高考物理试题分类汇编 曲线运动.doc
- 格式:doc
- 大小:1.96 MB
- 文档页数:6
高考物理曲线运动真题汇编(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m mA v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.3.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)【答案】(1) (2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得:v=0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x=0.29m.【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【答案】(1)()2A gv L R h =-22()2B g L R v h+=(2)0((L R v L R -≤≤+(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12gt 2解得t =(1) 当小车位于A 点时,有x A =v A t=L-R (2)解(1)(2)得v A =(L-R当小车位于B 点时,有B B x v t ==3)解(1)(3)得Bv (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)解(1)(5)得 v 0max =(L+R所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+14)2Rv π(n=0,1,2,3…)(6)所以t AB解得v=12(4n+1)n=0,1,2,3…). 【点睛】本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过14圆周,也可以是经过了多个圆周之后再经过14圆周后恰好到达B 点,这是同学在解题时经常忽略而出错的地方.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。
曲线运动:曲线运动运动的合成与分解训练题一、选择题1.如图所示,假如在弯道上高速行驶的赛车,突然后轮脱离赛车,关于脱离赛车后的车轮的运动情况,以下说法正确的是( )A.仍然沿着赛车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能2.2018珠海航展,我国第五代战机“歼-20”再次闪亮登场。
表演中,战机先水平向右,再沿曲线ab向上(如图),最后沿陡斜线直入云霄。
设飞行路径在同一竖直面内,飞行速率不变。
则沿ab段曲线飞行时,战机( )A.所受合外力大小为零B.所受合外力方向竖直向上C.竖直方向的分速度逐渐增大D.水平方向的分速度不变3.近年来,我国在军事领域取得了很多成就,特别是我国空军军事实力出现了质的飞跃。
如图为直升机在抢救伤员的情景,直升机水平飞行的同时绳索把伤员提升到直升机上,在此过程中绳索始终保持竖直,不计伤员受到的空气阻力,则下列判断正确的是( )A.直升机一定做匀速直线运动B.伤员运动的轨迹一定是一条斜线C.螺旋桨产生动力的方向一定竖直向上D.绳索对伤员的拉力大小始终大于伤员的重力4.如图所示,人在岸上拉船,已知船的质量为m,水的阻力恒为f,当轻绳与水平面的夹角为θ时,船的速度为v ,此时人的拉力大小为F ,则( )A.人拉绳行走的速度为sin v θB.人拉绳行走的速度为cos vθC.船的加速度为F fm - D.船的加速度为cos F fmθ- 5.如图所示,顶角60θ=︒、光滑V 字形轨道AOB 固定在竖直平面内,且AO 竖直。
一水平杆与轨道交于M N 、两点,已知杆自由下落且始终保持水平,经时间t 速度由6 m/s 增大到14 m/s (杆未触地),则在0.5t 时,触点N 沿倾斜轨道运动的速度大小为(不计空气阻力,g 取210m/s )( )A.10 m/sB.17 m/sC.20 m/sD.28 m/s6.如图甲所示,在杂技表演中,猴子沿竖直杆向上运动,以竖直杆为参考系,猴子的v t -图像如图乙所示,同时人顶着杆沿水平地面运动的x t -图像如图丙所示。
专题四 曲线运动1.(2013·高考新课标全国卷Ⅱ,21题)公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v c 时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处( )A .路面外侧高内侧低B .车速只要低于v c ,车辆便会向内侧滑动C .车速虽然高于v c ,但只要不超出某一最高限度,车辆便不会向外侧滑动D .当路面结冰时,与未结冰时相比,v c 的值变小 【解析】选AC.抓住临界点分析汽车转弯的受力特点及不侧滑的原因,结合圆周运动规律可判断.汽车转弯时,恰好没有向公路内外两侧滑动的趋势,说明公路外侧高一些,支持力的水平分力刚好提供向心力,此时汽车不受静摩擦力的作用,与路面是否结冰无关,故选项A 正确,选项D 错误.当v <v c 时,支持力的水平分力大于所需向心力,汽车有向内侧滑动的趋势,摩擦力向外侧;当v >v c 时,支持力的水平分力小于所需向心力,汽车有向外侧滑动的趋势,在摩擦力大于最大静摩擦力前不会侧滑,故选项B 错误,选项C 正确.2.(2013·高考北京卷,18题)某原子电离后其核外只有一个电子,若该电子在核的静电力作用下绕核做匀速圆周运动,那么电子运动( )A .半径越大,加速度越大B .半径越小,周期越大C .半径越大,角速度越小D .半径越小,线速度越小【解析】选C.对电子来说,库仑力提供其做圆周运动的向心力,则k Qqr 2=ma =m v 2r=mω2r=m 4π2T 2r 得:a =kQq mr 2,v = kQq mr ,ω=kQq mr 3,T =4π2r 3m kQq,因此选项C 正确.3.(2013·高考北京卷,19题)在实验操作前应该对实验进行适当的分析.研究平抛运动的实验装置示意图如图所示.小球每次都从斜槽的同一位置无初速释放,并从斜槽末端水平飞出.改变水平板的高度,就改变了小球在板上落点的位置,从而可描绘出小球的运动轨迹.某同学设想小球先后三次做平抛运动,将水平板依次放在如图1、2、3的位置,且1与2的间距等于2与3的间距.若三次实验中,小球从抛出点到落点的水平位移依次为x 1,x 2,x 3,机械能的变化量依次为ΔE 1、ΔE 2、ΔE 3,忽略空气阻力的影响,下面分析正确的是( )A .x 2- x 1=x 3-x 2,ΔE 1=ΔE 2=ΔE 3B .x 2- x 1>x 3-x 2,ΔE 1=ΔE 2=ΔE 3C .x 2- x 1>x 3-x 2,ΔE 1<ΔE 2<ΔE 3D .x 2- x 1<x 3-x 2,ΔE 1<ΔE 2<ΔE 3【解析】选B.由题意知,在竖直方向上,y 12=y 23,又因为在竖直方向上小球运动的速度越来越大,因此t 12>t 23;在水平方向上x 12=x 2-x 1=v 0t 12,x 23=x 3-x 2=v 0t 23,故有:x 2-x 1>x 3-x 2,又因忽略空气阻力的影响,故此过程中机械能守恒,所以有ΔE 1=ΔE 2=ΔE 3=0,选项B 正确.4.(2013·高考重庆卷,8题)如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合.转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为60°.重力加速度大小为g.(1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;(2)ω=(1±k)ω0,且0<k≪1,求小物块受到的摩擦力的大小和方向.【解析】正确分析向心力的来源是解决此类问题的关键.(1)当ω=ω0时,小物块只受重力和支持力作用,如图甲所示,其合力提供向心力,F合=mg tan θ①F向=mω20r②而r=R sin θ,F合=F向③由①②③得ω0=2gR.④(2)当ω=(1+k)ω0,且0<k≪1时,所需要的向心力大于ω=ω0时的向心力,故摩擦力方向沿罐壁的切线方向向下.建立如图乙所示标系.在水平方向上:F N sin θ+f cos θ=mω2r⑤在坚直方向上:F N cos θ-f sin θ-mg=0⑥由几何关系知r=R sin θ⑦联立⑤⑥⑦式,解得f=3k(2+k)2mg⑧当ω=(1-k)ω0时,摩擦力的方向沿罐壁的切线方向向上.建立如图丙所示的坐标系.在水平方向上:F N sin θ-f cos θ=mω2r⑨在竖直方向上:F N cos θ+f sin θ-mg=0⑩由几何关系知r=R sin θ⑪联立⑨⑩⑪式,解得f=3k(2-k)2mg.答案:(1)ω0=2g R(2)当ω=(1+k)ω0时,摩擦力方向沿罐壁切线向下,大小为f=3k(2+k)2mg当ω=(1-k)ω0时,摩擦力方向沿罐壁切线向上,大小为f=3k(2-k)2mg5.(2013·高考江苏卷,2题) 如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()A .A 的速度比B 的大A .A 与B 的向心加速度大小相等C .悬挂A 、B 的缆绳与竖直方向的夹角相等D .悬挂A 的缆绳所受的拉力比悬挂B 的小【解析】选D.A 、B 绕竖直轴匀速转动的角速度相等,即ωA =ωB ,但r A <r B ,根据v =ωr 得,A 的速度比B 的小,选项A 错误;根据a =ω2r 得,A 的向心加速度比B 的小,选项B 错误;A 、B 做圆周运动时的受力情况如图所示,根据F 向=mω2r 及tan θ=F 向mg =ω2rg知,悬挂A 的缆绳与竖直方向的夹角小,选项C 错误;由图知mg T =cos θ,即T =mgcos θ,所以悬挂A 的缆绳受到的拉力小,选项D 正确.6.(2013·高考安徽卷,18题)由消防水龙带的喷嘴喷出水的流量是0.28 m 3/min ,水离开喷口时的速度大小为16 3 m/s ,方向与水平面夹角为60°,在最高处正好到达着火位置,忽略空气阻力,则空中水柱的高度和水量分别是(重力加速度g 取10 m/s 2)( )A .28.8 m 1.12×10-2 m 3B .28.8 m 0.672 m 3C .38.4 m 1.29×10-2 m3 D .38.4 m 0.776 m 3【解析】选A. 准确理解斜抛运动规律是解决本题的关键. 将速度分解为水平方向和竖直方向两个分量,v x =v cos 60°,v y =v sin 60°,水的运动可看成竖直方向的竖直上抛运动和水平方向的匀速直线运动的合运动,水柱的高度h =v 2y2g=28.8 m ,上升时间t =v y g =v sin 60°g=2.4 s空中水量可用流量乘以时间来计算,Q =0.2860m 3/s ×2.4 s =1.12×10-2 m 3.故选项A 正确.7.(2013·高考浙江卷,23题)山谷中有三块石头和一根不可伸长的轻质青藤,其示意图如下.图中A 、B 、C 、D 均为石头的边缘点,O 为青藤的固定点,h 1=1.8 m ,h 2=4.0 m ,x 1=4.8 m ,x 2=8.0 m .开始时,质量分别为M =10 kg 和m =2 kg 的大、小两只滇金丝猴分别位于左边和中间的石头上,当大猴发现小猴将受到伤害时,迅速从左边石头的A 点水平跳至中间石头.大猴抱起小猴跑到C 点,抓住青藤下端,荡到右边石头上的D 点,此时速度恰好为零.运动过程中猴子均可看成质点,空气阻力不计,重力加速度g =10 m/s 2,求:(1)大猴从A 点水平跳离时速度的最小值; (2)猴子抓住青藤荡起时的速度大小; (3)猴子荡起时,青藤对猴子的拉力大小.【解析】猴子先做平抛运动,后做圆周运动,两运动过程机械能均守恒.寻求力的关系时要考虑牛顿第二定律.(1)设猴子从A 点水平跳离时速度的最小值为v min ,根据平抛运动规律,有h 1=12gt 2 ①x 1=v min t ② 联立①、②式,得 v min =8 m/s. ③(2)猴子抓住青藤后的运动过程中机械能守恒,设荡起时速度为v C ,有(M +m )gh 2=12(M +m )v 2C ④v C =2gh 2=80 m/s ≈9 m/s. ⑤(3)设拉力为F T ,青藤的长度为L .对最低点,由牛顿第二定律得F T -(M +m )g =(M +m )v 2CL⑥由几何关系(L -h 2)2+x 22=L 2⑦ 得:L =10 m ⑧ 综合⑤、⑥、⑧式并代入数据解得:F T =(M +m )g +(M +m )v 2CL=216 N.答案:(1)8 m/s (2)约9 m/s (3)216 N 8.(2013·高考福建卷,20题)如图,一不可伸长的轻绳上端悬挂于O 点,下端系一质量m =1.0 kg 的小球。
(物理)高考物理曲线运动试题( 有答案和解析 )一、高中物理精讲专题测试曲线运动1.以下列图,在风洞实验室中,从 A 点以水平速度 v0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F,经过一段时间小球运动到 A 点正下方的 B 点处,重力加速度为 g,在此过程中求(1)小球离线的最远距离;(2) A、 B 两点间的距离;(3)小球的最大速率 v max.【答案】(1)mv22m2 gv2( 3)v0F24m2g2 0(2)0F2F F 2【解析】【解析】(1)依照水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)依照水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A、 B 两点间的距离;(3)小球到达 B 点时水平方向的速度最大,竖直方向的速度最大,则 B 点的速度最大,依照运动学公式结合平行四边形定则求出最大速度的大小;【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解水平方向: F=ma x2v0= 2a x x m解得:x m=mv2 2F(2)水平方向速度减小为零所需时间t1=v 0a x总时间 t= 2t1竖直方向上:y= 1 gt2= 2m2 gv022 F 2(3)小球运动到 B 点速度最大v x=v0V y=gtv max= v x2v y2=vF 24m2g 2 F【点睛】解决此题的要点将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.以下列图,在竖直平面内有一倾角θ=37°的传达带BC.已知传达带沿顺时针方向运行的速度 v=4 m/s , B、 C两点的距离 L=6 m。
一质量 m=0.2kg 的滑块(可视为质点)从传达带上端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC方向滑人传达带,滑块与传达带间的动摩擦因数μ,取重力加速度g=10m/s 2, sin37 = °,cos37°。
高考物理专题力学知识点之曲线运动真题汇编及答案一、选择题1.如图所示,某河流中水流速度大小恒为v 1,A 处的下游C 处是个旋涡,A 点和旋涡的连线与河岸的最大夹角为θ。
为使小船从A 点出发以恒定的速度安全到达对岸,小船航行时在静水中速度的最小值为( )A .1sin v θB .1cos v θC .1tan v θD .1sin v θ2.下列与曲线运动有关的叙述,正确的是A .物体做曲线运动时,速度方向一定时刻改变B .物体运动速度改变,它一定做曲线运动C .物体做曲线运动时,加速度一定变化D .物体做曲线运动时,有可能处于平衡状态3.一条小河宽100m ,水流速度为8m/s ,一艘快艇在静水中的速度为6m/s ,用该快艇将人员送往对岸.关于该快艇的说法中正确的是( )A .渡河的最短时间为10sB .渡河时间随河水流速加大而增长C .以最短位移渡河,位移大小为100mD .以最短时间渡河,沿水流方向位移大小为400m 34.如图所示,质量为05kg .的小球在距离小车底部20m 高处以一定的初速度向左平抛,落在以75/m s .的速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4kg .设小球在落到车底前瞬间速度是25/m s ,重力加速度取210/m s .则当小球与小车相对静止时,小车的速度是( )A .4/m sB .5/m sC .8.5/m sD .9.5/m s5.演示向心力的仪器如图所示。
转动手柄1,可使变速塔轮2和3以及长槽4和短槽5随之匀速转动。
皮带分别套在塔轮2和3上的不同圆盘上,可使两个槽内的小球分别以几种不同的角速度做匀速圆周运动。
小球做圆周运动的向心力由横臂6的挡板对小球的压力提供,球对挡板的反作用力,通过横臂的杠杆使弹簧测力套筒7下降,从而露出标尺8,标尺8上露出的红白相间等分格子的多少可以显示出两个球所受向心力的大小。
现将小球分别放在两边的槽内,为探究小球所受向心力大小与角速度的关系,下列做法正确的是()3A.在小球运动半径相等的情况下,用质量相同的钢球做实验B.在小球运动半径相等的情况下,用质量不同的钢球做实验C.在小球运动半径不等的情况下,用质量不同的钢球做实验D.在小球运动半径不等的情况下,用质量相同的钢球做实验6.甲、乙两球位于同一竖直直线上的不同位置,甲比乙高h,如图所示。
十年高考真题分类汇编(2010-2019) 物理专题 05曲线运动选择题:1.(2019•海南卷•T6)如图,一硬币(可视为质点)置于水平圆盘上,硬币与竖直转轴OO’的距离为r ,已知硬币与圆盘之间的动摩擦因数为µ(最大静摩擦力等于滑动摩擦力),重力加速度大小为g 。
若硬币与圆盘一起OO’轴匀速转动,则圆盘转动的最大角速度为A.12g r μB.g r μC.2g r μD.2g rμ 2.(2019•海南卷•T10)三个小物块分别从3条不同光滑轨道的上端由静止开始滑下。
已知轨道1、轨道2、轨道3的上端距水平地面的高度均为4h 0;它们的下端水平,距地面的高度分别为10h h =、202h h =、303h h =,如图所示。
若沿轨道1、2、3下滑的小物块的落地点到轨道下端的水平距离分别记为s 1、s 2、s 3,则A.12s s >B.23s s >C.13s s =D.23s s =3.(2019•全国Ⅱ卷•T6)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。
某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v 表示他在竖直方向的速度,其v-t 图像如图(b)所示,t 1和t 2是他落在倾斜雪道上的时刻。
则A. 第二次滑翔过程中在竖直方向上的位移比第一次的小B. 第二次滑翔过程中在水平方向上的位移比第一次的大C. 第一次滑翔过程中在竖直方向上的平均加速度比第一次的大D. 竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大4.(2019•江苏卷•T6)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m,运动半径为R,角速度大小为ω,重力加速度为g,则座舱A.运动周期为2πRB.线速度的大小为ωRC.受摩天轮作用力的大小始终为mgD.所受合力的大小始终为mω2R5.(2018·江苏卷)某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的A. 时刻相同,地点相同B. 时刻相同,地点不同C. 时刻不同,地点相同D. 时刻不同,地点不同6.(2018·北京卷)根据高中所学知识可知,做自由落体运动的小球,将落在正下方位置。
高考物理曲线运动题20 套( 带答案 ) 含分析一、高中物理精讲专题测试曲线运动 1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足 0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q 1 m A gL 10(J )(ⅱ)当知足0.2 ≤μ≤ 0.A3和小车能共速,产生的热量为时, Q 11m A v 121 m A M v2 ,解得 Q 2=2J222. 一质量 M =0.8kg 的小物块,用长 l=0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m=0.2kg 的粘性小球以速度 v 0=10m/s 水平射向小物块,并与物块粘在一同,小球与小物 块互相作用时间极短能够忽视.不计空气阻力,重力加快度g 取 10m/s 2.求:( 1)小球粘在物块上的瞬时,小球和小物块共同速度的大小; ( 2)小球和小物块摇动过程中,细绳拉力的最大值;( 3)小球和小物块摇动过程中所能达到的最大高度.【答案】( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m 【分析】(1)因为小球与物块互相作用时间极短,因此小球和物块构成的系统动量守恒.mv 0 (Mm)v 共得: v 共 =2.0 m / s(2)小球和物块将以v共开始运动时,轻绳遇到的拉力最大,设最大拉力为F ,F (M m) g ( M m)v 共2L得: F 15N(3)小球和物块将以v 共 为初速度向右摇动,摇动过程中只有重力做功,因此机械能守恒,设它们所能达到的最大高度为h ,依据机械能守恒:( m+M ) gh 1( m M )v 共 22解得 : h 0.2m综上所述本题答案是 : ( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m点睛 :( 1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. ( 2)对小球和物块协力供给向心力,可求得轻绳遇到的拉力( 3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.3.如下图,在竖直平面内有一绝缘“”型杆放在水平向右的匀强电场中,此中AB、 CD 水平且足够长,圆滑半圆半径为R,质量为 m、电量为 +q 的带电小球穿在杆上,从距 B 点x=5.75R 处以某初速 v0开始向左运动.已知小球运动中电量不变,小球与AB、 CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加快度为g, sin37 =0°.6, cos37 °=0.8.求:(1)若小球初速度 v0=4 gR,则小球运动到半圆上 B 点时遇到的支持力为多大;(2)小球初速度 v0知足什么条件能够运动过 C 点;(3)若小球初速度v=4 gR,初始地点变成x=4R,则小球在杆上静止时经过的行程为多大.【答案】( 1)5.5mg( 2)v04gR (3) 44R【分析】【剖析】【详解】(1)加快到 B 点:-1mgx qEx 1 mv21mv0222在 B 点:N mg m v2R解得 N=5.5mg(2)在物理最高点F:tan qE mg解得α=370;过 F 点的临界条件: v F=0从开始到 F 点:-1mgx qE (x R sin ) mg ( R R cos ) 01mv02 2解得 v0 4 gR可见要过 C 点的条件为:v04gR(3)因为 x=4R<5.75R,从开始到 F 点战胜摩擦力、战胜电场力做功均小于(2)问,到F 点时速度不为零,假定过 C 点后行进 x1速度变成零,在 CD 杆上因为电场力小于摩擦力,小球速度减为零后不会返回,则:-1mgx2 mgx1-qE( x-x1 ) mg 2R 01mv02 2s x R x1解得: s(44)R4.如下图,在竖直平面内有一倾角θ=37°的传递带BC.已知传递带沿顺时针方向运转的速度 v=4 m/s , B、 C两点的距离 L=6 m。
最新精选高考物理复习题库曲线运动专题(100题)学校:__________ 姓名:__________ 班级:__________ 考号:__________
一、单选题
1.在光滑的圆锥漏斗的内壁,两个质量相同的小球A和B,分别紧贴着漏斗在水平面内做匀速圆周运动,其中小球A的位置在小球B的上方,如下图所示.下列判断正确的是
()
A.A球的速率大于B球的速率
B.A球的角速度大于B球的角速度
C.A球对漏斗壁的压力大于B球对漏斗壁的压力
D.A球的转动周期大于B球的转动周期
2.下列关于运动和力的叙述中,正确的是()
A.做曲线运动的物体,其加速度方向一定是变化的
B.物体做圆周运动,所受的合力一定指向圆心
C.物体所受合力方向与运动方向相反,该物体一定做直线运动
D.物体运动的速率在增加,所受合力方向一定与运动方向相同
3.(2013·大理模拟)质量为m的飞机以恒定速率v在空中水平盘旋(如下图所示),其做匀速圆周运动的半径为R,重力加速度为g,则此时空气对飞机的作用力大小为()。
2011普通高校招生考试试题汇编-曲线运动
1 (2011江苏卷第3题).如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB 。
若水流速度不变,两人在靜水中游速相等,则他们所用时间t 甲、t 乙的大小关系为 A .t 甲<t 乙 B .t 甲=t 乙 C .t 甲>t 乙 D .无法确定
2(2011广东第17题).如图6所示,在网球的网前截击练习中,若练习者在球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L ,重力加速度取g ,将球的运动视作平抛运动,下列表述正确的是
A.球的速度v 等于
B.
C.球从击球点至落地点的位移等于L
D.球从击球点至落地点的位移与球的质量有关
解析:由平抛运动规律:L=vt ,H=
2
1gt 2
求出AB 正确。
选AB
A.球的速度v
等于 B.
C.球从击球点至落地点的位移等于L
D.球从击球点至落地点的位移与球的质量有关 3(2011安徽第17题).一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧
来代替。
如图(a )所示,曲线上的A 点的曲率
圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径。
现将
一物体沿与水平面成α角的方向已速度υ0抛
出,如图(b )所示。
则在其轨迹最高点P 处的曲率半径是 A .20v g B .22
0sin v g
图(a )
图(b )
C .220cos v g α
D .220cos sin v g αα
答案:C
解析:物体在其轨迹最高点P 处只有水平速度,其水平速度大小为v 0cosα,根据牛顿第二定律得2
0(cos )v mg m
αρ
=,所以在其轨迹最高点P 处的曲率半径是220cos v g
α
ρ=,C 正确。
4(2011全国理综第20题).一带负电荷的质点,在电场力作用下沿曲线abc 从a 运动到c ,已知质点的速率是递减的。
关于b 点电场强度E 的方向,下列图示中可能正确的是(虚线是曲线在b 点的切线)(D )
解析:主要考查电场力方向和曲线运动所受合外力与轨迹的关系。
正确答案是D 。
5(2011上海第11题).如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行。
当绳与河岸的夹角为α,船的速率为
(A)sin v α (B)sin v α (C)cos v α (D)cos v
α
答案:C
6(2011上海第25题).以初速为0v ,射程为s 的平抛运动轨迹制成一光滑轨道。
一物体由静止开始从轨道顶端滑下,当其到达轨道底部时,物体的速率为 ,其水平方向的速度大小为 。
答案. 0/gs v ,2
2
00/1(/)v v gs +
7(2011海南第15题)。
如图,水平地面上有一个坑,其竖直截面为半圆。
ab 为沿水平方向的直径。
若在a 点以初速度0v 沿ab 方向抛出一小球, 小球会击中坑壁上的c 点。
已知c 点与水平地面的距离为圆半径的一半,求圆的半径。
解析:设圆半径为r ,质点做平抛运动,则:
0x v t = ①
2
10.52
y r gt ==
② 过c 点做cd ⊥ab 与d 点,Rt △acd ∽Rt △cbd 可得2
cd ad db =•即为:
2()(2)2
r
x r x =- ③ 由①②③得:2
04(743)r v g
±=
8(2011天津第10题).(16分)
如图所示,圆管构成的半圆形竖直轨道固定在水平地面上,轨道半径为R ,MN 为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一初速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R 。
重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求:
(1)粘合后的两球从飞出轨道到落地的时间t ;
(2)小球A 冲进轨道时速度v 的大小。
解析:
(1)粘合后的两球飞出轨道后做平抛运动,竖直方向分运动为自由落体运动,有
21
22
R gt =
①
解得
2
R t g
= ②
(2)设球A 的质量为m ,碰撞前速度大小为v 1,把球A 冲进轨道最低点时的重力势能定为0,
由机械能守恒定律知 22
111222
mv mv mgR =
+ ③ 设碰撞后粘合在一起的两球速度大小为v 2,由动量守恒定律知 122mv mv = ④ 飞出轨道后做平抛运动,水平方向分运动为匀速直线运动,有 22R v t = ⑤
综合②③④⑤式得 222v gR =
9(2011山东第24题).(15分)如图所示,在高出水平地面 1.8h m =的光滑平台上放置一质量2M kg =、由两种不同材料连接成一体的薄板A ,其右段长度10.2l m =且表面光滑,左段表面粗糙。
在A 最右端放有可视为质点的物块B ,其质量1m kg =。
B 与A 左段间动摩擦因数0.4u =。
开始时二者均静止,先对A 施加20F N =水平向右的恒力,待B 脱离A (A 尚未露出平台)后,将A 取走。
B 离开平台后的落地点与平台右边缘的水平距离 1.2x m =。
(取
2
10m
g s =)求:
(1)B 离开平台时的速度B v 。
(2)B 从开始运动到刚脱离A 时,B 运动的时间t s 和位移x B (3)A 左端的长度l 2 解析:
10(2011广东第36题)、(18分)如图20所示,以A 、B 和C 、D 为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面上,左端紧靠B 点,上表面所在平面与两半圆分别相切于B 、C 。
一物块被轻放在水平匀速运动的传送带上E 点,运动到A 时刚好与传送带速度相同,然后经A 沿半圆轨道滑下,再经B 滑上滑板。
滑板运动到C 时被牢固粘连。
物块可视为质点,质量为m ,滑板质量M=2m ,两半圆半径均为R ,板长l =6.5R ,板右端到C 的距离L 在R <L <5R 范围内取值。
E 距A 为S=5R ,物块与传送带、物块与滑板间的动摩擦因素均为μ=0.5,重力加速度取g. (1) 求物块滑到B 点的速度大小;
(2) 试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功W f 与L 的关系,并判
断物块能否滑到CD 轨道的中点。
解析:
(1)μmgs+mg ·2R=2
1mv B 2
① 所以 v B =3Rg
(2)设M 滑动x 1,m 滑动x 2二者达到共同速度v,则
mv B =(M+m)v ②
μmgx 1=
2
1mv 2
③ —μmgx 2=21mv 2—2
1mv B 2
④
由②③④得v=Rg , x 1=2R, x 2=8R
二者位移之差△x= x 2—x 1=6R <6.5R ,即滑块未掉下滑板
讨论:
① R <L <2R 时,W f =μmg(l +L)=
2
1
mg (6.5R+L ) ② 2R ≤L <5R 时,W f =μmgx 2+μmg(l —△x)=4.25mgR <4.5mgR ,即滑块速度不为0,滑上右
侧轨道。
要使滑块滑到CD 轨道中点,v c 必须满足:
2
1mv c 2
≥mgR ⑤ 此时L 应满足:μmg(l +L) ≤21mv B 2—2
1mv c 2
⑥
则 L ≤2
1
R ,不符合题意,滑块不能滑到CD 轨道中点。
答案:(1) v B =3Rg
(2)
①R <L <2R 时,W f =μmg(l +L)=
2
1
mg (6.5R+L ) ②2R ≤L <5R 时,W f =μmgx 2+μmg(l —△x)=4.25mgR <4.5mgR ,即滑块速度不为0,滑上右侧轨道。
滑块不能滑到CD 轨道中点。