2014年秋季新版新人教版七年级数学上学期1.2.4、绝对值学案3
- 格式:doc
- 大小:93.50 KB
- 文档页数:2
初中七年级数学上册第一章:有理数——1.2.4:绝对值(解析)一:知识点讲解知识点一:绝对值绝对值:✧ 几何意义:一般地,数a 的绝对值就是数轴上表示数a 的点与原点之间的距离,数a 的绝对值记作a ,读作“a 的绝对值”。
✧ 代数意义:一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数;零的绝对值是零,即对于任何有理数,都有⎪⎩⎪⎨⎧<-=>=0000a a a a a a ,,,。
由绝对值的定义可知,一个数的绝对值是非负数,在数轴上,一个数离原点越近,绝对值越小;离原点越远,绝对值越大。
绝对值是它本身的数是非负数,即若a a =,则0≥a ,即a 为非负数;绝对值是其相反数的数是非正数,即若a a -=,则0≤a ,即a 为非正数。
绝对值是某个正数的数有两个,它们互为相反数,即若a x =(0>a ),则a x ±=,即若2=x ,则2±=x 。
互为相反数的两个数的绝对值相等;绝对值相等的两个数相等或互为相反数。
若几个数的绝对值之和为0,则这几个数同时为0。
求一个数的绝对值,要“先判后去”,即先判断这个数是正数、0、还是负数,再由绝对值的定义去掉绝对值符号。
例1:写出下列各数的绝对值:23-、211、﹣3、0、45、π- 解:23、211、3、0、45、π知识点二:有理数大小的比较有理数大小的比较:✧ 利用数轴比较大小:依据:在数轴上表示有理数,左边的数小于右边的数;具体方法:把要比较大小的有理数在同一条数轴上表示出来,那么有理数从左到右的顺序就是从小到大的顺序。
✧ 利用数的性质比较大小:依据:正数大于0,0大于负数,正数大于负数。
两个正数,绝对值大的数大;两个负数,绝对值大的数反而小; 具体方法:在比较几个数的大小时,步骤如下:先将它们分类成正数、0、负数,再按上面的依据进行比较。
两个正有理数比较大小:1) 比较两个小数大小,先看正数部分,正数部分大的那个数大;2) 两个分数比较大小,同分母分数,分子大的分数大,异分母分数,要先通分,再比较; 3) 比较分数与小数大小,一般先将小数化成分数再比较。
人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。
但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。
他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值解决实际问题的能力。
3.培养学生的抽象思维能力和逻辑思维能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
3.学生分组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。
同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。
3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。
引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。
绝对值教学目标:1、掌握绝对值的概念,会求一个有理数的绝对值.2、会用绝对值比较两个或多个有理数的大小.3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.教学重点: 1.给出一个数会求它的绝对值。
2.利用数轴和绝对值比较有理数的大小。
教学难点:绝对值的几何意义;利用绝对值和数轴比较两个负数的大小。
教学过程:一、创设问题情境,引入新课活动1:两辆汽车从同一处O 出发,分别向东、向西方向行驶10千米,到达A 、B 两处(如图),它们行驶路程的远近(线段OA 、OB 的长度)相同吗?它们行驶的路程都是10千米.教师指出:A 、B 两点到原点O 的距离,就是我们这节课要学习的A 、B 两点所表示的有理数的绝对值。
二、讲授新课:探究一:绝对值的定义活动2:借助于数轴给出绝对值的定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a 。
注:这里a 可以是正数,也可以是负数和0. 例如:在问题1的问题中,A 、B 两点分别表示10和一10,它们与原点的距离都是10个单位长度,所以10和一10的绝对值都是10,即。
,10101010=-=显然,00=。
因为点A 、B 表示的数互为相反数,且它们的绝对值相等,因此我们可得出:互为相反数的两个数的绝对值相等.活动3:在数轴上表示出下列各数,并求出它们的绝对值。
-2,1.5,0,7,-3.5,5.解:依题意得:数轴可表示为:如图所示数轴上的A 、B 、O 、C 、D 、E 分别表示-2,1.5,0,7,-3.5,5.|-2|=2,|1.5|=1.5,|0|=0,|7|=7,|-3.5|=3.5,|5|=5.根据此题的结果我们可归纳总结正数的绝对值、负数的绝对值、0的绝对值各有的特点,因此可得出 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.代数表示(数学语言)是:字母a 可个有理数。
(1)当a 是正数时,a = a ;(2) 当a 是负数时,a = -a ;(3)当a 是0时,a = 0 .活动4:例1:求 +8、-12、-3、+3、-1.6的绝对值.解:|+8|=8 ;|-12|=12 ; |-3|= 3; |+3|= 3 ;∣-1.6∣=1.6.思考:求一个有理数的绝对值的方法:1.利用数轴去求一个数的绝对值;2.只需知道这个数是正数、负数还是0,利用绝对值的性质即可求出一个数的绝对值。
人教版七年级数学上册:1.2.4《绝对值》教学设计3一. 教材分析绝对值是初中数学中的一个重要概念,它在解决实际问题和进一步学习数学中有着广泛的应用。
本节课的教学内容主要包括绝对值的定义、性质及其应用。
通过本节课的学习,学生能够理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些简单的问题。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。
但是,对于绝对值这一概念,学生可能较为陌生,需要通过具体的例子和实践活动来加深理解。
三. 教学目标1.知识与技能:理解绝对值的定义,掌握绝对值的性质,能够运用绝对值解决一些简单的问题。
2.过程与方法:通过观察、思考、交流等活动,培养学生的逻辑思维能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:绝对值的定义和性质。
2.难点:绝对值的性质的理解和运用。
五. 教学方法本节课采用讲授法、案例分析法、小组合作法等多种教学方法,通过教师的讲解、学生的实践和合作交流,引导学生主动探索、积极思考,从而达到对绝对值概念的理解和应用。
六. 教学准备1.教师准备:教材、教案、PPT、例题、练习题等。
2.学生准备:课本、笔记本、文具等。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入绝对值的概念,如“小明从家出发,向正北方向走了3公里,又向正南方向走了5公里,他离家有多远?”让学生思考并回答,引导学生认识到绝对值表示的是一个数与原点的距离。
2.呈现(10分钟)教师通过PPT展示绝对值的定义和性质,让学生认真听讲并做好笔记。
3.操练(10分钟)教师给出一些例题,让学生独立完成,并及时给予讲解和指导。
4.巩固(10分钟)教师学生进行小组讨论,共同解决一些关于绝对值的问题,巩固所学知识。
5.拓展(10分钟)教师引导学生思考绝对值在实际生活中的应用,如计算两地之间的距离、判断点的位置等,让学生尝试用绝对值解决问题。
数学:1.2.4《绝对值》学案(人教版七年级上)【学习目标】:1、理解、掌握绝对值概念.体会绝对值的作用与意义;2、掌握求一个已知数的绝对值和有理数大小比较的方法;3、体验运用直观知识解决数学问题的成功;【重点难点】:绝对值的概念与两个负数的大小比较【导学指导】一、知识链接问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近)二、自主探究1、由上问题可以知道,10到原点的距离是,—10到原点的距离也是到原点的距离等于10的数有个,它们的关系是一对。
这时我们就说10的绝对值是10,—10的绝对值也是10;例如,—3.8的绝对值是3.8;17的绝对值是17;—613的绝对值是一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣。
2、练习(1)、式子∣-5.7∣表示的意义是。
(2)、—2的绝对值表示它离开原点的距离是个单位,记作;(3)、∣24∣= . ∣—3.1∣= ,∣—13∣= ,∣0∣= ;3、思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是。
用式子表示就是:1)、当a是正数(即a>0)时,∣a∣= ;2)、当a 是负数(即a<0)时,∣a ∣= ; 3)、当a=0时,∣a ∣= ;4、随堂练习 P12第1、2大题(直接做在课本上)5、阅读思考,发现新知阅读P12问题—P13第12行,你有什么发现吗?在数轴上表示的两个数,右边的数总要 左边的数。
也就是:1)、正数 0,负数 0,正数大于负数。
2)、两个负数,绝对值大的 。
【课堂练习】:1、自学例题 P13 (教师指导)2、比较下列各对数的大小:—3和—5; —2.5和—∣—2.25∣【要点归纳】:一个正数的绝对值是 ;一个负数的绝对值是它的 ; 0的绝对值是 。
【拓展练习】1.如果a a 22-=-,则a 的取值范围是 …………………………( ) A .a >OB .a ≥OC .a ≤OD .a <O2.7=x ,则______=x ; 7=-x ,则______=x . 3.如果3>a ,则______3=-a ,______3=-a .4.绝对值等于其相反数的数一定是…………………………………() A.负数 B.正数C.负数或零 D.正数或零5.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有…………………………………………………()A.0个B.1个C.2个D.3个【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,∠AOB 是直角,OA 平分∠COD ,OE 平分∠BOD ,若∠BOE=23°,则∠BOC 的度数是( )A.113°B.134°C.136°D.144°2.下列关于角的说法正确的个数是:( )①由两条射线组成的图形一定是角 ②角的边长,角越大 ③在角的一边的延长线取一点D ④角可以看作由一条射线绕着它的端点旋转而成的图形 A .1 B .2 C .3 D .4 3.下列说法中,正确的有( )①小于90°的角是锐角;②等于90°的角是直角;③大于90°的角是钝角;④平角等于180°;⑤周角等于360°.A .5个B .4个C .3个D .2个4.如果1x =是方程250x m +-=的解,那么m 的值是( ) A.-4B.2C.-2D.45.方程2x-3y=7,用含x 的代数式表示y 为( ) A.y=13(7-2x) B.y=13(2x-7) C.x=12(7+3y) D.x=12(7-3y) 6.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( ) A.x+1=2(x ﹣2) B.x+3=2(x ﹣1) C.x+1=2(x ﹣3)D.1112x x +-=+ 7.当1<a<2时,代数式|a -2|+|1-a|的值是( ) A .-1B .1C .3D .-38.下列计算正确的是( ) A .2a+a 2=3a 3B .a 6÷a 2=a 3C .(a 2)3=a 6D .3a 2-2a=a 29.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律。
1.2.4 绝对值一、学习目标:1、理解绝对值的概念及几何意义,体会绝对值的作用;2、会求一个数的绝对值,会求绝对值已知的数;3、掌握有理数比较大小的法则.二、学习重难点:重点:绝对值的概念及有理数的大小比较难点:两个负数大小的比较探究案三、教学过程(一)情境导入两辆汽车从同一处O出发,分别向东、西方向行驶了10千米,到达A,B两处.它们的行驶路线相同吗?行驶的路程分别是多少?(二)合作探究请两位同学分别站在老师的左右两边,两位同学同时向东、西相反的方向走1米(老师、两名学生都在同一直线上,规定向东为正),把这两位同学所站位置用数轴上的点表示出来.说出两名学生与老师的距离.绝对值概念:一般地,数轴上表示数a 的点与原点的距离叫做数a 的________,记作_______. 例如,上面的问题中,在数轴上表示数-1的点和表示数1的点与原点的距离都是1,所以,1与-1的绝对值都是1,即|1|=1,|-1|=1.练习:-2的绝对值表示它离原点的距离是_______ 个单位,记作_______.2:-0.8的绝对值是 __________.3:口答:(1)|+6|=_____________ |72|=__________ |8.2|=__________ (2)|0|=____________(3)|-3|=____________ |-31|=___________ |-0.6|=__________ 归纳总结数a 的绝对值的一般规律:1. 一个正数的绝对值是___________;____________________;___.4.即:①若a >0,则|a|=____;②若a <0,则|a|=_________;③若a=0,则|a|=______. 思考:有没有绝对值等于-2的数?一个数的绝对值会是负数吗?为什么?不论有理数a 取何值,它的绝对值总是什么数?探究二你能将这七天中每天的最低气温从低到高排列吗?能把这7个数用数轴上的点表示出来吗?观察这些点在数轴上的位置,思考它们与温度的高低之间的关系,你觉得两个有理数可以比较大小吗?数轴上的两个点,右边的点表示的数与左边的点表示的数的大小关系是怎样的?互为相反数的两个数的绝对值有什么关系?例题解析1.说出下列各式的值:,,,2.求下列各数的绝对值:6 , -6 , -3.9 , +3.9, , , 0.3、化简: (1) ︱-(+21)︱ (2) -︱-131︱随堂检测1、如果,那么 a=_____,b=_____.2、已知x =30,y =-4,则3、化简填空4、一个数的绝对值是7,则这个数是____________.5、满足︱x︱≤3的所有整数是_____________________;6、绝对值大于2并且不大于5的负整数有_____________.7、判断对错:(1)一个数的绝对值等于本身,则这个数一定是正数 .( )(2)一个数的绝对值等于它的相反数,这个数一定是负数.( )(3)如果两个数的绝对值相等,那么这两个数一定相等( )(4)如果两个数不相等,那么这两个数的绝对值一定不等.( )(5)有理数的绝对值一定是非负数. ( )(6)有理数没有最小的,有理数的绝对值也没有最小的.( )(7)两个有理数,绝对值大的反而小. ( )(8)两个有理数为a、b,若a >b,则|a|>|b|. ( )课堂小结通过本节课的学习在小组内谈一谈你的收获,并记录下来:我的收获___________________________________________________________________________ _______________________________________________________________________________参考答案(二)合作探究绝对值概念:绝对值 |a|练习:1:2|-2|3:(1)6(2)0(3)3归纳总结1.它本身2. 它的相反数3. 04.a –a0思考:没有 不会 非负数探究二在数轴上表示有理数,左边的数小于右边的数.正数大于0,负数小于0,正数大于负数. 两个负数,绝对值大的反而小.虽然一对相反数分别在原点两边,但它们到原点的距离是相等的.所以互为相反数的两个数的绝对值相等.例题解析1.,,,02.6 63.9 3.9 03.(1) ︱-(+21)︱ (2) -︱-131︱ =︱-21︱ =311 =21随堂检测1.0 1word2.183.5 5 -5 -5 -4.7或-75.6.7.(5)对,其他均错。
1.2.4《绝对值》教案第1课时绝对值教学内容课本第11页至第12页.教学目标1.知识与技能(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值.(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用.2.过程与方法通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力.3.情感态度与价值观培养学生积极参与探索活动,体会数形结合的方法.重、难点与关键1.重点:正确理解绝对值的概念,能求一个数的绝对值.2.难点:正确理解绝对值的几何意义和代数意义.3.关键:借助数轴理解绝对值的几何意义,•根据绝对值定义和相反数的概念,理解绝对值的代数意义.教学过程一、复习提问1.什么叫互为相反数?2.在数轴上表示互为相反数的两个点和原点的位置关系怎样?二、新授在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向.1.观察课本第11页图1.2-5,回答:(1)两辆汽车行驶的路线相同吗?(2)它们行驶路程的远近相同吗?• •这两辆车行驶的路线不同(方向相反),•但行驶的路程的远近相同,•都是10km.课本图1.2-5中表示-10的点B和表示10的点A离开原点的距离都是10,•我们就把这个距离10叫做数-10、10的绝对值.一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.这里的数a可以是正数、负数和0.例如上述的10和-10的绝对值记作│10│=10,│-10│=10,•同样在数轴上表示+6和-6的两个点,离开原点的距离都是6,即6和-6的绝对值都是6,记作│6│=6,•│-6│=6.数轴上表示数0的点与原点的距离是0,所以│0│=0.2.试一试:(1)│+2│=______,│15│=_____,│+10.6│=________.(2)│0│=_______.(3)│-12│=_______,│-20.8│=_______,│-3217│=_______.3.你能从上面解答中发现什么规律吗?学生若有困难,教师可提示:所得的结果与绝对值符号内的数有什么关系?从而得出绝对值的代数意义:(1)一个正数的绝对值是它本身;(2)零的绝对值是零;(3)一个负数的绝对值是它的相反数.我们用a表示任意一个有理数,上述式子可以表示为:①当a是正数时,│a│=_______;②当a是负数时,│a│=_______;③当a=0时,│a│=_______.以上先让学生填空,然后让学生给a•取一些具体数值检验所填写的结果是否正确.教师问:(1)任何一个有理数都有绝对值吗?一个数的绝对值有几个?(2)有没有一个数的绝对值等于-2?任何一个数的绝对值一定是怎样的数?(3)绝对值等于2的数有几个?它们是什么?归纳:①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.②两个互为相反数的绝对值相等,即│a│=│-a│.③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.三、巩固练习1.课本第12页练习1、2题.第1题强调书写格式,防止出现“-8=8”的错误.第2题(1)错,如3与-2的符号相反,但它们不是互为相反数,•应改为“只有大小相等符号相反的数是互为相反数”.(2)正确.(3)错,因为这个点也可能越靠左,应改为:“一个数的绝对值越大,表示它的点离原点越远.”(4)正确.2.补充练习.填空:(1)绝对值小于4的整数有________;(2)绝对值大于2而小于5的所有整数是_________;(3)如果│a│=│b│,那么a与b的关系是________;(4)如果一个数的绝对值为13,那么这个数是________.思路点拨:(1)绝对值小于4的整数,即在数轴上离开原点距离小于4•的整数点所表示的数,所以有3,-3,2,-2,1,-1,0.(2)绝对值大于2而小于5的所有整数有-4,-3,3,4,如下图所示:(3)a与b相等或互为相反数.(4)13或-13.四、课堂小结理解绝对值的几何意义和代数意义.从几何意义可知,一个数的绝对值是表示该数的点与原点的距离,因为距离总是正数和零,所以有理数的绝对值不可能是负数,从绝对值的代数定义也可进一步理解这一点.引入绝对值概念后,有理数可以理解为由性质符号和绝对值两部分组成的,如-5就是由“-”号和它的绝对值5两部分组成.五、作业布置1.课本第15页习题1.2第4、7、10题.2.选用课时作业设计.第一课时作业设计一、填空题.1.-5.3的绝对值是______,绝对值等于813的数是_______.2.绝对值最小的数是_____,绝对值等于它的本身的数是_______.3.如果│x│=4,则x=_______,若│-a│=32,则a=_______.4.绝对值小于3的负整数是_____,绝对值不大于223的整数是________.5.-│+2.3│=_______,-│-215│=_______,-(-92)=________.6.用“<”、“>”或“=”号填空:│0.2│_______│-15│,│-3│_____│223│,│-3│_____│-5│.二、选择题.7.下列说法错误的是()A.正数和零的绝对值是它的本身B.负数和零的绝对值是它的相反数C.任何有理数的绝对值一定不是负数D.负数没有绝对值8.若│a│=-a,则a一定是()A.正数 B.负数 C.非正数 D.非负数三、解答题.9.在数轴上表示下列各数,并求出它们的绝对值.-32,112,-3,54,0.10.正式的足球比赛,对所用足球的质量有严格规定,下面是6个足球的质量检测结果.(用正数记超过规定质量的克数,用负数记不足规定质量的克数)-25,+10,-20,+30,+15,-40.请指出哪个足球的质量好一些,并用绝对值的知识说明原因.。
《1.2.4 绝对值》学案(新版)新人教版
学习目标
1.通过实例认识、理解绝对值概念,体会绝对值的作用与意义;
2.会求一个已知数的绝对值,并能够探索出求绝对值的规律。
一、自主学习
1、一般地,数轴上表示数a的点与原点的距离叫做数a的,记作。
例如:|-4|的几何意义是,因此 |-4| = 。
2、正数的绝对值是:,即当a是正数时,|a|= ;
负数的绝对值是:,即当a是负数时,|a|= ;
0的绝对值是:或,即当a=0时,|a|= ;
无论a为何值,|a|一定是一个数,即|a| 0
绝对值是它本身的数是:和(或),即当|a|= a时,a 0
绝对值是它相反数的数是和(或)即当|a|=- a时,a 0
二、学习过程
阅读课本P11-12,
1.理解一个数的绝对值的意义;
2.会求出已知数的绝对值;
三、达标巩固
1填空
-6.7的绝对值是; +10.2的绝对值是; -8的绝对值是; 5的绝对值是,0的绝对值是
|-6.7|= ; |10.2| = ; |-8|= ; |5|= ;|0|=
2、化简下列各式:
-|-7|= ; +|+6.9|= ; -|+12|= ; +|-5.5|= ; -|-0|= ;
3、一个数的绝对值有个,绝对值是2的数是;
-2有绝对值吗?,绝对值有等于-2的吗?。
4、|-6.7|= ,|6.7|= ,
| -5 |= ,| 5 |= ,
|-5.5|= ,|5.5|= ,
|-120|= ,|120|=
根据以上几个联系你可以总结出什么:
4、绝对值小于3的整数有。
5如果|a|=|b|,那么a和b的关系是。
6、用< 、> 、=号填空:|0.2| |-1╱5|,|-5| |-3|
7、若|a|=-a,那么a一定是()数
四、学后记
五、课时训练
基础过关
1.______8
57=+;______7.3=-;______75.0=+-; ______45=--;______32=-+;______5
3=--)(;+(-54)= 。
2.—2的绝对值表示它离开原点的距离是 个单位,记作 。
3.一个数的绝对值是3,那么这个数是__ ____;绝对值等于4的数是______。
4.判断:
(1)绝对值相等的两个数,它们一定相等。
( )
(2)一个数的绝对值越大,表示它的点在数轴上越靠右。
( )
5.下列判断错误的是( )
A 一个正数的绝对值一定是正数
B 一个负数的绝对值一定是正数
C 任何数的绝对值一定是正数
D 任何数的绝对值都是非负数
强化提升
1.式子∣-5.7∣表示的意义是 。
2.若a a =,则a 的取值范围是( );若a a -=,则a 的取值范围又是( )
A .a >O
B .a ≥O
C .a <O
D . a ≤O
3.若7=x ,则______=x ; 7=-x ,则______=x 。
4.__ _的相反数是它本身,___ __的绝对值是它本身,_______的绝对值是它的相反数.
5.绝对值最小的数是__ _____;绝对值不大于2010的整数有__ __ __个;绝对值大于3而小于7的所有整数之和为 。