21.雷达波隐身技术及雷达吸波材料研究进展_徐剑盛
- 格式:pdf
- 大小:537.88 KB
- 文档页数:4
吸波材料的研究进展摘要:吸波材料的研究是隐身技术发展的关键,吸波剂的好坏对于吸波材料的性能有很大的影响。
本文在对吸波材料以及其吸波原理进行介绍的基础上,大体阐述了有关吸波材料的研究进展,通过对几种常用的微波吸波剂的介绍,提出了未来吸波材料的发展将向着”薄、轻、宽、强”和耐腐蚀性等方面进行研究。
关键词:吸波材料吸波材料分类研究进展一、吸波材料的简介吸波材料是指能将投射在它表面的电磁波能量吸收并通过材料介质损耗转变为热能等其他形式的能量的一类材料,一般由基体材料(或粘结剂)与吸收介质(吸收剂)复合而成。
在工程上应用的吸波材料不仅在较宽频带内对电磁波的吸收率较高,还应该具备质量轻、耐高温、耐潮湿、抗化学腐蚀等特性。
一般情况下,吸波材料需要最大限度地使入射电磁波进入到吸波材料内部,从而减少电磁波的直接反射,即要求材料满足阻抗匹配;并且进入材料内的电磁波能迅速地被全部衰减掉,即要求材料满足衰减匹配[1]。
二、吸波材料的分类目前吸波材料分类较多,分类方法也有多种,现大致分为以下四种。
1.按材料成型工艺和承载能力,可分为涂型吸波材料和结构型吸波材料前者是将混合后的吸收剂(金属或合金粉末、铁氧体、导电纤维等)与粘合剂涂覆于目标表面形成吸波涂层,其具有操作方便,吸波性能好、工艺简单和容易调节等优点,广泛受到世界各国的重视。
后者是具有承载和吸波的双重功能通常将吸收剂分散在层状结构材料中,或是采用强度高、透波性能好的高聚物复合材料(如玻璃钢、芳纶纤维复合材料等)为面板,蜂窝状、波纹体或角锥体为夹芯的复合结构。
2.按吸波原理,吸波材料又可分为吸收型和干涉型两类吸收型吸波材料通过本身对雷达波进行吸收损耗可分为复磁导率与复介电常数基本相等的吸收体、阻抗渐变/宽频0吸收体和衰减表面电流的薄层吸收体三种基本类型;干涉型吸波材料则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消,这类材料的缺点是吸收频带较窄。
3.按材料的损耗机理,吸波材料可分为电阻型、电介质型和磁介质型三大类碳化硅石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;电介质型吸波材料的机理为介质极化驰豫损耗,如钛酸钡之类;铁氧体、羟基铁等属于磁介质型吸波材料,它的损耗机理主要是铁磁共振吸收。
雷达吸波材料的现状和发展趋势标题:雷达吸波材料的现状和发展趋势引言:雷达吸波材料是一种关键的技术,用于减少或消除雷达波反射,提高雷达的性能。
在现代军事、航空、航天、通信等领域,雷达吸波技术的应用日益广泛。
本文将探讨雷达吸波材料的现状和未来的发展趋势。
一、雷达吸波材料的现状1. 传统雷达吸波材料传统的雷达吸波材料主要包括各种金属纤维复合材料和碳基材料。
这些材料通过在材料表面构造小尺寸的吸波突起或导电颗粒,使电磁波在材料内部多次反射和散射,从而增加材料内部的电磁波吸收。
尽管传统雷达吸波材料在一定范围内有一定的吸波性能,但其性能受制于材料的结构和成分,难以在各种频率和入射角度下获得稳定的吸波效果。
2. 新型雷达吸波材料随着科技的不断进步,新型雷达吸波材料的研究和发展已经取得了一些重要突破。
其中之一是金属氧化物纳米材料的应用。
这些纳米材料具有较大的比表面积和较好的电磁波吸收性能,能够在更大范围的频率下实现高效的吸波效果。
此外,纳米材料可以通过调整其成分和结构来改善吸波特性,进一步提高雷达吸波材料的性能。
3. 智能雷达吸波材料智能雷达吸波材料是近年来的研究热点之一。
这些材料通过结合传感器、反馈控制和自适应调节等技术,能够实时感知和响应外部的电磁信号,从而调整材料的吸波特性。
智能雷达吸波材料的出现,使得雷达系统能够自动适应不同的工作环境和任务需求,提高了雷达系统的感知能力和抗干扰性能。
二、雷达吸波材料的发展趋势1. 多功能化随着雷达技术的不断发展,对雷达吸波材料的要求也变得更加复杂和多样化。
未来的雷达吸波材料将不仅仅是单纯吸波的材料,还将具备其他功能,如辐射冷却、热管理、电磁屏蔽等。
这种多功能化的雷达吸波材料能够满足更加复杂和高级的雷达系统需求,提高雷达的性能和可靠性。
2. 可伸缩性传统的雷达吸波材料是固定形状和结构的,难以适应不同形状和尺寸的雷达天线系统。
未来的雷达吸波材料将具备可伸缩性,能够根据不同的工作需求和场景要求进行形状和结构的自适应调节。
雷达用隐身吸波材料研究进展邓惠勇官建国高国华(武汉理工大学材料复合新技术国家重点实验室,武汉430070)摘要本文综述了近年来国内外雷达波吸收材料的研究进展,对吸波原理、吸波材料的分类及特点进行了归纳分析和讨论,并对磁性金属纳米粒子用于雷达波吸收材料吸波机理和应用前景进行了展望。
关键词雷达隐身,吸波材料,纳米粒子Research p ro g ress i n radar absorbi n g m aterialD en g~ui y on g G uan jian g uo G ao G uohua(S tate K e y Laborator y o f A dvanced t echno lo gy f or M aterials S y nt hesisand processi n g,W uhan U ni versit y o f t echno lo gy,W uhan430070)Abstract the recent research p ro g ress o f radar absorb i n g m aterial(RAM)at hom e and abroad w ere review ed i n t h is p a p er.the m echan is m o f absorb i n g radar w ave,class ifications and characteristics o f RAM w as i ntroduced and anal y ticall y d is-cussed.A s a p rom is i n g RAM,m a g netic m etal nano p article w as i ntroduced and its a pp lication f ore g round are also p ut f or w ard.K e y words radar stealt h,radar absorb i n g m aterial,m etal nano p article雷达隐身技术是现代战争中必不可少的电子对抗技术。
吸波超材料研究进展一、本文概述随着现代科技的不断进步,电磁波在通信、雷达、军事等领域的应用日益广泛,然而,电磁波的散射和干扰问题也随之凸显出来。
为了有效地解决这一问题,吸波超材料应运而生。
吸波超材料作为一种具有特殊电磁性能的人工复合材料,能够实现对电磁波的高效吸收,因此在隐身技术、电磁兼容、电磁防护等领域具有广阔的应用前景。
本文旨在综述吸波超材料的研究进展,包括其基本原理、设计方法、制备工艺以及应用现状等方面。
将介绍吸波超材料的基本概念和电磁特性,阐述其吸波原理及影响因素。
然后,将综述近年来吸波超材料在结构设计、材料选择以及性能优化等方面的研究成果。
接着,将讨论吸波超材料的制备方法,包括传统的物理法和化学法以及新兴的3D打印技术等。
将展望吸波超材料在未来的发展趋势和应用前景。
通过本文的综述,读者可以对吸波超材料的研究现状有全面的了解,并为进一步的研究和开发提供有益的参考。
二、吸波超材料的基本原理吸波超材料,作为一种人工设计的复合材料,其基本原理主要基于电磁波的干涉、散射、吸收和转换等物理过程。
吸波超材料通过特定的结构设计,能够有效地调控电磁波的传播行为,从而实现高效的电磁波吸收。
吸波超材料的设计往往采用亚波长结构,这种结构可以在微观尺度上调控电磁波的传播路径,使得电磁波在材料内部发生多次反射和干涉,从而增加电磁波与材料的相互作用时间,提高电磁波的吸收效率。
吸波超材料通常具有负的介电常数和负的磁导率,这使得电磁波在材料内部传播时,会经历与常规材料不同的物理过程。
当电磁波进入吸波超材料时,由于介电常数和磁导率的负值特性,电磁波的传播方向会受到调控,从而实现电磁波的高效吸收。
吸波超材料还可以通过引入损耗机制,如电阻损耗、介电损耗和磁损耗等,将电磁波的能量转化为其他形式的能量,如热能,从而实现电磁波的衰减和吸收。
这种损耗机制的设计对于提高吸波超材料的吸收性能至关重要。
吸波超材料的基本原理是通过调控电磁波的传播路径、改变电磁波的传播方向以及引入损耗机制,实现电磁波的高效吸收。
新型柔性雷达吸波超材料:实现全向、高效隐身本文由空天防务观察(ID:AerospaceWatch)授权转载,作者:胡燕萍中国航空工业发展研究中心《空天防务观察》导读:如果不考虑网络空间和电磁频谱对抗手段,军用航空器的“隐身”该往何处发展?在“从不隐身到隐身”的时代,外形曾占据主导地位,但或许这已是过去时了;在“从隐身到更隐身”的时代,什么才会是主导呢?美国人曾说,得益于采用新的先进材料等因素,B-21“袭击者”轰炸机的隐身性能“比B-2好得多”……结合技术进展来看,也许材料就是“从隐身到更隐身”时代的一个关键。
我们在此不判断这里的材料是否尤指超材料,但无论如何,超材料在隐身等许多领域的应用进展是非常值得关注的。
2016年2月,美国爱荷华州立大学在美国防部和美国自然科学基金会共同资助下,研发出一种新型柔性雷达吸波超材料。
这种超材料采用可拉伸的柔性硅基底,内嵌液态镓铟锡合金开口谐振环作吸波特征结构单元,通过拉伸基底可实现波频段在8~11吉赫兹连续可调,吸波带宽达2吉赫兹,吸波效能较常规雷达吸波材料高100倍。
这种柔性、可伸缩超材料制成的智能蒙皮具有良好的吸波效果,有望应用于新一代隐身作战飞机、无人机、未来空间隐身飞行器等,提升武器装备的电磁隐身性能。
一、超材料吸波体可打破常规隐身材料性能瓶颈,但只能作用于某一特定频率武器装备隐身性能可通过结构设计与隐身材料两种方式联合使用实现。
随着装备平台的发展,结构设计升级空间日渐狭窄,隐身效能提升对材料的依赖加大。
常规隐身材料一般是利用“吸波”原理,将进入材料的探测波通过多次折射,衰减吸收,从而减少波的反射,达到隐身效果。
目前,利用折射吸波的常规隐身材料在吸波率及全向性这两个方面陷入瓶颈:一是,要达到高吸波率,需要增加吸波材料厚度,但由此会带来武器装备尺寸和重量的增加;二是,由于波入射方向直接影响到吸波效果,常规隐身材料仅对特定入射范围的探测波有高吸收率。
超材料的问世为吸波材料突破技术瓶颈提供了一个新的思路。
浅谈雷达吸波材料的发展现状作者:牟维琦黄大庆来源:《科技创新导报》 2012年第24期牟维琦黄大庆(北京航空材料研究院北京 100095)摘要:随着科技的发展,现代化武器装备对于隐身性能的需求越来越强烈,隐身性能已经成为衡量一种武器装备先进性的一项重要标准,现阶段实现隐身技术主要的手段是通过雷达吸波材料,本文就传统和新型雷达吸波材料的发展现状进行了评述以及展望。
关键词:雷达吸波材料隐身技术中图分类号:F2 文献标识码:A 文章编号:1674-098X(2012)08(c)-0037-021 前言随着现代军事技术的发展,对飞行器和舰艇的探测技术越来越成熟。
针对日益成熟并完善的雷达、红外、可见光和声学探测系统,隐身技术(stealth technology)或低探测技术(low observable technology)应运而生。
隐身技术是通过研究利用各种不同的技术手段来降低己方目标的可探测特征信号,使其与探测背景难于区分,最大程度地降低敌方探测系统发现的概率,使己方目标、己方的武器装备不被敌方的探测系统发现。
它使初级的伪装技术由消极被动变成了积极主动,能够显著提高战场生存和攻防能力,实现隐形、机动、突击和防护的完美结合。
隐身技术最初出现在20世纪70年代,并在80,90年代迅速发展,最早应用在飞机上。
从F-117到F-22,美国隐身技术走过的是一条“外形-涂料-材料”的轨迹。
F-117采取的主要隐形措施就是外形隐身。
它完全采用钻石切割技术的多面多角形设计,把射来的雷达波向各个方向散射,让敌方雷达难以发现目标。
B-2隐形轰炸机运用大量碳纤维复合材料和特制的吸波涂料将雷达散射截面(RCS)降低至0.1m2左右。
美国研制的“科曼奇”隐身直升机的雷达散射截面只有其他常规直升机的1%,是“阿帕奇”的1/400,红外特征仅是后者的1/4。
由此可见,美国在隐身技术领域具有明显的优势。
吸波材料是隐身技术的重要组成部分,在装备外形不能改变的前提下,吸波材料是实现隐身技术的物质基础。