象关于y轴对称.其中真命题是()A.①③B.②C.③D.②③【分析】对于①,欲求原函数y=﹣1(x≥0)的反函数,即从原函数式中反解出x,后再进行x,y互换,即得反函数的解析式.对于②,利用函数f(x)的单调性,与函数的零点与方程的根判断即可;对于③,通过函数f(x)的奇偶性判断即可.【解答】解:对于①,∵y=﹣1(x≥0),∴x=(y+1)2(y≥﹣1),∴x,y互换,得y=(x+1)2(x≥﹣1).故不正确.对于②,考察f(x)的单调性,lnx和x﹣2在(0,+∞)上是增函数,故f(x)=lnx+x﹣2在(0,+∞)上是增函数,图象与x轴最多有1个交点,故不正确.对于③,函数的定义域为[﹣3,3],所以,函数化简为:y=是偶函数,图象关于y轴对称,正确.故选C.【点评】本小题主要考查函数单调性的应用、函数奇偶性的应用、反函数等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.10.(5分)若长度为定值的线段AB 的两端点分别在x 轴正半轴和y 轴正半轴上移动,O 为坐标原点,则△OAB 的重心、内心、外心、垂心的轨迹不可能是( ) A .点 B .线段 C .圆弧D .抛物线的一部分【分析】本题是个选择题,利用排除法解决.首先由△OAB 的重心,排除C ;再利用△OAB 的内心,排除B ;最后利用△OAB 的垂心,排除A ;即可得出正确选项.【解答】解:设重心为G ,AB 中点为C ,连接OC .则OG=OC (这是一个重心的基本结论).而OC=AB=定值,所以G 轨迹圆弧. 排除C ;内心一定是平分90度的那条角平分线上,轨迹是线段.排除B ;外心是三角形外接圆圆心,对于这个直角三角形,AB 中点C 就是三角形外接圆圆心,OC 是定值, 所以轨迹圆弧,排除C ; 垂心是原点O ,定点,排除A 故选D .【点评】本题考查三角形的重心、内心、外心、垂心、以及轨迹的求法.解选择题时可利用排除法.11.(5分)若关于x 的不等式|x ﹣1|<ax (a ≠0)的解集为开区间(m ,+∞),其中m ∈R ,则实数a 的取值范围为( ) A .a ≥1B .a ≤﹣1C .0<a <1D .﹣1<a <0【分析】在同一坐标系中做出函数 y=|x |和 函数y=ax 的图象,由题意结合图形可得实数a 的取值范围.【解答】解:∵关于x 的不等式|x ﹣1|<ax (a ≠0)的解集为 开区间(m ,+∞),其中m ∈R ,在同一坐标系中做出函数y=|x﹣1|和函数y=ax的图象,如图所示:结合图象可得a≥1.故选:A.【点评】本题主要考查绝对值不等式的解法,体现了数形结合的数学思想,画出图形,是解题的关键,属于中档题.二、填空题(共5小题,每小题5分,满分25分)12.(5分)一个与球心距离为1的平面截球所得的圆面面积为2π,则球的表面积为12π.【分析】求出截面圆的半径,利用勾股定理求出球的半径,然后求出球的表面积.【解答】解:由题意可知截面圆的半径为:r,所以πr2=2π,r=,由球的半径,球心到截面圆的距离,截面圆的半径,满足勾股定理,所以球的半径为:R==.所求球的表面积为:4πR2=12π.故答案为:12π.【点评】本题考查球与球的截面以及球心到截面的距离的关系,是本题的解题的关键,考查计算能力.13.(5分)已知二项式展开式中的项数共有九项,则常数项为1120.【分析】根据展开式中的项数共有九项可求出n的值是8.利用二项展开式的通项公式求出通项,令x的指数为0,求出r,将r的值代入通项求出展开式的常数项.【解答】解:∵二项式展开式中的项数共有九项∴n=8=2r C8r x4﹣r展开式的通项为T r+1令4﹣r=0得r=4所以展开式的常数项为T5=24C84=1120故答案为:1120.【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,解答关键是求出n的值,属于中档题.14.(5分)已知过椭圆的右焦点在双曲线的右准线上,则双曲线的离心率为.【分析】先由题设条件求出椭圆的焦点坐标和双曲线的准线方程,列出关于b 的方程求出b,从而得到a和c,再利用a和c求出双曲线的离心率.【解答】解:由题设条件可知椭圆的右焦点坐标为(2,0),双曲线的右准线方程为x=,∴,解得b=2.则双曲线的离心率为.故答案为:.【点评】本题是双曲线的椭圆的综合题,难度不大,只要熟练掌握圆锥曲线的性质就行.15.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.【分析】求出函数的单调增区间,通过子集关系,确定实数φ的取值范围.【解答】解:函数,由2kπ﹣πφ≤2kπ,可得6kπ﹣3π﹣3φ≤x≤6kπ﹣3φ,由题意在区间(﹣π,π)上单调递增,所以6kπ﹣3π﹣3φ≤﹣π 且π≤6kπ﹣3φ,因为0<φ<2π,所以k=1,实数φ的取值范围为;故答案为:【点评】本题是基础题,考查三角函数的单调性的应用,子集关系的理解,考查计算能力.16.(5分)在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设.①若∃x0∈(2,+∞),使f(x0)=m成立,则实数m的取值范围为(,+∞);②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为不存在.【分析】①先对函数配方,求出其对称轴,判断出其在给定区间上的单调性进而求出函数值的范围,即可求出实数m的取值范围;②先利用单调性分别求出两个函数的值域,再比较即可求出实数a的取值范围.【解答】解:因为f(x)==,(2,+∞),f(x)>f(2)=;g(x)=a x,(a>1,x>2).g(x)>g(2)=a2.①∵∃x0∈(2,+∞),使f(x0)=m成立,∴m;②∵∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),∴⇒a不存在.故答案为:(,+∞):不存在.【点评】本题主要考查函数恒成立问题以及借助于单调性研究函数的值域,是对基础知识的综合考查,属于中档题目.三、解答题(共6小题,满分70分)17.(12分)已知=(cosx+sinx,sinx),=(cosx﹣sinx,2cosx).(I)求证:向量与向量不可能平行;(II)若•=1,且x∈[﹣π,0],求x的值.【分析】(I)先假设两个向量平行,利用平行向量的坐标表示,列出方程并用倍角和两角和正弦公式进行化简,求出一个角的正弦值,根据正弦值的范围推出矛盾,即证出假设不成立;(II)利用向量数量积的坐标表示列出式子,并用倍角和两角和正弦公式进行化简,由条件和已知角的范围进行求值.【解答】解:(I)假设∥,则2cosx(cosx+sinx)﹣sinx(cosx﹣sinx)=0,1+cosxsinx+cos2x=0,即1+sin2x+=0,∴sin(2x+)=﹣3,解得sin(2x+)=﹣<﹣1,故不存在这种角满足条件,故假设不成立,即与不可能平行.(II)由题意得,•=(cosx+sinx)(cosx﹣sinx)+2cosxsinx=cos2x+sin2x=sin (2x+)=1,∵x∈[﹣π,0],∴﹣2π≤2x≤0,即≤,∴=﹣或,解得x=或0,故x的值为:或0.【点评】本题考查了向量共线和数量积的坐标运算,主要利用了三角恒等变换的公式进行化简,对于存在性的题目一般是先假设成立,根据题意列出式子,再通过运算后推出矛盾,是向量和三角函数相结合的题目.18.(12分)已知某高中某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.(I)求男生被抽取的人数和女生被抽取的人数;(I)若从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;(II)若本班学生考前心理状态好的概率为0.8,求调查中恰有3人心理状态良好的概率.【分析】(Ⅰ)根据题意,可得抽取的比例为,由分层抽样的性质,计算可得答案;(Ⅱ)由(Ⅰ)的结论,男生被抽取人数为3人,女生被抽取人数为2人,分析可得“至少选取1个男生”与“没有1个男生”即“选取的都是2个女生”为对立事件;先计算“选取的都是2个女生”的概率,进而由对立事件的概率性质,计算可得答案;(Ⅲ)根据题意,分析可得:本题为在5次独立重复试验中恰有3次发生,由其公式,计算可得答案.【解答】解:(Ⅰ)根据题意,在50人中抽取了5人,抽取的比例为;则抽取男生30×=3,女生20×=2;即男生被抽取人数为3人,女生被抽取人数为2人;(Ⅱ)由(Ⅰ)得,男生被抽取人数为3人,女生被抽取人数为2人,“至少选取1个男生”与“没有1个男生”即“2个女生”为对立事件;选取的两名学生都是女生的概率P==,∴所求的概率为1﹣P=;(Ⅲ)根据题意,本班学生的考前心理状态良好的概率为0.8,则抽出的5人中,恰有3人心理状态良好,即在5次独立重复试验中恰有3次发生,则其概率为C53×()3×()2=.【点评】本题主要考查排列n次独立重复实验中恰有k次发生的概率计算,涉及分层抽样与对立事件的概率计算;需要牢记各个公式,并做到“对号入座”.19.(12分)如图所示,在正方体ABCD﹣A1B1C1D1中,AB=a,E为棱A1D1中点.(I)求二面角E﹣AC﹣B的正切值;(II)求直线A1C1到平面EAC的距离.【分析】(I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC与F,连接EF,我们可得∠EFH即为二面角E﹣AC﹣B的补角,解三角形EFH后,即可求出二面角E﹣AC﹣B的正切值;(II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离,利用等体积法,我们根据=,即可求出直线A 1C1到平面EAC的距离.【解答】解:(I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC 与F,连接EF,则EF在平面ABCD内的射影为HF,由三垂线定理得EF⊥AC,,∴∠EFH即为二面角E﹣AC﹣B的补角∵EH=a,HF=BD=∴∠tan∠EFH===2∴二面角E﹣AC﹣B的正切值为﹣2…6分(II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离d,…8分∵=∴S•d=△EAC∵EF====•AC•EF=•a•=∴S△EAC而=••a=∴•d=•a∴d=∴直线A1C1到平面EAC的距离【点评】本题考查的知识点是二面角的平面角及求法,点到平面的距离,其中(I)的关键是得到∠EFH即为二面角E﹣AC﹣B的补角,(II)中求点到面的距离时,等体积法是最常用的方法.20.(12分)已知f(x)=tx3﹣2x2+1.(I)若f′(x)≥0对任意t∈[﹣1,1]恒成立,求x的取值范围;(II)求t=1,求f(x)在区间[a,a+3](a<0)上的最大值h(a).【分析】(I)f′(x)=3tx2﹣4x,令g(t)=3x2t﹣4x,由,能求出x的取值范围.(II)由f(x)=x3﹣2x2+1,知f′(x)=3x2﹣4x=x(3x﹣4),f′(x)>0,得f(x)在(﹣∞,0)和()为递增函数;令f′(x)<0,得f(x)在(0,)为递减函数.由此进行分类讨论,能求出f(x)在区间[a,a+3](a<0)上的最大值h(a).【解答】解:(I)f′(x)=3tx2﹣4x,令g(t)=3x2t﹣4x,则有,∴,解得.∴x的取值范围是.(II)f(x)=x3﹣2x2+1,f′(x)=3x2﹣4x=x(3x﹣4),令f′(x)>0,得x<0或x>.令f′(x)<0,得0,∴f(x)在(﹣∞,0)和()为递增函数;在(0,)为递减函数.∵f(0)=1,,令f(x)=1,得x=0或x=2.①当a+3<0,即a<﹣3时,f(x)在[a,a+3]单调递增.∴h(a)=f(a+3)=a3+7a2+15a+10.②当0≤a+3≤2,即﹣3≤a≤﹣1时,h(a)=f(0)=1.③当a+3>2,即0>a>﹣1时,h(a)=f(a+3)=a3+7a2+15a+10.∴.【点评】本题考查导数在求最大值和求最小值时的实际应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,是高考的重点,易错点是知识体系不牢固.解题时要注意分类讨论思想的灵活运用.21.(12分)已知{a n}是正数组成的数列,a1=1,且点在函数y=x2+1的图象上.数列{b n}满足b1=0,b n+1=b n+3an(n∈N*).(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若c n=a n b n cosnπ(n∈N*),求数列{c n}的前n项和S n.【分析】(Ⅰ)由题设条件知a n=a n+1,根据等差数列的定义:{a n}是首项为1,+1公差为1的等差数列,从而a n=n,根据b n+1=b n+3an(n∈N*),可得b n+1﹣b n=3n (n∈N*).累加可求和,从而得{b n}的通项公式;(II)根据c n=a n b n cosnπ(n∈N*),可得,再分n为偶数,奇数分别求和即可【解答】解:(Ⅰ)因为点()(n∈N*)在函数y=x2+1的图象上=a n+1所以a n+1根据等差数列的定义:{a n}是首项为1,公差为1的等差数列所以a n=n=b n+3an(n∈N*).∵b n+1∴b n﹣b n=3n(n∈N*).+1∴(II)∵c n=a n b n cosnπ(n∈N*),∴当n为偶数时,S n=(﹣3+2•32+…+n•3n)+3[1﹣2+3﹣4+…+(n﹣1)﹣n]设T n=(﹣3+2•32+…+n•3n),则3T n=﹣32+2•33+…+n•3n+1∴∴当n为奇数时,∴【点评】本题以函数为载体,考查数列的概念和性质及其应用,考查错位相减法求和,解题时要注意公式的灵活运用.22.(10分)若圆C过点M(0,1)且与直线l:y=﹣1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点.(Ⅰ)求曲线E的方程;(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l 上,求证:t与均为定值.【分析】(I)由点C到定点M的距离等于到定直线l的距离与抛物线的定义可得点C的轨迹为抛物线所以曲线E的方程为x2=4y.(II)由题得直线AB的方程是x﹣2y+12=0联立抛物线的方程解得A(6,9)和B(﹣4,4),进而直线NA的方程为,由A,B两点的坐标得到线段AB中垂线方程为,可求N点的坐标,进而求出圆N的方程.(III)设A,B两点的坐标,由题意得过点A的切线方程为又Q(a,﹣1),可得x12﹣2ax1﹣4=0同理得x22﹣2ax2﹣4=0所以x1+x2=2a,x1x2=﹣4.所以直线AB的方程为所以t=﹣1.根据向量的运算得=0.【解答】【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是,即x﹣2y+12=0.由及知,得A(6,9)和B(﹣4,4)由x2=4y得,.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为,即.①线段AB的中点坐标为,线段AB中垂线方程为,即.②由①、②解得.于是,圆C的方程为,即.(Ⅲ)设,,Q(a,1).过点A的切线方程为,即x12﹣2ax1﹣4=0.同理可得x22﹣2ax2﹣4=0,所以x1+x2=2a,x1x2=﹣4.又=,所以直线AB的方程为,即,亦即,所以t=1.而,,所以==.【点评】本题主要考查抛物线的定义和直线与曲线的相切问题,解决此类问题的必须熟悉曲线的定义和曲线的图形特征,这也是高考常考的知识点.。
安徽省合肥市2018届高三第二次教学质量检测数学文试题 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()12i i -∙(i 是虚数单位)的虚部是( ) A .2i - B .i C .-2 D .12.已知集合{}|1M x x =<,{}|02N x x =<<,则MN =( )A .()0,1B .(),1-∞C .(),2-∞D .[)0,13.已知圆()()22:684C x y -++=,O 为坐标原点,则以OC 为直径的圆的方程为( ) A .()()2234100x y -++= B .()()2234100x y ++-= C .()()223425x y -+-= D .()()223425x y ++-= 4.在平面直角坐标系中,若角α的终边经过点55sin,cos 33P ππ⎛⎫⎪⎝⎭,则()sin πα+=( )A ..12- C. 12 D5.中国古代词中,有一道“八子分绵”的数学名题:“九百九十斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A .174斤B .184斤 C.191斤 D .201斤6.已知函数()22xxa f x a -=+是奇函数,则()f a 的值等于( )A .13-B .3 C. 13-或3 D .13或3 7.某公司一种型号的产品近期销售情况如下表根据上表可得到回归直线方程ˆˆ0.75yx a =+,据此估计,该公司7月份这种型号产品的销售额为( )A .19.5万元B .19.25万元 C.19.15万元 D .19.05万元 8.执行如图所示的程序框图,若输出的结果为1,则输出的x 值是( )A .3或-2B .2或-2 C. 3或-1 D .3或-1或-2 9.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<相邻两条对称轴间的距离为32π,且02f π⎛⎫= ⎪⎝⎭,则下列说法正确的是( ) A .2ω= B .函数()y f x π=-为偶函数 C.函数()f x 在,2ππ⎡⎤--⎢⎥⎣⎦上单调递增 D .函数()y f x =的图象关于点3,04π⎛⎫⎪⎝⎭对称10.在正方体1111ABCD A BC D -中,E 是棱11A B 的中点,用过点A ,C ,E 的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为( )A .B . C. D .11.已知双曲线()2222:10,0x y C a b a b-=>>的焦点为1F ,2F ,点P 是双曲线C 上的一点,1215PF F ∠=︒,21105PF F ∠=︒,则该双曲线的离心率为( )A 2.212.已知函数()f x 是定义在R 上的增函数,()()2f x f x +>′,()01f =,则不等式()ln 2ln 3f x x +->⎡⎤⎣⎦的解集为( )A .(),0-∞B .()0,+∞ C. (),1-∞ D .()1,+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若命题:0p x ∀>,ln 10x x -+≤,则p ⌝为 . 14.已知两个单位向量a ,b 的夹角为3π,则()()2a b a b +∙-= .15.已知四棱锥P ABCD -的侧棱长都相等,且底面是边长为都在直径为10的球面上,则四棱锥P ABCD -的体积为 .16.小李从网上购买了一件商品,快递员计划在5:00-6:00之间送货上门.已知小李下班到家的时间为下午5:30-6:00.快递员到小李家时,如果小李未到家,就将商品存放到快递柜中,则小李需要去快递柜收取商品的概率等于 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知正项等比数列{}n a 满足39a =,4224a a -=.()Ⅰ求数列{}n a 的通项公式;()Ⅱ设n n b n a =∙,求数列{}n b 的前n 项的和n S .18. 某班级甲、乙两个小组各有10位同学,在一次期中考试中,两个小组同学的数学成绩如下:甲组:94,69,73,86,74,75,86,88,97,98; 乙组:75,92,82,80,95,81,83,91,79,82.()Ⅰ画出这两个小组同学数学成绩的茎叶图,判断哪一个小组同学的数学成绩差异较大,并说明理由;()Ⅱ从这两个小组数学成绩在90分以上的同学中,随机选取2人在全班介绍学习经验,求选出的2位同学不在同一个小组的概率.19. 在多面体ABCDPQ 中,平面PAD ⊥平面ABCD ,////AB CD PQ ,AB CD ⊥,PAD ∆为正三角形,O 为AD 中点,且2AD AB ==,1CD PQ ==.()Ⅰ求证:平面POB ⊥平面PAC ; ()Ⅱ求多面体ABCDPQ 的体积.20. 已知椭圆()2222:10x y E a b a b +=>>经过点12P ⎛⎫ ⎪⎝⎭,椭圆E的一个焦点为).()Ⅰ求椭圆E 的方程; ()Ⅱ若直线l过点(M 且与椭圆E 交于A ,B 两点,求AB 的最大值.21. 已知函数()()21xf x x e ax =--(e 是自然对数的底数)()Ⅰ判断函数()f x 极值点的个数,并说明理由; ()Ⅱ若0x ∀>,()3x f x e x x +≥+,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知过点()0,1P -的直线l的参数方程为121x t y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数),在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的方程为()22sin cos00a a θρθ-=>.()Ⅰ求曲线C 的直角坐标方程;()Ⅱ若直线l 与曲线C 分别交于点M ,N ,且PM,MN ,PN 成等比数列,求a 的值.23.选修4-5:不等式选讲 已知函数()3f x x m =+.()Ⅰ若不等式()9f x m -≤的解集为[]1,3-,求实数m 的值;()Ⅱ若0m >,函数()()21g x f x x =--的图象与x 轴围成的三角形的面积大于60,求m的取值范围.试卷答案一、选择题1-5: DACBB 6-10: CDACA 11、12:DA 二、填空题13. 0x ∃>,ln 10x x -+> 14. 12 15.6或54 16. 34三、解答题17.()Ⅰ设数列{}n a 的公比为q ,由4224a a -=,得9924q q-=,即23830q q --=,解得3q =或13q =-. 又0n a >,则0q >,3q =∴,31933n n n a --=∙=∴.()Ⅱ13n n n b n a n -=∙=∙,01211323333n n S n -=∙+∙+∙+⋅⋅⋅+∙∴,()1211323133n n n S n n -=∙+∙+⋅⋅⋅+-∙+∙3,()1211231133332n n nn n S n --∙-=+++⋅⋅⋅+-∙=∴-2,()12314n nn S -∙+=∴.18.()Ⅰ由茎叶图中数据分布可知,甲组数据分布比较分散,乙组数据分布相对集中,所以,甲组同学的成绩差异较大.(也可通过计算方差说明:2101.6s =甲,237.4s =乙,22s s >甲乙)()Ⅱ设甲组数据成绩在90分以上的三位同学为123,,A A A ;乙组数据在90分以上的三位同学为123,,B B B .从这6位同学中选出2位同学,共有15个基本事件,列举如下:()12,A A ,()13,A A ,()11,A B ,()12,A B ,()13,A B ; ()23,A A ,()21,A B ,()22,A B ,()23,A B ; ()31,A B ,()32,A B ,()33,A B ; ()12,B B ,()13,B B ,()23,B B .其中,从这6位同学中选出2位同学不在同一个小组共有9个基本事件,93155P ==∴. 19.()Ⅰ由条件可知,Rt ADC Rt BAO ∆∆≌,故DAC ABO ∠=∠.90DAC AOB ABO AOB ∠+∠=∠+∠=︒∴,AC BO ⊥∴. PA PD =,且O 为AD 中点,PO AD ⊥∴.PAD ABCD PAD ABCD ADPO AD PO PAD⊥⎧⎪=⎪⎨⊥⎪⎪⊂⎩平面平面平面平面平面,PO ⊥∴平面ABCD . 又AC ⊂平面ABCD ,AC PO ⊥∴.又BO PO O =,AC ⊥∴平面POB .AC ⊂平面PAC ,∴平面POB ⊥平面PAC.()Ⅱ取AB 中点为E ,连接CE ,QE .由()Ⅰ可知,PO ⊥平面ABCD .又AB ⊂平面ABCD ,PO AB ⊥∴.又AB CD ⊥,PO AD O =,AB ⊥∴平面PAD .13BCDPQ PAD QEC Q CEB PAD CEB V V V S AE S PO --∆∆=+=∙+∙∴211211232⎛⎫=⨯+⨯⨯⨯=⎪⎝⎭20.()Ⅰ依题意,设椭圆E的左,右焦点分别为()1F,)2F .则1242PF PF a +==,2a =∴,c =21b =∴, ∴椭圆E 的方程为2214x y +=.()Ⅱ当直线l的斜率存在时,设:l y kx =()11,A x y ,()22,B x y .由2214y kx x y ⎧=+⎪⎨+=⎪⎩得()221440k x +++=.由0∆>得241k >.由12214x x k +=-+,122414x x k =+得AB ==设2114t k =+,则102t <<,6AB ==≤∴. 当直线l的斜率不存在时,2AB =<, AB∴21.()Ⅰ()()22x x f x xe ax x e a =-=-′. 当0a ≤时,()f x 在(),0-∞上单调递减,在()0,+∞上单调递增,()f x ∴有1个极值点; 当102a <<时,()f x 在(),ln 2a -∞上单调递增,在()ln2,0a 上单调递减,在()0,+∞上单调递增,()f x ∴有2个极值点;当12a =时,()f x 在R 上单调递增,()f x ∴没有极值点; 当12a >时,()f x 在(),0-∞上单调递增,在()0,ln2a 上单调递减,在()ln 2,a +∞上单调递增,()f x ∴有2个极值点;∴当0a ≤时,()f x 有1个极值点;当0a >且12a ≠时,()f x 有2个极值点;当12a =时,()f x 没有极值点.()Ⅱ由()3x f x e x x +≥+得320x xe x ax x ---≥.当0x >时,210xe x ax ---≥,即21x e x a x--≤对0x ∀>恒成立.设()21x e x g x x --=,则()()()211x x e x g x x---=′. 设()1xh x e x =--,则()1xh x e =-′.0x >,()0h x >∴′,()h x ∴在()0,+∞上单调递增, ()()00h x h >=∴,即1x e x >+,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增, ()()12g x g e ≥=-∴,2a e ≤-∴,a ∴的取值范围是(],2e -∞-.22.()Ⅰ22sin cos 0a θρθ-=,222sin cos 0a ρθρθ-=∴,即()220x ay a =>.()Ⅱ将121x t y ⎧=⎪⎪⎨⎪=-⎪⎩代入22x ay =,得280t a -+=,得()21212480,,8.a t t t t a ⎧∆=--⨯>⎪⎪+=⎨⎪=⎪⎩①. 0a >,∴解①得23a >. PM ,MN ,PN 成等比数列,2MN PM PN =∙∴,即21212t t t t -=,()21212124t t t t t t +-=∴,即()2400a -=,解得0a =或56a =. 23a >,56a =∴. 23.()Ⅰ由题意得90,39.m x m m +≥⎧⎪⎨+≤+⎪⎩①②解①得9m ≥-.②可化为939m x m m --≤+≤+,9233mx --≤≤. 不等式()9f x ≤的解集为[]1,3-,9213m--=-∴,解得3m =-,满足9m ≥-. 3m =-∴()Ⅱ依题意得,()321g x x m x =+--.又0m >,()()2,3521,321.m x m x m g x x m x x m x ⎧⎛⎫---≤- ⎪⎪⎝⎭⎪⎪⎛⎫=+--<<⎨ ⎪⎝⎭⎪⎪++≥⎪⎩∴()g x 的图象与x 轴围成的ABC ∆的三个顶点的坐标为()2,0A m --,2,05m B -⎛⎫⎪⎝⎭,2,233m m C ⎛⎫--- ⎪⎝⎭,()243160215ABCC m S AB y ∆+=∙=>∴,解得12m >.。
岳阳市2018届高三教学质量检测试卷(二)
数学(文科)
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.
1.已知集合{}{}2|15,|560A x N x B x x x =∈-<<=-++>,则A B = ( ) A .{}1,0,1,3- B .{}1,0,1,2- C .{}1,0,1- D .{}0,1,2,3,4
2.已知i 为虚数单位,复数z 满足()2
12i z i =- ,则z 的值为 ( ) A .2 B .3 C
..5
3. 若圆222410x y x y +--+=关于直线()00,0ax by a b -=>>对称,则双曲线
22
2
21y x a b
-=的渐近线方程为 A. 2y x = B. 12y x =
C. 2y x =±
D.12
y x =± 4. 设数列{}n a 是等差数列,n S 为其前n 项和,若5532,4S a a ==,则9a =( )
A . 4
B .-22
C . 22
D . 80
5.若关于,x y 的不等式组1210x x y x y ≤-⎧⎪
-≥-⎨⎪++≥⎩
,则3z x y =+的取值范围为( )
A .[]4,2--
B .[)4,-+∞ C. [)3,-+∞ D .[]3,2--
6. 函数()[]()
cos ,x
f x xe
x ππ=∈-的图象大致是( ) A . B .
C. D .
7. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面
为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的三视图如图所示,则该几何体的体积( )
A B
8. 执行如下图所示的程序框图,输出s 的值为( )
A . 1
B .
20182019 C. 20182017 D . 2016
2017
9.设函数()1,0
2,0
x x f x x -≥⎧=⎨
<⎩,若不等式()1xf x a -≥的解集为[)3,+∞,则a 的值为
A. 3-
B. 3
C. -1
D. 1
10. 已知点()4,3P -在角ϕ的终边上,函数()()()sin 0f x x ωϕω=+>图象上与y
轴最近的两个对称中心间的距离为
2
π
,则8f π⎛⎫
⎪⎝⎭
的值为( )
A ..-
11.已知抛物线()2
1:0C y ax a =>的焦点与双曲线()22
22
:
104x y C b b -=>的右焦点重合,记为F 点,点M 与点()4,6P 分别在曲线12,C C 上的点,则MP MF +的最小值为 A.
52 B. 8 C.132 D.112
12.已知()()20x
e f x a x a
=>+的两个极值点分别为()1212,x x x x <,则()12ln ln a x x +的
取值范围是
A.1,0e ⎡⎫-⎪⎢⎣⎭
B. ()0,+∞
C. ()0,1
D.1,e ⎡⎫-+∞⎪⎢⎣⎭
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分.
13. 如图是半径分别为1,2,3的三个同心圆,现随机向最大
圆内抛一粒豆子,则豆子落入图中阴影部分的概率为 .
14.如图,三棱锥P ABC -中,,PB AB PC CA ⊥⊥
且PC ==则三棱锥
P ABC -的外接球的体积为 .
15. 若点()0,θ是函数()sin 3cos f x x x =+的一个对称中心,
则cos 2sin cos θθθ+= .
16.已知函数22
1cos 201722017x x x f x x ++⎛
⎫+= ⎪+⎝⎭
,则1016
1001
2017i i f =⎛⎫
= ⎪⎝⎭∑ . 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.
17.(本题满分12分)
17. 在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足
2cos 3b C a c π⎛
⎫-=+ ⎪⎝⎭.
(1)求角B 的大小;
(2
)若b =ac 的取值范围.
18.(本题满分12分)
某市为了鼓励市民节约用水,实行“阶梯式”水价,将该市每户居民的月用水量划分为三档:月用水量不超过4吨的部分按2元/吨收费,超过4吨但不超过8吨的部分按4元/吨收费,超过8吨的部分按8元/吨收费.
(1)求居民月用水量费用y(单位:元)关于月用电量x(单位:吨)的函数解析式;
(2)为了了解居民的用水情况,通过抽样,获得今年3月份100户居民每户的用水量,统计分析后得到如图所示的频率分布
直方图,若这100户居民中,今年3月份用水
费用不超过16元的占66%,求,a b的值;
(3)若地区居民用水量平均值为6吨,则说明
该地区居民用水没有节约意识,在满足(2)的
条件下,请你估计A市居民是否有节约意识(同
一组中的数据用该组区间的中点值代表).
19.(本题满分12分)
如图所示,正三角形ABC所在平面与梯形BCDE所在平面垂直,
⊥,F为棱AE的中点.
==,BE BC
BE CD BE CD
//,24
(1)求证:DF⊥平面ABE;
(2)若直线AD与平面ABC所成角为30 ,求三棱锥D BEF
-的体积.
20.(本题满分12分)
已知椭圆C 的两个焦点坐标分别是()()2,0,2,0-,并且经过P ⎛ ⎝⎭
.
(1)求椭圆C 的标准方程;
(2)过椭圆C 的右焦点F 作直线l ,直线l 与椭圆C 相交于A B 、两点,当OAB ∆的面积最大时,求直线l 的方程.
21.(本题满分12分)
已知函数()()2
ln 12 1.f x x mx m x =-+-+
(1)当1m =时,求函数()f x 的单调区间和极值;
(2)若m Z ∈,关于x 的不等式()0f x ≤恒成立,求m 的最小值.
请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
22.(本题满分10分)选修4-4:参数方程与极坐标系
已知直线l 过定点()1,1P ,且倾斜角为
34
π
,以坐标原点为极点,x 轴的正半轴为极轴的坐标系中,曲线C 的极坐标方程为3
2cos ρθρ
-
=.
(1)求曲线C 的直角坐标方程与直线l 的参数方程;
(2)若直线l 与曲线C 相交于不同的两点A B 、,求PA PB 的值. 23.选修4-5:不等式选讲 设函数()2224f x x x =++-. (1) 求不等式()8f x >的解集;
(2) 若存在x R ∈,使不等式()23f x m ≤-成立,求实数m 的取值范围.
岳阳市2018届高三教学质量检测卷(二)文数参考答案。