数格点_算面积
- 格式:ppt
- 大小:984.50 KB
- 文档页数:17
小学奥数之格点型面积求解模块一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.【例 1】 判断下列图形哪些是格点多边形?【考点】格点型面积 【难度】2星 【题型】判断 【解析】 根据格点多边形的定义可知,图形的边必须是直线段,顶点要在格点上!所以只有⑴是格点多边形.【答案】⑴是格点多边形⑴⑵⑶⑷4-2-7.格点型面积例题精讲毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点, 则它的面积为12LS N =+-.【例 2】 如图,计算各个格点多边形的面积.【考点】格点型面积 【难度】2星 【题型】解答 【解析】 本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.方法一:图⑴是正方形,边长是4,所以面积是4416⨯=(面积单位);图⑴是矩形,长是5,宽是3,所以面积是5315⨯=(面积单位);图⑴是三角形,底是5,高是4,所以面积是54210⨯÷=(面积单位); 图⑴是平行四边形,底是5,高是3,所以面积是5315⨯=(面积单位);图⑴是直角梯形,上底是3,下底是5,高是3,所以面积是353212+⨯÷=()(面积单位);图⑴是梯形,上底是3,下底是6,高是4,所以面积是364218+⨯÷=()(面积单位).如果两格点之间的距离是2,能利用刚计算的结果说出相应面积么?(教师总结:面积数值均扩大4倍.)方法二:以上部分图形除了利用各自的面积公式直接求出外,我们还可以从推导它们的面积公式过程中得到启发,即用“割补法”或“扩展法”分别转化成长方形来求.这一种方法很重要,在下面的题目中我们还将使用这种方法!如图⑴,我们利用“扩展法”将其转化,如图所示,从图中易知三角形面积是长方形面积的一半.如图⑴,我们利用“割补法”将其阴影部分面积平移到右边,转化成一个长方形,从中易得平行四边形面积.同理,图⑴、⑴也可利用同样的思想.【答案】图⑴16;图⑴15;图⑴10;图⑴15;图⑴12;图⑴18.【例 3】 如图(a ),计算这个格点多边形的面积.【考点】格点型面积 【难度】2星 【题型】解答 【解析】 方法一(扩展法).这是个三角形,虽然有三角形面积公式可用,但判断它的底和高却十分困难,只能另想别的办法:这个三角形是处在长是6、宽是4的矩形内,除此之外还有其他三个直角三角形,如下右图(b ),这三个直角三角形面积很容易求出,再用矩形面积减去这三个直角三角形面积,就是所要求的三角形面积.矩形面积是6424⨯=;直角三角形⑴的面积是:6226⨯÷=;直角三角形⑴的面积是:4224⨯÷=;直角三角形Ⅲ面积是4224⨯÷=;所求三角形的面积是2464410-++=() (面积单位).方法二(割补法).将原三角形分割成两个我们方便计算面积的三角形,如(c )图.因此三角形的面积是:52252210⨯÷+⨯÷=(面积单位).【答案】10【例 4】 右图是一个方格网,计算阴影部分的面积.【考点】格点型面积 【难度】2星 【题型】解答 【关键词】新加坡小学数学奥林匹克竞赛 【解析】 扩展法.把所求三角形扩展成正方形ABCD 中.这个正方形中有四个三角形:一个是要求的AEF ;另外三个分别是:△ABE 、△FEC 、△DAF ,它们都有一条边是水平放置的,易求它们的面积分别为21.5cm ,22cm ,21.5cm .所以,图中阴影部分的面积为:33 1.5224⨯-⨯+=()(2cm ). 【答案】4【例 5】 分别计算图中两个格点多边形的面积.【考点】格点型面积 【难度】3星 【题型】解答 【解析】 利用“扩展法”和“割补法”我们都可以简单的得到第一幅图的面积均为9面积单位.第二幅图的面积均为10面积单位.【点评】“一个格点多边形面积的大小很可能是由哪些因素决定呢?”“格点多边形内部的格点数和周界上的格点数与格点多边形的面积有没有什么内在联系呢?”下面我们就来探讨一下! 在巩固中,我们发现两个图形面积相等.进一步还可以发现第一个图形边界上的格点数是8个;第二个图形边界上的格点数是10个,包含在图形内的格点数也相等,都是6个.【答案】第一幅图的面积均为9;第二幅图的面积均为10.【巩固】 求下列各个格点多边形的面积.【考点】格点型面积 【难度】3星 【题型】解答【解析】 ⑴ ⑴12L =;10N =,⑴1211011522L S N =+-=+-=(面积单位);⑴ ⑴10L =;16N =,⑴1011612022L S N =+-=+-=(面积单位);(1)(2)(3)(4)⑴ ⑴6L =;12N =,⑴611211422L S N =+-=+-=(面积单位); ⑴ ⑴10L =;13N =,⑴1011311722L S N =+-=+-=(面积单位).用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.【答案】⑴15;⑴ 20;⑴14;⑴17【例 6】 “乡村小屋”的面积是多少?【考点】格点型面积 【难度】3星 【题型】解答 【解析】 图形内部格点数9N =;图形边界上的格点数20L = ;根据毕克定理, 则1182LS N =+-=(单位面积).【答案】18【例 7】 右图是一个812⨯面积单位的图形.求矩形内的箭形ABCDEFGH 的面积.【考点】格点型面积 【难度】3星 【题型】解答【解析】 箭形ABCDEFGH 的面积810214842121232246=+÷-+⨯+÷-⨯=++=()() (面积单位).【答案】46【例 8】 比较图中的两个阴影部分①和①的面积,它们的大小关系______【考点】格点型面积 【难度】3星 【题型】填空 【关键词】希望杯,五年级,二试,第9题,6分【解析】 ⑴的面积为:1112111313222⨯⨯+⨯⨯+⨯⨯=,⑴的面积也为3223⨯÷=。
格点多边形面积计算公式格点多边形面积计算公式在计算机图形学中,格点多边形是由连接在坐标点上的直线段组成的多边形。
计算格点多边形的面积是一个常见的问题,下面列举了相关的计算公式,并通过例子进行解释说明。
1. 单纯形面积法单纯形面积法是计算任意给定n个点所构成的多边形面积的一种方法,其中n至少为3。
该方法通过将多边形分割为若干个三角形,并计算各个三角形的面积之和来求得总面积。
计算公式如下:S=∑1 2n−2i=1(x1y2+x2y3+x3y1−x1y3−x2y1−x3y2)其中(x1,y1),(x2,y2),(x3,y3)代表相邻的三个点的坐标。
例如,对于一个三角形,顶点坐标分别为(2,3),(4,1),(6,2),根据单纯形面积法,我们可以计算如下:S=12(2⋅1+4⋅2+6⋅3−2⋅2−4⋅3−1⋅6)=12(2+8+18−4−12−6)=3因此,该三角形的面积为3。
2. 格点计数法格点计数法是一种更为直观的计算格点多边形面积的方法,其基本思想是通过计算多边形内部的格点数量来近似计算出多边形的面积。
计算公式如下:S=N+B2−1其中N代表多边形内部的格点数量,B代表边界上的格点数量。
举个例子,假设我们有一个正方形,边长为4,其中内部有一个格点。
根据格点计数法,我们可以计算如下:N=1,B=16S=1+162−1=8因此,该正方形的面积为8。
3. 区域填充法区域填充法是一种更为精确的计算格点多边形面积的方法,它通过将多边形的内部分成若干个包含整数顶点的小单元,然后计算这些小单元的面积之和来求得总面积。
具体的计算步骤如下:1.将多边形的边界上的格点标记为1,内部的格点标记为0。
2.对于每个包含多边形内部的小单元,统计其中1的个数,并将其除以单元的面积得到该小单元的面密度。
3.将所有小单元的面密度相加得到多边形的面积。
由于区域填充法相对复杂,这里就不再详细展示示例。
以上就是三种常见的计算格点多边形面积的方法,可以根据具体情况选取适合的方法进行计算。
初中数学实践课教案10 课题数格点算面积一、活动目标(1)通过画图、列表、分析数据、寻找规律;(2) 获得一些研究问题的方法和经验,发展思维能力,加深理解相关的数学知识(3)通过获得成功的体验和克服困难的经历,增强应用数学的自信心二、活动重点:经历实践活动的过程,学会寻找思考问题的着眼点,掌握研究问题的方法,领悟数学思想。
三、活动难点:格点多边形的面积与图形内部及它边上的格点数之间关系的探究。
四、活动过程:本活动分为三个阶段第一阶段:课前活动一.概念认识格点多边形:方格网中的每个交点叫做格点(如左图中的点A、B、C、D、E…).显然,每一个小方格(如图中带阴影的小方格)就是一个面积单位.如果一个多边形的顶点都在格点上,那么这个多边形叫做格点多边形(如图中的多边形ABCDE)凸多边形与凹多边形:如下图a,把多边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的多边形叫做凸多边形.而图b中的多边形不具备这种性质,称为凹多边形.二.自主探究12.我们设格点多边形的面积为S,多边形内部的格点数为N,它的边上的格点数ab为L ,写出下图中格点多边形的N 、L3.仿照2中的图在网格纸上画出符合条件的不同..格点多边形 1)画2个满足条件N=0的格点多边形,求出它们的面积S2) 画2个满足条件N=1的格点多边形,求出它们的面积S3) 画2个满足条件N=2的格点多边形,求出它们的面积S第二阶段 课内活动一.对第一阶段活动的再认识1.认识格点多边形2.识别凹、凸多边形3.归纳格点多边形面积的求法4.会数格点多边形边上及内部的格点数二.探究格点多边形的面积与边上、内部格点数的关系活动一 探究N=0的格点多边形中S 与L 之间的关系(展示所画不同类型图形)满足N=0来吗?活动二 探究N=1满足N=1活动三 探究N=2的格点多边形中S 与L 之间的关系(展示所画不同类型图形)观察上表,你又有了什么发现?活动四 自主探究N=3时S 与L 之间的关系1.示范引领:画N=3的格点多边形2.合作交流:四人一组,画图研究N=3时S 与L 之间的关系活动五 猜想N=4、5、…、10、…的格点多边形中S 与L 之间的关系活动六 归纳分析S 、N 、L 三者关系121-+=N L S三.规律的应用求下列多边形的面积四.共同交流课内活动体会。
教材研究新课程NEW CURRICULUM《义务教育数学课程标准(2011年版)》对于估算有明确的要求,即“理解估算的意义”“会用方格纸估计不规则图形的面积”。
很多教师认为估算是在不要求精确计算的情况下使用的一种能快捷求出近似结果的计算方法,或者是检验精算结果是否正确的验算方法。
但是他们没有意识到,估算更重要的功能在于培养学生的数感、观察能力、空间想象能力和逻辑推理能力。
一、教材中对曲线图形面积的估算江苏教育出版社小学数学教材五年级上册第22页有这样一道例题:例11.下面是某自然保护区一个湖泊的平面图,如图1,(每个小方格表示1公顷)。
你能估计这个湖泊的面积大约是多少公顷吗?通过数格子来估算,55个整格,34个非整格,非整格的算半格,这个湖泊的面积大约是72公顷。
图1这个图形面积的准确值应该在55与89之间,上述估算方法不够精确,思维含量偏低,也较难引起学生的兴趣,有没有其他的估计方法呢?二、数格点估算面积1.数格点算面积的方法介绍通过阅读文献,我们认为,有一种数格点计算多边形面积的方法可以用来估算曲线图形的面积。
这种方法起源于格点多边形。
所谓格点多边形,就是说这个多边形的顶点全是格点,如图2:设S 为图2的面积,L 是边界上的格点数(组成格子的横竖线的交叉点正好在图形的边上),N 是内部格点数(交叉点在图形的内部),容易计算出图形面积是11。
如果联系到图形的L =6及N =9,还有L 2+N -1的关系式成立,这种方法是否具有一般性呢?2.数格点估算面积方法合理性的说明数格子的估计方法学生应该是可以理解的,但是数格点估算面积的方法有何依据呢?先以格点矩形为例。
看图3。
设图3矩形的长和宽分别为m 和n ,则面积S=mn 。
再来考虑这个矩形的边界格点数L ,L =2(m +1)+2(n -1);内部格点数N =(m -1)(n -1);而L 2+N -1=m +n +mn -m -n+1-1=mn ,所以关系式S =L 2+N -1对格点矩形是成立的。
正方形格点阵中多边形面积的计算公式在正方形格点阵中,如果要计算多边形的面积,可以使用Pick定理或Shoelace定理两种方法。
1. Pick定理:Pick定理是一种用于计算多边形面积的简单而直观的方法,适用于多边形的顶点坐标都是整数的情况。
Pick定理的公式如下:面积=内部格点数+边上格点数/2-1其中,内部格点数表示多边形内部的格点数,边上格点数表示多边形边上的格点数。
假设我们有一个正方形格点阵,边长为a。
我们需要计算一个有n个顶点的多边形的面积。
首先,我们可以通过计算内部格点数和边上格点数来应用Pick定理。
内部格点数可以通过计算多边形内部的数量来获得。
画出多边形的边,可以看到多边形内部的格点数为S = a-2,即正方形的边长减去两个。
边上格点数可以通过计算多边形的边界格点数来获得。
每个边上有a个格点,因此多边形的边上格点数为n*a。
将这些值代入Pick 定理的公式,即可计算多边形的面积。
2. Shoelace定理:Shoelace定理是一种更普遍适用的方法,适用于多边形的顶点坐标可以是任意实数的情况。
Shoelace定理的公式如下:面积 = ,(x1*y2 + x2*y3 + ... + xn*y1) - (y1*x2 + y2*x3 + ... + yn*x1), / 2其中,(x1, y1), (x2, y2), ..., (xn, yn) 是多边形的顶点坐标,按逆时针方向排列。
假设我们有一个正方形格点阵,边长为a。
我们需要计算一个有n个顶点的多边形的面积。
首先,我们可以计算出多边形每个顶点的坐标。
对于正方形格点阵,每个格点的坐标可以表示为(i, j),其中i和j分别为行和列的索引。
我们可以将顶点坐标代入Shoelace定理的公式,从而计算多边形的面积。
需要注意的是,Shoelace定理的公式中的坐标需要按逆时针方向排列,以确保计算的结果为正。
综上所述,对于正方形格点阵中的多边形面积的计算,我们可以采用Pick定理或Shoelace定理两种方法。
第四讲 格点图形面积计算1. 例题1答案:7平方厘米;5平方厘米;11平方厘米详解:如图所示,用分割法、添补法.三个图形的面积分别是:4111127⨯+⨯+⨯=平方厘米; 4⨯⨯÷32⨯⨯÷2. 例题2答案:6;12;4;7;9详解:①:326⨯=平方厘米;②:4312⨯=平方厘米;③:224⨯=平方厘米;3. 例题3答案:6.5平方厘米 详解:内部格点:3个,边界格点:9个.面积=3921 6.5+÷-=平方厘米.4. 例题4答案:34平方厘米详解:内部格点:7个;边界格点:22个.面积:7222234⨯+-=平方厘米.5.例题5答案:19.5平方厘米;31.5平方厘米④: ⑤: 121212+17⨯+⨯+⨯= 或:441313137⨯-⨯-⨯-⨯= 2339⨯+= 或:441212139⨯-⨯-⨯-⨯=详解:可以分割、添补,也可以用公式法:(1)内部格点:4个;边界格点:7个.面积:()7241319.5÷+-⨯=平方厘米;(2)内部格点:8个;边界格点:7个.面积:()7281331.5÷+-⨯=平方厘米.6. 例题6答案:28平方厘米;56平方厘米详解:可以分割、添补,也可以用公式法:(1)内部格点:4个;边界格点:8个.面积:()4282228⨯+-⨯=平方厘米;(2)内部格点:3个;边界格点:10个.面积:()32102456⨯+-⨯=平方厘米.7. 练习1答案:3平方厘米;10平方厘米详解:如图,分别用分割法、添补法.8. 练习2答案:12;20;5;18 详解:①:3412⨯=平方厘米; ②:直接数,每层4个,共5层,4520⨯=9. 练习3答案:13 简答:内部格点:1个,边界格点:13个.面积=()11321213+÷-⨯=.10. 练习4答案:17平方厘米简答:内部格点:1个;边界格点:17个.面积:1217217⨯+-=平方厘米. ③: ④:1112125⨯+⨯+⨯= 122312818⨯+⨯+⨯+=11.作业1答案:6;6.5简答:可用分割或添补法完成.12.作业2答案:7;12简答:使用割补法分别计算.13.作业3答案:56简答:大正三角形的面积是254100⨯=平方厘米,利用添补法可得.14.作业4答案:29简答:综合利用分割法与添补法.也可以用正方形格点图形面积公式计算.注意每个最小正方形面积是2.15.作业5答案:44简答:综合利用分割法与添补法.也可以用三角形格点图形面积公式计算.注意每个最小正三角形面积是2.。
格点三角形面积计算公式推导一、格点三角形的定义。
在平面直角坐标系中,横、纵坐标均为整数的点称为格点。
顶点为格点的三角形称为格点三角形。
二、皮克定理(Pick's theorem)1. 定理内容。
- 设格点多边形内部有N个格点,边界上有L个格点,则其面积S =N+(L)/(2)- 1。
对于格点三角形,这个定理同样适用。
2. 皮克定理的推导(以格点三角形为例)- 我们先从简单的情况开始考虑,比如直角三角形。
- 设直角格点三角形的两条直角边分别平行于坐标轴。
- 假设三角形的直角顶点坐标为(0,0),另外两个顶点坐标为(a, 0)和(0,b),其中a和b为正整数。
- 这个三角形内部的格点数N=((a - 1)(b - 1))/(2),边界上的格点数L=a + b+1。
- 根据皮克定理S = N+(L)/(2)-1,将N和L的值代入可得:- S=((a - 1)(b - 1))/(2)+(a + b + 1)/(2)-1- 展开式子:- S=(ab - a - b+1)/(2)+(a + b + 1)/(2)-1- S=(ab - a - b + 1+a + b + 1-2)/(2)- 化简后得到S=(ab)/(2),这正是直角三角形面积的计算公式(1)/(2)×底×高(这里底为a,高为b)。
- 对于一般的格点三角形,我们可以通过将其转化为多个直角格点三角形的组合(或差)来进行分析。
- 例如,对于任意一个格点三角形ABC,我们可以用一个矩形将其包含在内,设这个矩形的顶点都是格点。
- 矩形的面积可以很容易地用格点数计算出来,然后减去周围多余的直角格点三角形的面积(这些直角格点三角形的面积可以用前面的方法计算),通过这种方式可以验证皮克定理对于一般格点三角形也是成立的。
三、用行列式计算格点三角形面积(另一种方法)1. 行列式的相关知识。
- 对于平面上的三个点A(x_1,y_1),B(x_2,y_2),C(x_3,y_3),三角形ABC的面积S可以用行列式表示为:- S=(1)/(2)<=ftbegin{array}{ccc}x_1y_11 x_2y_21 x_3y_31end{array}right的绝对值。