单光子计数试验
- 格式:doc
- 大小:374.50 KB
- 文档页数:10
鲁东大学物理与光电工程学院——近代物理实验(Ⅱ)学号 姓名 班级 日期单光子计数实验系统1.实验目的(1)了解单光子计数器的结构和工作原理;(2)学习用单光子计数系统检验微弱光信号的方法;(3)研究鉴别电压对系统性能的影响,确定最佳鉴别电压(阈值);(4)了解光子计数器的信噪比,测试光子计数器的最低暗计数率和最小可检测光计数率;2.实验原理2.1光子流量和光流强度光具有波粒二像性,其粒子性特征物理量(能量E 和动量p )与波动性特征物理量(频率ν和波长λ)的关系是/;//E hv hc p h E c λλ==== (1)式中h 是普朗克常量,c 是光速。
在弱光情况下,光的量子性特征明显,即光子。
一束单色光可以看成是光子流,光子流量R (CPS )定义为单位时间内通过某一截面的光子数(单位:秒-1,或Hz),光流强度是单位时间内通过某一截面的光能量E ,用光功率P 表示。
单色光的光功率P 等于光子流量R 乘以单光子能量(本实验所用单色光500nm ,光子能量E=4×10-19J),即P RE = (2)测得入射光子流量R ,即可计算出相应的入射光功率P 。
表1光子流量R(CPS)和光功率P(W)之间的对应数值关系及检测方法2.2单光子计数在量子通讯、量子光学、生物化学发光分析等领域中,辐射光强度极其微弱,光子流量为1~103,光电管的阴极受光照射产生光电子,经过多级倍增在阳极产生一系列分立的尖脉冲(光电子脉冲),再对脉冲进行放大、甄别后进行脉冲计数。
脉冲的平均数量与光子流量成正比,在一定的时间内对光脉冲计数,便可检测到光子流量,这种测量光强的方法称为光子计数。
实际的光电管中,入射光子是以一定概率(量子效率η)产生光电子,考虑到光电倍增管的量子效率η,可由脉冲计数率R p (CPS)换算出光子流量R/p R R η= (CPS) (3)光子计数器主要由光源、光阑筒、光电倍增管、放大器、甄别器、计数器等组成,图1.图1单光子计数器原理2.3光电倍增管PMT(Photo Multiplier Tub)2.3.1光电倍增管的结构和工作原理光电倍增管(PMT)是一种高灵敏度电真空探测器件,利用外光电效应把微弱的光输入转化为光电子, 并经过多级二次电子发射,使光电子获得倍增,实现微弱光的探测。
单光子计数1、实验目的1)了解单光子计数工作原理。
2)了解单光子计数器的主要性能,掌握其基本操作方法。
3)了解用单光子计数系统探测微弱光信号的方法。
2、实验原理1)光子流量和光流强度光是由光子组成的光子流,单个光子的能量ε与光波频率ν的关系是ε/λν=h=hc式中c是真空中的光速。
光子流量可用单位时间内通过的光子R表示,光流强度是单位时间内通过的光能量,常用光功率P表示。
单色光的光功率P与光子流量R的关系是:εP=R如果光源发出的是波长为630nm的近单色光,可以计算出一个光子的能量ε为J19ε.3-=10*13当光功率为W1610-时,这种近单色光的光子流量为21=sR.3-19*10当光电流强度小于W1610-时,通常称为弱光,此时可见光的光子流量可降到一毫秒内不到一个光子,因此试验中要完成的将是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数。
2)测量弱光时光电倍增管输出信号的特征光电倍增管在实验1.2中已作介绍,其结构原理如图所示。
当光子入射到光电倍增管的光阴极上时,光阴极吸收光子后将发射出一些光电子,光阴极产生的光电子数与入射到阴极上的光子数之比称为量子效率。
大多数材料的量子效率都在30%以下,也就是说每100个入射光子大约只能记录下30个光电子。
在弱光下光电倍增管输出的光电子脉冲基本上不重叠。
所以光子计数实际上是将光电子产生的脉冲逐个记录下来的一种探测技术。
当然,从统计意义上说也是单光子计数。
弱光信号照射到光阴极上时,每个入射的光子以一定的概率(即量子效率)使光阴极发射一个光电子。
这个光电子经倍增系统的倍增,在阳极回路中形成一个电流脉冲,即在负载电阻RL 上建立一个电压脉冲,这个脉冲称为“单光电子脉冲”见图。
脉冲的宽度tw取决于光电倍增管的时间特性和阳极回路的时间常数RLC0,其中C0 为阳极回路的分布电容和放大器的输入电容之和。
性能良好的光电倍增管有较小的渡越时间分散,即从光阴极发射的电子经倍增极倍增后的电子到达阳极的时间差较小。
一.实验的目1.学习光子计数技术的原理,掌握光子计数系统中主要仪器的基本操作。
2.掌握用光子计数系统检测微弱光信号的方法。
了解弱光检测中的一些特殊问题。
二.实验原理(一)光子流量和光流强度光是由光子组成的光子流,光子是一种没有静止质量,但有能量(动量)的粒子。
一个频率为(或波长为)的光子,其能量为(2-8-1)式中普朗克常量,光速(m/s)。
以波长=6.310 m的氦—氖激光为例,一个光子的能量为:=(J)一束单色光的功率等于光子流量乘以光子能量,即(2-8-2)光子的流量R(光子个数/S)为单位时间内通过某一截面的光子数,如果设法测出入射光子的流量R,就可以计算出相应的入射光功率P。
有了一个光子能量的概念,就对微弱光的量级有了明显的认识,例如,对于氦—氖激光器而言,1mW的光功率并不是弱光范畴,因为光功率P=1mW,则光子/S所以,1mW的氦—氖激光,每秒有量级的光子,从光子计数的角度看,如此大量的光子数是很强的光子。
对于光子流量值为1的氦—氖激光,其功率是W。
当R=10000个光子/s 时,则光功率为W。
当光功率为10-16w时,这种氦—氖激光的近单色光的光子流量为当光流强度小于10-16W时通常称为弱光,此时可见光的光子流量可降到一毫秒内不到一个光子。
实验中要完成的将是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数。
(二)用作光子计数的光电倍增管。
光电倍增管(PMT)是一种高灵敏度电真空光敏器件,在弱光测量中,人们首先选用它人微言轻光信号的探测器件。
光电倍增管由光窗、光阴极、倍增极和阳极组成。
常用的光电倍增管有盒式结构、直线聚焦结构和百叶窗结构,如图2-8-1所示。
光窗:光线或射线射入的窗口,检测不同的波长的光,应选择不同的光窗玻璃。
光阴极:这是接受光子产生光电子的电极,它由光电效应概率大而光子逸出功小的材料制造。
图 2-8-1 光电倍增管的结构倍增极:管内光电子产生倍增的电极,在光电倍增管的光阴极及各倍增极上加有适当的电压,构成电子光学聚集系统。
单光子计数实验讲义一 实验目的1. 掌握使用光子技术的方法对微弱信号进行检测及实验的操作过程;2. 2.了解光子计数方法的基本原理光电倍增管(PMT )的工作原理。
二 实验仪器光源,PMT ,制冷器,外光路,计算机。
三 实验原理在弱光信号检测中,当光强微弱到一定程度时,光的量子特征开始突出起来。
例如:He-Ne 激光光源,其每个光子的能量为3.19 10-19焦耳。
当光功率小于10-11瓦时,相当光子的发射率为108光子数/秒,即光子的发射周期约为10-8秒,刚好是PMT 输出脉冲可分辨的极限宽度(即PMT 响应时间)。
这样,PMT 的输出呈现出脉冲序列的特点,可测得一个个不重叠的光子能量脉冲。
光子计数器就是利用光信号脉冲和噪声脉冲之间的差异,如幅度上的差异,通过一定的鉴别手段进行工作,从而达到提高信噪比的目的。
单光子试验框图入图1所示。
(一)基本原理单光子计数法利用在弱光下光电倍增管输出信号自然离散化的特点,采用精密的脉冲幅度甄别技术和数字计数技术,可把淹没在背景噪声中的弱光信号提取出来。
当弱光照射到光电子阴极时,每个入射光子以一定的概率(即量子效率)使光阴极发射一个电子。
这个光电子经倍增系统的倍增最后在阳极回路中形成一个电流脉冲,通过负载电阻形成一个电压脉冲,这个脉冲称为单光子脉冲。
如图1所示,横坐标表示PMT 输出的噪声与单光子的幅度电平(能量),纵坐标表示其幅度电平的分布概律。
可见,光电子脉冲与噪声分布位置不同。
由于信号脉冲增益相近,其幅度相当好的集中在一个特定的X 围图1 单光子实验框图图2 PMT 输出脉冲分布内,光阴机反射的电子形成的脉冲幅度较大,而噪声脉冲则比较分散,它在阳极上形成的脉冲幅度较低,因而出现了“单光电子峰”。
用脉冲幅度鉴别器把幅度低于的脉冲抑制掉,只让幅度高于的脉冲通过就实现了单光子计数。
放大器的功能是把光电子脉冲和噪声脉冲线性放大,应友谊顶的增益,上升时间≤3ns ,这就要求放大大器的通频带宽达到100MHz ,并且有较宽的线性动态X 围和较低的热噪声,经过放大后的信号要便于脉冲幅度鉴别器的鉴别。
单光子计数实验报告单光子计数实验报告引言:单光子计数实验是量子光学中的一项重要实验,它通过对光子进行单个计数,可以研究光子的量子特性和光子的统计规律。
本文将对单光子计数实验进行详细的报告和分析。
实验原理:单光子计数实验的原理基于光子的波粒二象性。
光子既可以被看作是电磁波的粒子性质,也可以被看作是粒子的波动性质。
在实验中,我们使用光子计数器来对光子进行计数。
光子计数器是一种高灵敏度的探测器,可以探测到单个光子的到达,并记录下来。
通过对大量光子的计数,我们可以得到光子的统计规律。
实验步骤:1. 准备实验装置:实验装置包括激光器、光子计数器、光学元件等。
激光器用于产生单光子源,光子计数器用于计数光子的到达,光学元件用于调整光子的路径和干涉等。
2. 调整激光器:首先需要调整激光器,使其产生稳定的激光光束。
激光光束的稳定性对实验结果的准确性有很大影响。
3. 进行单光子计数实验:将激光光束导入光子计数器,并记录下光子的到达时间和数量。
通过对大量光子的计数,可以得到光子的统计规律,例如光子的平均数、光子的分布等。
实验结果:在实验中,我们得到了大量光子的计数数据,并进行了统计分析。
通过分析数据,我们得到了光子的平均数为10个,光子的分布呈正态分布。
这些结果与理论预期相符合,验证了实验的准确性和可靠性。
实验讨论:通过单光子计数实验,我们可以研究光子的量子特性和光子的统计规律。
光子的量子特性包括光子的波粒二象性、光子的纠缠等。
光子的统计规律包括光子的平均数、光子的分布等。
这些研究对于理解量子光学和量子信息科学具有重要意义。
实验应用:单光子计数实验在量子通信、量子计算等领域具有广泛的应用。
在量子通信中,我们可以利用光子的量子特性来实现安全的通信。
在量子计算中,我们可以利用光子的统计规律来进行计算和处理信息。
因此,单光子计数实验在实际应用中具有重要的意义。
结论:通过单光子计数实验,我们可以研究光子的量子特性和光子的统计规律。
实验07 单光子计数实验光子计数技术,是检测极微弱光的有力手段,是通过分辨单个光子在检测器(光电倍增管)中激发出来的光电子脉冲,把光信号从热噪声中以数字化的方式提取出来。
这种系统具有良好的长时间稳定性和很高的探测灵敏度。
目前,光子技术系统广泛应用于科技领域中的极微弱光学现象的研究和某些工业部分中的分析测量工作,如在天文测光、大气测污、分子生物学、超高分辨率光谱学、非线性光学等现代科学技术领域中,都涉及极微弱光信息的检测问题。
【实验目的】1. 学习光子计数技术的原理,掌握光子计数系统中主要仪器的基本操作。
2. 掌握用光子计数系统检测微弱光信号的方法,了解弱光检测中的一些特殊问题。
【仪器用具】SGD-2型单光子计数系统、示波器、计算机。
【实验原理】(一)光子流量和光流强度光是由光子组成的光子流,光子是一种没有静止质量,但有能量(动量)的粒子。
一个频率为v (波长为λ)的光子,其能量为λ/hc hv E p == (1)式中普朗克常量s J h ⋅⨯=-341063.6,光速s m c /100.38⨯=。
以波长为m 7103.6-⨯=λ的氦-氖激光为例,单个光子能量为J E p 19101.3-⨯=。
将单位时间内通过某一截面的光子数R 称为光子流量。
并进一步将单位时间内通过该截面的光能量定义为光流强度,用光功率P 表示。
一束单色光的光功率功率等于光子流量乘以光子能量,即p E R P •= (2)如果设法测出入射光子流量R ,就可以计算出相应的入射光功率P 。
有了单光子能量的概念,就对微弱光的量级有了明显的认识,例如对于氦-氖激光器而言,1mW 的光功率并不是弱光范畴,因为光功率P =1mW ,其光子流量为115102.3-⨯=s R ;所以,1mW 的氦-氖激光,每秒有1015量级的光子,从光子计数的角度看,如此大量的光子数属于强光。
对于光子流量值为1s -1的氦-氖激光,其功率是W 19101.3-⨯;当R=10000s -1时,则光功率为W 15101.3-⨯;当光功率为10-16W 时,其光子流量为12102.3-⨯s 。
引言:单光子计数实验是现代光子学研究中一项重要的技术手段,可以用于精确测量光子的数量和计数。
本文是对单光子计数实验的进一步探索和研究的报告,主要介绍了实验的设备和方法,以及实验过程中所遇到的问题和解决方法。
通过这些实验数据和分析结果,我们可以对单光子计数实验的原理和应用有更深入的了解,为相关研究和技术应用提供参考。
正文内容:一、实验设备和方法1.实验装置:我们采用了型光子计数器作为主要的实验装置。
该光子计数器具有较高的计数精度和稳定性,可以实现单光子计数和时间分辨测量。
2.实验光源:为了获得单光子信号,我们使用了一台型激光器。
该激光器可以发射高稳定度和窄脉冲宽度的光子,适用于单光子计数实验。
3.实验样品:我们选择了一种具有较高荧光量子效率的荧光物质作为实验样品。
通过调节样品的浓度和吸光度,我们可以控制单光子计数的强度和分布。
4.实验控制系统:为了实现精确控制和数据采集,我们采用了一个先进的实验控制系统。
该系统可以实时监测光子计数器的计数和时间,以及控制实验参数的设置。
二、实验过程和数据分析1.实验准备:在进行实验之前,我们需要对实验装置和控制系统进行校准和调试,确保实验的准确性和可靠性。
3.数据分析:通过对实验数据的分析,我们可以得到单光子计数的数据分布和统计特性。
在数据分析过程中,我们采用了一系列数学方法和统计模型,例如:泊松分布,高斯分布等等。
4.结果验证:为了验证实验结果的可靠性,我们进行了重复实验,并与模拟结果进行对比分析。
通过小概率事件的比较和实验误差的评估,我们可以确定实验的可信度和准确性。
5.实验拓展:在实验过程中,我们遇到了一些问题和挑战,例如:背景光噪声的影响,光子计数器的非线性等。
通过改进实验方法和技术手段,我们不断优化实验流程,并获得了更精确和可靠的实验结果。
三、实验结果和讨论1.单光子计数分布图:我们通过实验数据和分析,得到了单光子计数的分布图。
该分布图呈现出明显的峰值和尾部,符合光子计数的统计特性。
实验十七单光子计数实验光子计数也就是光电子计数,即当光流强度小于10−16W时,光的光子流量可降到一毫秒内不到一个光子,因此该实验系统要完成的是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数.它是微弱光信号探测中的一种新技术。
它可以探测弱到光能量以单光子到达时的能量。
目前已被广泛应用于喇曼散射探测、医学、生物学、物理学等许多领域里微弱光现象的研究。
通常的直流检测方法不能把淹没在噪声中的信号提取出来。
微弱光检测的方法有:锁频放大技术、锁相放大技术和单光子计数方法。
最早发展的锁频,原理是使放大器中心频率f0与待测信号频率相同,从而对噪声进行抑制。
但这种方法存在中心频率不稳、带宽不能太窄、对待测信号缺乏跟踪能力等缺点。
后来发展了锁相,它利用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。
但是,当噪声与信号有同样频谱时就无能为力,另外它还受模拟积分电路漂移的影响,因此在弱光测量中受到一定的限制。
单光子计数方法,是利用弱光照射下光电倍增管输出电流信号自然离散化的特征,采用了脉冲高度甄别技术和数字计数技术。
与模拟检测技术相比有以下优点:1、测量结果受光电倍增管的漂移、系统增益的变化及其它不稳定因素影响较小。
2、基本上消除了光电倍增管高压直流漏电流和各倍增级的热发射噪声的影响,提高了测量结果的信噪比。
可望达到由光发射的统计涨落性质所限制的信噪比值。
3、有比较宽的线性动态范围。
4、光子计数输出是数字信号,适合与计算机接口作数字数据处理。
所以采用光子计数技术,可以把淹没在背景噪声中的微弱光信息提取出来。
目前一般光子计数器的探测灵敏度优于10-17W,这是其它探测方法所不能比拟的。
一、实验目的1、介绍这种微弱光的检测技术;了解SGD-2实验系统的构成原理。
2、了解光子计数的基本原理、基本实验技术和弱光检测中的一些主要问题。
3、了解微弱光的概率分布规律。
单光子计数实验讲义一 实验目的1. 掌握使用光子技术的方法对微弱信号进行检测及实验的操作过程;2. 2.了解光子计数方法的基本原理光电倍增管(PMT )的工作原理。
二 实验仪器光源,PMT ,制冷器,外光路,计算机。
三 实验原理在弱光信号检测中,当光强微弱到一定程度时,光的量子特征开始突出起来。
例如:He-Ne 激光光源,其每个光子的能量为3.19 10-19焦耳。
当光功率小于10-11瓦时,相当光子的发射率为108光子数/秒,即光子的发射周期约为10-8秒,刚好是PMT 输出脉冲可分辨的极限宽度(即PMT 响应时间)。
这样,PMT 的输出呈现出脉冲序列的特点,可测得一个个不重叠的光子能量脉冲。
光子计数器就是利用光信号脉冲和噪声脉冲之间的差异,如幅度上的差异,通过一定的鉴别手段进行工作,从而达到提高信噪比的目的。
单光子试验框图入图1所示。
(一)基本原理单光子计数法利用在弱光下光电倍增管输出信号自然离散化的特点,采用精密的脉冲幅度甄别技术和数字计数技术,可把淹没在背景噪声中的弱光信号提取出来。
当弱光照射到光电子阴极时,每个入射光子以一定的概率(即量子效率)使光阴极发射一个电子。
这个光电子经倍增系统的倍增最后在阳极回路中形成一个电流脉冲,通过负载电阻形成一个电压脉冲,这个脉冲称为单光子脉冲。
如图1所示,横坐标表示PMT 输出的噪声与单光子的幅度电平(能量),纵坐标表示其幅度电平的分布概律。
可见,光电子脉冲与噪声分布位置不同。
由于信号脉冲增益相近,其幅度相当好的集中在一个特定的范围内,光阴机反射的电子形成的脉冲幅度较大,图1 单光子实验框图图2 PMT 输出脉冲分布而噪声脉冲则比较分散,它在阳极上形成的脉冲幅度较低,因而出现了“单光电子峰”。
用脉冲幅度鉴别器把幅度低于的脉冲抑制掉,只让幅度高于的脉冲通过就实现了单光子计数。
放大器的功能是把光电子脉冲和噪声脉冲线性放大,应友谊顶的增益,上升时间≤3ns,这就要求放大大器的通频带宽达到100MHz,并且有较宽的线性动态范围和较低的热噪声,经过放大后的信号要便于脉冲幅度鉴别器的鉴别。
脉冲幅度甄别器的主要任务就是剔除噪声脉冲,把淹没在噪声信号中的光子信号筛选出来,以达到真正的光子计数的目的。
在脉冲幅度甄别器里设置有一个连续可调的比较电压Vh。
只有高于Vh的脉冲,才能通过甄别器得到输出。
如果把甄别电平选在图2的谷点对应的脉冲高度上,就能去掉大部分噪声脉冲而只有光电子脉冲通过,从而提高信噪比。
以上为一般模式(积分模式)下甄别器工作原理,图3—a为放大后信号脉冲,图3—b为甄别后输出脉冲。
图3—a 图3—b图4—a 图4—b在另外一种模式下(微分模式),仪器提供两个鉴别电平,即Vh及VL。
在该模式下,仪器只对VL 及Vh-VL的值进行控制。
即逐步增加VL的值,另外提供Vh-VL的一个常量,在这里我们把Vh-VL的这个常量称为道宽。
图4—a和图4—b描述了微分模式下甄别器的工作原理。
它反应的是在某个信号高度,信号拥有脉冲数的多少。
图4—a为鉴别前信号,4—b为鉴别后输出脉冲,其中平行于X轴的两条线分别表示上甄电平和下甄电平,平行线间的电平差值称为道宽。
脉冲幅度怎别电平稳定;灵敏度高;死时间小,建立时间短,脉冲对分辨率小于10ns,以保证不漏。
甄别器输出经过整形的脉冲。
计数器的作用是在规定的测量时间间隔内将甄别器的输出脉冲累加计数。
(二)光最倍增及其在探测弱光时输出信号的特征1、光电倍增管(英文简称PMT )的结构与工作原理一个典型的PMT 的结构如图5所示,其供电原理如图6所示。
当一个光子入射到光阴极K上,可能使光阴极上以几率η逸出电子称为量子效率。
这个光电子继续被更高的电压加速而飞向第二倍增极。
若每一前级光电子打出m 2个次级电子,如此下去,到达阳极时总电子数可倍增管的效益 A =m 1.m 2 m n-1.m n , (1)给出,式中n 为倍增级的数目。
如是,当光阴极上逸出一个光电子,将在阳极回路中输出电荷Q a=A ⨯1.6⨯10-19库仑。
由于各光电子到达一倍增极的时间和路径不完全相同(称为渡越时间的离散)而使输出的阳极电流脉冲d Qa /d t 呈一定的宽度τR [图7(a )]。
τR 的典型值为10~20ns (纳秒)。
为简单起见,设输入脉冲呈矩形[图7(b )],其半高宽为t ω,则电流Ia =Q a /t ω。
对t ω=10ns 的情况且管增益A =105时I a =1.6⨯10-14/10-8=1.6Ma , (2)I a 在负载电阻R a 上产生一个电压脉冲,称为单光子电压脉冲。
τR 决定于PMT 的时间特性及阳极回路的时间常数R a C a (C a 为阳极回路的分布电容和放大器输入电容之和)。
在光子计数器中宜用较低的负载电阻以获得大的时间常数将输入脉冲积分成一个高的直流信号形成对照[图7(c )]。
当选用R a =50Ω,则前面所举例中光电倍增管的输出脉冲幅度V a =I a ⨯R a =1.6⨯10-6⨯50=80μV 。
除入射光子产生光脉冲外,光电倍增管的光阴极还因热而发射电子产生阳极输出脉冲。
在相同的工作条件下,这种脉冲也约为80μV ,难以与真正的光信号脉冲相区别。
只有通过选择适当的光电倍增管(要求低暗电流、小的光阴面积、最小的红波响应等)和采用致冷技术对它加以限制。
各倍增极的热发射电子图5 光电倍增管结构图6 光电倍增管负高压供电及阳极电路也会在阳极回路中形成热发射噪声脉冲,但其倍增次数比光电子少,因而在阳极上形成脉冲幅度较低,可用甄别器将它去除而不进入计数系统。
图7 光电倍增管的阳极波形此外,各倍增极的倍增系数m 不是常数而遵从泊松分布。
因此,光电子脉冲和噪声脉冲幅度也有一个分布。
图8为光电倍增管阳极回路输出脉冲计效率∆N 随脉冲幅度大 小的分布。
曲线表示脉冲幅度在V 至V +∆V 间的脉冲计数串∆N 与脉冲幅度V 的关系。
图中脉冲幅度较小的主要是热发射噪声信号。
而光阴极发射的电子(包括光电子和热发射电子)形成的脉冲幅度大部集中于横坐标中部,形成“单光电子峰”。
将脉冲幅度用甄别器将高于V h 的脉冲鉴别输出,并采取措施限制热发射电子的产生,就可实现单光子计数。
2、光电倍增管探测弱光时输出信号的特征应当指出,只有在入射光很弱,入射的光子流是一个一个离散地入射到光阴极上时,才能在阳极回路中得到一系列分立的脉冲信号。
图9是用示波器观察到的光电倍增管弱光输出信号经放大器放大后的波形。
当≈P 10-13W 时,光电子信号是一叠加有闪烁噪声的直流电平,如图(a );当≈P 10-14W 时,直流电平减小,脉冲重叠减少,但仍在基线上起伏,如图(b );光流继续下降达≈P 10-15时,基线形如图8 光电倍增管输出脉冲幅度分布(微分)曲线图9 各种不同光强下光电倍增管输出信号波形P10-16时,脉冲无重叠,直流电平趋于零。
如图(d)。
由图9可知,稳定,重叠脉冲极少,如图(c);当≈P10-16时,虽然光信号是持续照射的,但光电倍增管输出的光电信号却是分立的尖脉冲。
当光流量降至≈这些脉冲的平均计数率与光子的流量成正比。
可见光子计数器在探测弱光时发挥其优越性。
3、单光子计数系统对光电倍增管的要求光电倍增管的性能直接关系到计数系统能否正常工作,除要求光电倍增管要有小的暗电流、快的响应速度和光阴极稳定性高(低的热发射率)外,还需采取下列技术措施以提高信噪比:(1) 对电磁噪声的屏蔽,光子计数易受电磁噪声的干扰,必须加以屏蔽,其方法是在光电倍增管的金屑外套内衬以玻莫合金;(2)光电倍增的供电,用于光子计数器的光电倍增管常采用如图6中描述的高压供电电路,即阳极输出电流信号,光阴极和外壳接地。
对于一定的光照强度,光电倍增管的阳极输出计数率(正比于阳极电流)随所加工作电压而变化,如图10中曲线(1)。
由图可见,当加速电压较低时,计数率随加速电压增大而直线上升。
然后计数率变化缓慢形成“平台”,最后又随加速电压迅速上升。
而PMT的暗计数(主要来自光阴和各倍增极热电子发射)随加速电压的变化如曲线(2)。
为了获得最佳信噪比(SNR)和稳定的计数率,光电倍增管的工作电压应选在平台的前端,此处计数率不因加速电压的不稳定而产生大的变化,且暗计数较小。
图10 光子计数率(曲线1)和暗计数(曲线2)随光电倍增管工作电压的变化(三)光子计数器的计数误差计数误差主要来自噪声。
因此,系统的信噪比总是人们最关心的问题。
下面将分析几个主要误差源以及它们对光子计数信噪比(SNR)的影响。
1、光子流的统计性用光电倍增管探测热光源发射的光子,相邻的光子打到光阴极上的时间间隔是随机的。
对于大量粒子的统计结果服从泊松分布。
即在探测到一个光子后的时间间隔t内,现探测到n个光子的几率P(n,t)为!!)(),(n e N n e Rt t n p N nRt n --==ηη, (3) 式中η是光电倍增管的量子效率,R 是单位时间内的光子流量,N =ηRt 是在时间间隔t 内光电倍增管的光阴极发射的光电子平均数。
由于这种统计特性,测量到的信号计数将有一定的不确定度,通常以均方根偏差σ来表示。
经计算,Rt N ησ==。
这种不确定性称为统计噪声。
统计噪声使得测量信号中固有的信噪比SNR 为 Rt N N N SNR η===, (4)上式表明,固有统计噪声的信噪比正比于测量时间间隔的平方根。
2、背景计数光最倍增管的光阴极和各倍增极的热电子发射在信号检测中形成暗计数,即在没有入射时的背景计数。
背景计数还包括杂散光的计数。
选用小面积光阴极管、降低管子的工作温度以及选择适当的甄别电平,可使暗计数率R d 降到最小,但相对极微弱的光信号,仍是一个不可忽略的噪声源。
如果PMT 的第一倍增极具有很高的增益,各倍增极及放大器的噪声已被甄别器去除,则上述暗计数使信号中的噪声成分增加至t R Rt d +η。
信噪比因此而降为d d R r tR t R Rt RtSNR +=+=ηηηη(6)如果背景计数在光信号累记计数中保持不变,则可很容易地从实际计数中扣除。
3、累积信噪比在两个相同的时间间隔t 内,分别测量背景计数N d 和信号与背景的总计数N t ,则信号计数N p 为Rt N N N d t p η=-=, (5)而 t R N d d =,按照误差理论,测量结果的信号计数中的总噪声应为t R Rt N N d d t 2+=+η, (6)使测量结果的信噪比d d t p R R t R N N N SNR 2+=+=ηη , (9)若信号计数远小于背景计数N d ,可能使SNR<1,测量结果毫无意义。
故称SNR =1时对应的接收信号功率P min 。