数学教育概论复习
- 格式:doc
- 大小:44.00 KB
- 文档页数:9
数学教育概论期末考查内容:课程标准、数学教育理论、教育观点、教学设计一、普通高中课程标准(实验)❖理念❖教学建议普通高中课程基本理念❖构建共同基础,提供发展平台❖提供多样课程,适应个性选择❖倡导积极主动、勇于探索的学习方式❖注重提高学生的数学思维能力❖发展学生的数学应用意识❖与时俱进地认识“双基”❖强调本质,注意适度形式化❖体现数学的文化价值❖注重信息技术与数学课程的整合❖建立合理、科学的评价体系内容:1. 构建共同基础,提供发展平台❖基础性:为学生适应现代生活和未来发展提供数学基础;为学生进一步学习提供必要的数学准备。
❖必修系列课程是为了满足所有学生的共同数学需求;❖选修系列课程是为了满足学生的不同数学需求,它仍然是学生发展所需要的基础性数学课程。
2. 提供多样课程,适应个性选择❖高中数学课程应具有多样性与选择性,为学生提供多层次、多种类的选择。
学生自主选择,必要时在教师的指导下进行适当地转换、调整。
3. 倡导积极主动、勇于探索的学习方式❖学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。
❖高中数学课程设立“数学探究”“数学建模”等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯。
4. 注重提高学生的数学思维能力❖地位:数学教育的基本目标之一。
❖体现:直观感知、观察发现、归纳类比、空间想像、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构。
❖作用:有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断,在形成理性思维中发挥着独特的作用。
5. 发展学生的数学应用意识❖载体:基本内容的实际背景,“数学建模”的学习活动,体现数学某些重要应用的专题课程。
❖作用:力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。
一、1、克莱因对数学教育改革有哪些建议?答:(1)数学教师应该具备较高的数学观点,只有观点高了,事物才能显得明了而简单。
(2)教育应该是发生性的,所以空间的直观,数学上的应用,函数的概念是非常必要的。
(3)应该用综合起来的一般概念和方法来解决问题,而不要去深钻那种特殊的解法。
(4)应该把算数、代数和几何学方面的内容,用几何的形式以函数为中心观念综合起来。
2、数学家和心理学家对数学教育的影响主要表现在哪些方面?答:数学家对数学教育的影响主要体现在教学内容的选取和安排上,心理学家的影响主要体现在研究方法指导上。
3、国际上数学教育研究热点的演变?答:1960、1970年代以研究教育体制、课程、教学经验或大规模的课程实验为主,使用统计分析方法的定量的比较研究较多。
到了1970年代后期,对个别或少数学生的小型的定性的研究明显增加,这种研究在1980和1990年代更加盛行。
1980年代后,受皮亚杰和Vygotsky等心理学家的影响,解释学生理解的理论及相应的思想学派变得兴旺起来。
二、4、数学发展史划分为哪四个高峰期?答:(1)以《几何原本》为代表的古希腊的公理化数学(公元前700——300)(2)以牛顿发明微积分为代表的无穷小算法数学(17——18世纪)(3)以希尔伯特为代表的现代公理化数学(19——20世纪中叶)(4)以现代计算机技术为代表的信息时代数学(20世纪中叶——今天)5、20世纪数学观有什么变化?答:(1)公理化方法、形式演绎仍然是数学的特征之一,但是数学不等于形式。
数学正在走出形式主义的光环。
(2)在计算机技术的支持下,数学注重应用。
(3)数学不等于逻辑要做“好”的数学。
6、你如何认识数学的文化本质?答:(1)数学是人类文明的火车头。
(2)数学打上了人类各个文化发展阶段的烙印。
(3)数学应从社会文化中汲取营养。
(4)数学思维方式对人类文化的独特贡献。
(5)数学成为描述自然和社会的语言。
7、简述我国数学教学理念的发展?答:(1)由关心教师的“教”转向也关注学生的“学”。
1、中学数学教学内容的编排原则是什么?1 心理原则2系统性原则3 一体化原则4 兼顾性原则2、中学教学内容的编排体系有哪几个形式?直线前进式和螺旋上升式3、数学的特征是什么?思维的严谨性、高度的抽象性、应用的广泛性4、义务教育阶段的数学教学目标是什么?.1、获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题、分析和解决问题的能力。
3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
总体目标从以前的“双基”发展到现在的“四基” 基础知识、基本技能、基本思想和基本活动经验。
全面的反映出学生的数学综合素养。
强调在学习过程中,发现问题和提出问题与分析解决问题并重。
这就要求我们在围绕“基础知识与基本技能、过程与方法、情感态度与价值观”目标进行教学设计时,创新情境,丰富教学活动;在活动过程中,让学生掌握应有的基础知识和数学技能,增强学生数学思维,培养学生对待学习和其他事物的科学态度。
5、中学数学的教学基本原则主要包括那几个方面?谈谈自己的看法1、严谨性与量力性相结合原则2、抽象与具体相结合原则3、理论与实际相结合原则4、巩固与发展相结合原则5、数与形相结合原则6、传授知识与发展能力相结合原则6、什么叫做教学法?如何看待传统的教学方法?如何看待新的教学方法?两者有何关系?数学教学方法就是在数学教学中教师的工作方式和相应的学生的学习活动方式及其相互之间的有机联系,它包括各种具体的教学方式和手段,其目的就是为了完满地完成预定的数学教学任务。
在长期的中学数学教学中所形成的一些常用的教学方法,这些教学方法在传统的中学数学教学中行之有效,曾经发挥了重要的作用,即使在现代数学教学中这些教学方法也能够经过一定的变化与现代的教学方法相结合而发挥作用,更何况在我国现阶段仍以传统教学为主的情况下,认真地掌握和运用传统的教学方法是极为重要的。
数学学科教学论知识点复习一、数学教育的目标1.发展学生的数学思维能力:培养学生的逻辑思维、创新思维、批判性思维等数学思维能力。
2.培养学生的数学兴趣和数学能力:通过启发性、趣味性的有效教学方法,激发学生对数学的兴趣,并培养他们的数学能力。
3.培养学生的数学应用能力:培养学生把数学知识和方法应用于实际问题解决的能力。
4.培养学生的数学素养:使学生具备数学知识和技能,并能运用数学思维解读世界、分析问题、决策等。
5.培养学生的数学学习能力:教育学生在学习数学过程中掌握有效的学习策略和学习方法,培养自主学习和合作学习的能力。
二、数学教学的内容1.数与式:数的性质、整数、分数、小数等基本概念和运算法则,代数式的理解与运算等。
2.关系与函数:线性函数、二次函数、指数函数、对数函数等基本函数的性质与应用,函数与方程、函数与几何、函数与数据等的关系。
3.几何与空间:基本几何知识和性质,图形的几何性质和变换,立体的性质与计算,几何证明等。
4.数据与概率:数据的收集和表示,数据的统计分析与解读,概率的基本概念和计算等。
5.数学思维与方法:数学问题的提出和解决,数学的证明与推理,数学建模和解决实际问题的方法等。
三、数学教学的方法1.启发式教学法:通过提出问题、引导学生思考、探究和发现新知识。
2.归纳演绎法:通过给出具体例子,引导学生归纳出一般规律,然后进行推理和证明。
3.问题解决法:通过给学生提供实际问题,培养学生运用数学知识解决问题的能力。
4.探究式学习法:通过学生主动参与和探究,发现问题、探索规律的方法。
5.合作学习法:通过小组合作,互相讨论、交流和合作解决问题,促进学生的学习。
四、数学教学的评价1.合理性评价:评价教学目标的合理性,是否符合学生的实际需要和课程要求。
2.包容性评价:评价教学方案是否适应不同学生的个别差异和需求。
3.效果评价:评价教学效果是否达到预期的目标,学生是否能够掌握核心概念和能力。
4.过程评价:评价教学过程的有效性,教师是否采用了合适的教学方法和策略。
乔治?波利亚是美籍匈牙利数学家。
他有著名的三本书:《怎样解题》(1944)、《数学的发现》(1954)、《数学与猜想》(1961)。
其中《怎样解题》一书被译成17种文字。
波利亚提供的“怎样解题”表(第48-49页)分四步:1.了解问题;2.拟订计划;3.实行计划;4.回顾。
弗赖登塔尔认识的数学教育有五个主要特征1.情境问题是教学的平台;2.数学化是数学教育的目标;3.学生通过自己努力得到的结论和创造是教育内容的一部分;4.“互动”是主要的学习方式;5.学科交织是数学教育内容的呈现方式。
这些特征可以用三个词来概括——现实、数学化、再创造。
数学化:人们在观察、认识和改造客观世界的过和中,运用数学的思想和方法来分析和研究客观世界的种种现象并加以整理和组织的过程。
再创造:强调学生学习数学是一个经验、理解和反思的过程,是以学生为主体的学习,其核心过程是数学过程再现。
高等师范院校面临新挑战答:高中的新课程标准让广大的高中数学教师有些望而生畏,他们感到许多选修课的内容他们并没有学过,许多课程他们没法开设。
比如,高中选修课系列3涉及高等数学,包括数学史选讲,信息安全与密码,球面上的几何,对称与群,欧拉公式与闭曲面分类,三等分角与数域扩充等。
由于新一轮的课程改革强调要让学生主动参与教学,要鼓励学生积极展开讨论,探索数学知识的来龙去脉和提出问题,因此学生提出的问题中,有许多使教师感到难堪,有的他们没法回答,有的他们回答不清楚。
基本活动经验的类型1.直接数学活动经验;3.间接数学活动经验;3.专门设计的数学活动经验;4.意境联结性数学活动经验。
基础教育部分一.“标准”有哪些改革目标?1.指导思想:以邓小平同志的“教育要面向现代化,面向世界,面向未来”和江泽民同志“三个代表”重要思想为指导。
2.教育目标方面:培养爱国精神和“四有新人”等。
3.课程内容:改变课程内容“难、繁、偏、旧”和过于注重书本知识的现状。
4.课程结构方面:改变过于强调学科本位、科目过多和缺乏整合的现状,设置综合课程。
《数学教育概论》复习资料第二章与时俱进的数学教育1,数学发展史上的四个高峰:①以《几何原本》为代表的古希腊的公理化数学(公元前700-300)(严密性);②以牛顿发明微积分为代表的无穷小算法数学(17-18世纪中叶)(有用性);③以希尔伯特为代表的现代公理化数学(19-20世纪中叶)(形式化);④以现代计算机技术为代表的信息时代数学(20世纪中叶-今天)2,四个数学发展阶段,显示出“数学应用”和严密的“公理化”这两种思潮是交互出现的:①古希腊“公理化”时期;②牛顿的不严密的无穷小算法时期;③希尔伯特的严密的现代公理化时期;④信息时代的计算机算法时期。
3,核心数学的发展趋势至少有以下特点:①从线性到非线性,混沌、分形、动力系统等研究迅速发展;②从交换到非交换,矩阵、算子的乘法都是不可交换的;③从一维数学到高维数学,特别是四维和无穷维;④随机数学和确定性数学、离散和连续、局部性质和整体性质间的对立与整合。
4,数学观的变化:①公理化方法、形式演绎仍然是数学的特征之一,但是数学不等于形式;②在计算机技术的支持下,数学注重应用;③数学不等于逻辑,要做“好”的数学。
5,20世纪我国数学教育观发生了哪些变化?①由关注教师“教”转向关注学生的“学”;②从“双基”与“三大能力”观点的形成,发展到更宽广的能力观和素质观;③从听课、阅读、演题,到提倡试验、讨论、探索的学习方式;④从看重数学的抽象和严谨,到关注数学文化、数学探究和数学应用。
第三章数学教育的基本理论1,弗赖登塔尔的数学教育理论1)弗赖登塔尔所认识的数学教育主要特征是什么?①情境问题是教学的平台;②数学化是数学教育的目标;③学生通过自己的努力得到的结论和创造是教育内容的一部分;④“互动”是主要学习方式;⑤学科交织是数学教育内容的呈现方式。
(概括:现实、数学化、再创造)2)现实:弗赖登塔尔认为,数学是来源于现实,存在于现实,并且应用于现实,而且每个学生有各自不同的“数学现实”。
《小学数学教育概论》复习思考题数学的主要研究对象是什么?小学生学习数学概念的主要形式是什么?影响小学生数学概念学习的主要因素有哪些?我国小学数学新课程的学习内容分哪几个方面?我国小学数学新课程的“四基”目标是什么?6.一份完整的教案应该包括哪些内容?(课题、教学内容、教学目标、教学重点和难点、教具准备、教学过程)7.什么叫整除?什么叫除尽?8.分别说明什么是自主学习、合作学习、探究学习?9.皮亚杰将儿童的认知发展的过程分为哪几个阶段?小学生的认知发展处于哪个阶段?这个阶段儿童认知的主要特点是什么?10.数学课程标准特别强调哪几种数学学习活动方式?11.发现教学法的一般步骤是什么?(184)12.在活动教学法中,学生的学习活动有哪些特点?(186)13.举例说明小学数学概念的形成过程。
(以学生的感性经验为基础,从大量的具体事例出发,形成表象;以归纳的方式抽象出事物的本质属性;提出各种假设加以验证,从而获得初级概念;把这一概念的本质属性推广到同类。
例如“5”的概念的形成……)14.简要说明小学生建构数学认知结构的一般过程。
(144—145)15.什么叫数学概念?16.儿童数学概念的形成应以什么为基础?17.小学生数学命题学习的基本形式有哪些?18.数学问题主要由哪几种成分构成?19.波利亚的解题表提出的解题步骤是什么?20.小学数学课堂教学的基本方法有哪些?21.弗赖登塔尔“现实数学教育理论”的基本特征有哪些?22.小学数学教学设计包括哪几个过程?23.数学概念由哪些基本成分构成?24.数学课程标准指出,数学教学活动必须建立在什么基础之上?25.有意义的接受学习需具备哪些基本条件?。
数学教育教学概论试题(二)一、选择题(每小题2分,共16分)1. D 2. B 3. D 4. B5. B6. C7. B8. D1. 一种学习对另一种学习起干扰作用的迁移是()A.顺向迁移 B.逆向迁移 C.正迁移 D.负迁移2. 在数学教学过程中,教师的作用表现为()A.主体作用B.主导作用 C.平等作用 D.评价作用3. 一种学习对另一种学习起干扰作用的迁移是()A.顺向迁移 B.逆向迁移 C.正迁移 D.负迁移4. 一位学生在做一道四则混合式题时确定先算什么,后算什么这种思维方法是()A.综合 B.分析 C.实验 D.观察5. 在一定教育阶段中,学生学习某一门课程在德、智、体等方面应该达到的程度,称为( )。
A.教育目标B.教学目标C.课程目标D.发展目标6. 以下不属于数学的三大特点的是()A.精确性 B.抽象性 C.确定性 D.应用的广泛性7. 数学思维能力的核心是()A 独立思考能力 B逻辑思维能力 C 运算能力 D演绎能力8. 下列哪个不属于现代数学基础教育学派()A 逻辑主义B 形式主义C 抽象主义D 直觉主义二、判断题(每小题1分,共8分)1. 数学命题就是数学定理。
() 1. ×2. √3. ×4.√5. √6.√7.× 8.√2. 课程包括“教学计划”、“课程标准”和“教材”。
()3. 构成中学数学教学过程的四个基本因素是教师、学生、课程、教学方法。
()4. 数学观是人们对数学的本质、方法、思想的认识。
()5. 按结构主义的纯演绎形式讲授数学教材的观点是当下最流行的数学教学观。
()6.数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种素质。
()7.准备律是布鲁纳提出的三大学习规律之一。
()8.讲解是用语言传授知识的教学方式。
()三填空题(每空2分,共18分)1. 判断按其结构分为简单判断和复合判断。
2. 新课标理念下的三维教学目标分别是知识技能目标、过程和方法目标和情感态度和价值观目标。
大学数学教育概论知识点总结大学数学教育概论知识点总结从小学到大学,可以说我一直都在接受教育,可是坦白说,要不是这学期学习了教育学,我根本就不会知道,除了儒家思想的因材施教这一古文化遗产涉及到教育之外,我所接受的十几年的教育竟然拥有如此广阔的研究领域,胡老师打破传统教学方式采用的理论+案例+我的授课方法更是让我对教育这门学科刮目相看,也改变了之前对教育学的幼稚的偏见。
记得第一次翻开《新编教育学》这本书时,我发现里面的内容特别枯燥乏味,几乎都是一些关于教育与社会呀,教育原则和方法啥的,好像与我们的生活经验、情感体验有很大的距离。
于是就想,学不学教育学用处不大,不学教育学以后照样能教好学。
后来上了胡老师的课之后,我才明白,我完全误解了教育学,更别谈其功能了,特别是自己亲自上讲台谈论《全身反应法在小学英语教学中的运用》后感触更深。
教育学是师范类学生的必修课,其目的是使学生通过教育学的学习掌握教育的基本原理,树立正确的教育思想,培养从事教育教学的工作能力等。
由此可见,教育学对培养未来合格人民教师的作用是确信无疑的。
如果大家都跟我一样继续持有这种偏见,教育的未来和学生的前程就很危险了。
经过一个学期的学习,我发现老师很精明,想必他料到了我们会对教育学产生偏见,并且可能会不喜欢上这门课,所以就采用理论+案例+我的创新教学方法,给我们耳目一新的感觉。
胡老师采用的这种创新教学方法,以理论与实际有机整合为宗旨,遵循教学目的的要求,以案例为基本素材,把整个学期合理整合为课前分组搜寻典型案例、课上学生共同探讨和最后老师分析总结案例三个阶段,将我们引入一个特定事件的真实情境中,培养了我们反思、创新的能力,使理论与实际得到紧密结合。
课前我们在老师的指导下,深入角度地上网搜索具有一定代表性的典型事件及其相关的内容、情节、过程和处理方法等,提高了我们的实际操作能力;课堂上我们以所搜集到的案例为基本素材,或单独站上讲台,或组织团体辩论,思想深刻的胡老师也积极与我们双向和多向互动,_等对话和研讨,培养了我们的批判反思意识及团体合作能力,并促使我们充分理解了课前课上研究现象的复杂性、变化性、多样性等属性,在思索过程中考虑如何将教学理论运用于实际。
一新理念和教育理论总体要求:掌握数学教育的发展历史、理解中学数学教学改革的主要理念1.《数学教育学》主要研究教学目的、教学对象、、等内容。
2、大众数学”提倡“人人学有价值的数学、人人都能获得必需的数学、3 通常意义下,数学三大特点是指、、.4 《数学教育学》是一门的学科、实践性很强的理论学科、又是一门发展中的学科5 20世纪80年代开始,美国朝野各种团体先后发表报告,提出了大众数学的教育思想.中国大众数学”提倡“人人学必要的数学、、人人都能获得必需的数学、不同的人在数学上得到不同的发展”6.《全日制年制义务教育数学课程标准》指出,数学是人们对客观世界定性把握和定量刻画,逐步抽象概括形成方法和理论,并进行运用的过程。
7.《全日制年制义务教育数学课程标准》所列举的教学目标包括:知识与技能目标、过程与方法目标、情感态度与价值观目标8 人类数学发展经历四个高峰期,分别是:古希腊的演绎数学时期、牛顿——莱布尼茨的微积分时期、希尔伯特为代表的形式主义公理化时期、以计算机为标志的新数学时期。
9 有关世界范围内数学课程改革的发展趋势的说法是越来越强调数学的应用性与实践性、计算机与数学教育的联系越来越紧密、越来越强调学生主体的活动性10 掌握中学数学教育学的基本理论如弗来登塔尔数学教育理论的主要特征、弗赖登塔尔的“数学现实”的含义、建构主义观点、双基教学的特征二数学课堂教学观摩与评析㈠体会“数学”与“数学教学”的区别和联系,增强教学意识数学和数学教育的关系为:数学是数学教育的前提和基础,数学教育的目的是运用数学.知识与技能⒈数学不等于逻辑。
数学教学要讲推理,更要讲道理⒉数学不等于纯粹数学。
数学教学要讲抽象命题,也要讲实际应用⒊数学不等于公理化。
数学教学要讲形式化,更要讲来龙去脉。
应当有头有尾,不能老是“烧中段”⒋数学不是知识的堆砌。
数学教学要培养学生的能力,形成数学意识,倡导数学创新。
⒌数学不等于做练习。
数学教学要培养学生的质疑反思能力。
数学教育概论复习
一、好的数学问题的特点:
1、问题具有较强的探索性,要求人们具有某种程度的独立性、判断性、能动性和创造精神;
2、问题具有现实意义或与学生的实际生活有着直接的联系,有趣味和魅力;
3、问题具有开放性,有多种不同的解法或有多种可能的解答;
4、问题能推广或扩充到各种情形。
二、数学概念的教学设计:
1、形成
2、巩固
3、运用
三、复习课的几种处理方法:
1、高密度、大容量、快节奏的解题讲解;
2、以一个基本问题为核心,不断地采用,形成由简到繁的解题过程;
3、用开放题复习。
四、数学文化的功能(或具体表现)
1、数学是人类文明的火车头;
2、数学打上了人类各个文化发展阶段的烙
印;
3、数学应该从社会文化中汲取营养;
4、数学思维方式对人类文化的独特贡献;
5、数学成为描述自然和社会的语言。
五、波利亚的解题理论
“怎样解题”表的四大步骤:
(1)弄清问题(题目的未知、已知、和条件分别是什么,可能满足的条件是什么,它是解题的必要前提);
(2)拟定计划(是否见过类似题、通过回归定义改述问题、作一般化或特殊化处理、条件是否全部用完,这是解题的关键环节和核心);
(3)实现计划(主体工作);
(4)回顾(校核结果、是否可以用其它方法求解、这题的结果或方法是否可以迁移到其它问题上,这是解题的必要环节)
六、《怎样解题》思想是引导学生怎样思考。
波利亚认为,教师在教学时要遵循三个原则(教学过程的三个原则):
1.主动学习、
2.最佳动机3、循序渐进。
七、教师在建构主义课堂上需要做六件事:
(1)加强学生的自我管理和激励他们为自己的学习负责;
(2)发展学生的反省思维;
(3)建立学生建构数学的“卷宗”;(4)观察与参与学生尝试、辨认与选择解题途径的活动;
(5)反思与回顾解题途径;
(6)明确活动、学习材料的目的。
八、数学“双基”理论,主要在以下四个方面有独特的认识:
1、运算速度;
2、知识的记忆;
3、适度形式化得逻辑要求;
4、重复训练。
九、双基数学教学的教学策略:
1、问题引入环节(采用“问题驱式”的数学教学);
2、师生互动环节(教师提问,学生回答,大家补充,教师纠错并写在黑板上);
3、巩固练习(原则是“精讲多练”)。
十、学生活动教学模式活动方式:数学实验和数学游戏。
十一、发现式模式基本程序:创设情境,分析研究,猜测归纳,验证反思。
特点:注重教学知识的发生、发展过程,让学生自己发现问题,主动获取知识。
适用于新课讲授、解题教学,课外教学活动。
十二、数学能力的界定
1、传统的数学三大能力:数学运算能力、空间想象能力、逻辑思维能力
2、常规数学思维能力的界定:
(1)数学感觉与判断;
(2)数据收集与分析;
(3)几何直观和空间想象;
(4)数学表示与数学建模;
(5)数学运算和数学变换;
(6)归纳猜想与合情推理;
(7)逻辑思考与演绎证明;
(8)数学联结与数学洞察;
(9)数学计算和算法设计;
(10)理性思维与构建体系。
十三、我国数学教育观的四个变化:
①由关心教师的“教”转向也关注学生的
“学”
②从“双基”与“三大能力”观点的形成,发展到更宽广的能力观和素质关(三大能力:运算能力、逻辑思维能力、空间想象能力)
③从听课、阅读、演题,到提倡实验、讨论、探索的学习方式
④从看重数学的抽象和严谨,到关注数学文化、数学探究和数学应用。
十四、弗赖登塔尔数学教育的五个特征:
①情景问题是教学的平台;
②数学化是数学教育的目标;
③学生通过自己的努力得到的结论和创造是教育内容的一部分;
④学科交织是数学教育内容的呈现方式;
⑤“互动”是主要的学习方式。
十五、学习的两种方式:复制式,建构式。
建构主义者运用的是:建构式P56填空)
十六、中国数学双基教学的四个特征:
①记忆通向理解形成直觉
②运算速度保证高效思维
③演绎推理坚持逻辑精确
④依靠变式提升演练水平。
十七、四基:基本知识、基本技能、基本思想、基本活动经验。
十八、数学教育的基本功能(目标):
答:实用性功能、思维训练功能、选拔性功能。
十九、如何积累基本的数学活动经验的教学策略?答:①数学活动应该成为数学学习的有机组成部分,不能可有可无。
②数学活动来源于生活,但高于生活。
③扩展生活现实领域,扩大数学经验范围。
二十、教学过程中数学研究性学习的教学策略?答:①教师要成为教学的研究者。
②教师要重视学生的参与和自身的参与。
③教师要重视学生的合作学习和教师
的间的合作交流。
二十一、数学课程基本技能训练哪几部分?答:①如何吸引学生(吸引方式关键词:联系、挑战、变化、魅力)。
②如何启发学生(启发方式:定向、架桥、置疑、揭晓)。
③如何与学生交流(教师提问技能的关键词:设计、含蓄、等待、开明)。
④如何组织学生(关键:策划、调控、慎惩)。
二十二、优秀教学设计的基本要求是什么?答:①创造性第使用教材,关注数学知识的发生、发展过程。
②数学内容的设计要注意体现数学的而文化价值和人文精神。
③进行教学内容组织的设计,要关注相关内容之间的联系,帮助学生全面第理解和认识数学。
④提供必要的数学情景,按照数学学科形式化的特点,选择符合学生数学认知规律的教学方式。
⑤编制合适的数学问题,用问题驱动数学学习。
二十三、弗赖登塔尔的思想:“数学化、再创造、数学实现”。
二十四、根据他的理论,将数学划分为水平和垂直两种。
二十五、数学课导入的类型:
1、直接导入;
2、旧知识导入;
3、实例导入;
4、直观演示导入;
5、趣味导入;
6、问题导入;
7、实验导入。
二十六、课堂提问的要求:
1、目的性;
2、明确性;
3、启发性;
4、层次性;
5、系统性;
6、针对性。
二十七、定义的规则:
1、定义要相称;
2、定义不得循环,不能同义反复;
3、定义要简明,不用比喻;
4、定义一般不用否定形式。
二十八、通过学生在“情境——问题”数学教学的四个环节中自主探究、大胆质疑、多方讨论、合作交流,培养学生的创新意识、创新能力和合作能力.
二十九、中小学“数学情境与提出问题”教学的基本模式:学生学习,教师导学。
三十、在“情境——问题”教学中,关于如何促使学生提出数学问题,我们认为要考虑以下五个方面:
①教师希望学生提出什么问题?学生能否提出这些问题?
②如何引导学生提出数学问题?
③学生提出的问题是否具有合理性?
④教师该怎样处理学生提出的问题?
⑤怎样促使学生解决其中的关键问题?。