调幅和检波电路的设计资料
- 格式:doc
- 大小:1.28 MB
- 文档页数:19
基本调幅电路及检波电路及原理详解/邮件群发一、调幅电路及原理详解调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。
调幅电路分为二极管调幅电路和晶体管基极调幅、发射极调幅及集电极调幅电路等。
通常,多采用三极管调幅电路,被调放大器如果使用小功率小信号调谐放大器,称为低电平调幅;反之,如果使用大功率大信号调谐放大器,称为高电平调幅。
在实际中,多采用高电平调幅,对它的要求是:(1)要求调制特性(调制电压与输出幅度的关系特性)的线性良好;(2)集电极效率高;(3)要求低放级电路简单。
1、基极调幅电路图1是晶体管基极调幅电路,载波信号经过高频变压器T1加到BG的基极上,低频调制信号通过一个电感线圈L与高频载波串联,C2为高频旁路电容器,C1为低频旁路电容器,R1与R2为偏置的分压器,由于晶体管的ic=f(ube)关系曲线的非线性作用,集电极电流ic含有各种谐波分量,通过集电极调谐回路把其中调幅波选取出来,基极调幅电路的优点是要求低频调制信号功率小,因而低频放大器比较简单。
其缺点是工作于欠压状态,集电极效率较低,不能充分利用直流电源的能量。
图1、基极调幅电路2、发射极调幅电路图2是发射极调幅电路,其原理与基极调幅类似,因为加到基极和发射极之间的电压为1伏左右,而集电极电源电压有十几伏至几十伏,调制电压对集电极电路的影响可忽略不计,因此射极调幅与基极调幅的工作原理和特性相似。
图2、发射极调幅电路3、集电极调幅电路图3是集电极调幅电路,低频调制信号从集电极引入,由于它工作于过压状态下,故效率较高但调制特性的非线性失真较严重,为了改善调制特性,可在电路中引入非线性补尝措施,使输入端激励电压随集电极电源电压而变化,例如当集电极电源电压降低时,激励电压幅度随之减小,不会进入强压状态;反之,当集电极电源电压提高时,它又随之增加,不会进入欠压区,因此,调幅器始终工作在弱过压或临界状态,既可以改善调制特性,又可以有较高的效率,实现这一措施的电路称为双重集电极调幅电路。
实验四振幅调制器一、实验目的:1.了解集成模拟乘法器的使用方法,掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
5.通过实验中波形的变换,学会分析实验现象。
二、预习要求1.预习幅度调制器有关知识。
2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。
3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。
三、实验原理1、幅度调制的基本原理在无线电通信中,其基本任务是远距离传送各种信息,如语音、图象和数据等,而在这些信息传送过程中都必须用到调制与解调。
调制是将要传送的信息装载到某一高频振荡(载频)信号上去的过程。
通常称高频振荡为载波信号。
代表信息的低频信号称为调制信号,调制即是用调制信号去控制高频载波的参数,使载波信号的某一个或几个参数(振幅、频率或相位)按照调制信号的规律变化。
按照所控制载波参数(幅度、频率、相位)区分,调制可分为幅度调制、频率调制和相位调制。
幅度调制(调幅)就是载波的振幅(包络)受调制信号的控制,随调制信号的变换而变化的一种调制。
在幅度调制中,又根据所取出已调信号的频谱分量不同,分为普通调幅(标准调幅,AM)、抑制载波的双边带调幅(DSB)、抑制载波的单边带调幅(SSB)等。
它们的主要区别是产生的方法和频谱结构。
在学习时要注意比较各自特点及其应用。
2、单片集成双平衡模拟相乘器MC1496集成模拟乘法器是完成两个模拟量相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频等过程,均可看成两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件简单,且性能优越。
因此,在无线电通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有:BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等等。
实训四 调幅与检波1 实训目的(1) 在以上实训的基础上,加强EWB 的熟练应用,掌握一些仿真的技巧。
(2) 进一步熟悉调幅电路、检波电路的工作原理。
(3) 观察调幅电路、检波电路的输出波形。
2 实训内容及步骤(1) 普通调幅电路。
① 利用EWB 绘制出如图A.9所示的普通调幅实训电路。
图A.9普通调幅实训电路② 按图A.9设置0U 、1U 、2U 以及电路中各元件的参数,打开仿真开关,从示波器上观察调幅波的波形以及调制信号1U 的关系,如图A.10所示。
图A.10 普通调幅电路的输入、输出波形③ 改变直流电压0U 值为4V ,观察过调幅现象(见图A.11)。
做好记录并说明原因。
图A.11 过调幅时的输入、输出波形分析:由上面两幅图的对比发现,改变0U 值使其变小后,输入的波形没有发生变化,但是输出波形的周期变长了 (2) 双边带调制电路。
① 利用EWB 绘制出双边带调制仿真电路,接上载波信号源1U 、调制信号2U 以及示波器,如图A.12所示。
② 按图A.12所示设置1U 、2U 的参数,打开仿真开关,从示波器上可以观察到双边带调制信号,说明双边带信号的特点。
输入调制信号波形及输出双边带信号波形如图A.13所示。
图A.14是其扩展方式的波形。
图A.14 双边带调制实训电路图A.13 调制信号与双边带信号的波形图A.14 扩展后的调制信号与双边带信号波形(3)二极管包络检波器。
①利用EWB绘制出如图A.15所示的二极管包络检波器的仿真实训电路。
图A.15 二极管包络检波器仿真实训电路U及各元件的参数,其中调幅信号源的调幅度M设为0.8.打开仿真开关,②按图A.15设置sU的关系,如图A.16所示。
从示波器上观察检波器输出波形以及输入调幅波信号s图A.16 检波器输出波形与输入调幅波的关系③将1p R跳到最大(100%),从示波器上可以观察到检波器的输出波形将出现惰性失真,如图A.17所示。
试分析其原因。
目录第一章检波电路的基本概念 (1)1.1 检波电路的基本概念 (1)第二章检波电路的设计目的与要求 (1)2.1 检波电路设计目的 (1)2.2 检波电路设计的实验环境 (1)2.3 检波电路设计的预备知识 (1)2.4 检波电路设计要求 (2)第三章二极管检波电路设计内容 (2)3.1 二极管检波电路原理设计 (2)3.2 设计电路,并绘出电路图 (4)3.3 总结 (6)参考文献 (7)附录:器件清单 (8)第一章检波电路的基本概念1.1检波电路的基本概念调幅信号的解调就是从已调波信号中还原出原调制信号,这个过程是调制的逆过程,称为振幅检波,简称为检波。
从频谱关系看,调幅是把调制信号的频谱搬移到高频载波附近:检波则是把已调波中的边带信号不失真地从高频载波附近搬移到原来的位置,因此检波电路也是频谱搬移电路。
检波方法可分为两大类:包络检波和同步检波。
包络检波是指检波器的输出电压直接反映高频调幅波包络变化规律的一种检波方法。
由于普通调幅波的包络反映了调制信号的规律,与调制信号成正比,因此包络检波适用于普通调幅波的解调。
第二章检波电路的设计目的与要求2.1 检波电路设计目的本次课程设计是设计一个简单的二极管检波电路,通过本次设计,掌握高频电子线路的设计方法,并将其与仿真联系起来,理论与实践相结合,培养独立设计能力。
2.2检波电路设计的实验环境硬件要求能运行Windows 9.X以上操作系统的微机系统。
EWB仿真操作系统。
2.3 检波电路设计的预备知识熟悉EWB仿真操作系统,及高频电子线路课程。
2.4 检波电路设计要求按课程设计指导书提供的课题,按照要求设计电路,计算电路的参数,完成课程设计。
第三章 二极管检波电路设计内容3.1 二极管检波电路原理设计(1)原理电路及工作原理图1―1(a)是二极管峰值包络检波器的原理电路。
它是由输入回路、二极管VD 和RC 低通滤波器组成。
在该电路中一般要求输入信号的幅度在0.5V 以上,所以二极管处于大信号工作状态,又称为大信号检波电路。
一、摘要调制与解调电路是现代通信设备中重要组成部分。
为了实现信号的无线传输,在通信设备中必须采用调制与解调电路。
调制是把待传输信号置入载波的过程,它在发送设备中进行。
调制的方法很多,若用调布蟾号(信息)控制载波的幅度,则称为调幅。
解调是调制的逆过程,即从己调信号中还原出原调制信号(信息),对调幅波的解调称为检波。
本设计是基于MC1496的幅度调制与线性检波电路设计,首先设计调制与检波电路,再通过Multisim软件对电路进行仿真分析,最后通过实际电路调试得出满足要求的电路。
关键字:调制解调检波 MC1496 Multisim仿真二、实验内容及原理1、乘法器工作原理:由于此课程设计要用到模拟乘法器MC1496,而multisim中,又没有MC1496,所以要定义一个模拟乘法器1496。
内部电路如下:图-1其中Q1、Q2与Q3、Q4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源Q 5与Q 6又组成一对差分电路,因此恒流源的控制电压可正可负,以此实现了四象限工作。
Q 7、Q 8为差分放大器Q 5与Q6的恒流源。
进行调幅时,载波信号加在Q1和Q4的输入端,即引脚⑧、⑩之间;调制信号加在差动式放大器Q5、Q6的输入端,即引脚①、④之间;②、③脚外接1K Ω电阻,以扩大调制信号动态范围;已调制信号由双差动放大器的两集电极(即引脚⑹、⑿之间)输出。
图-2此图为MC1496引脚图。
在菜单栏Place →New subcircut →输入“MC1496”,在弹出的新空白页中将MC1496内部电路图即可。
1.1静态工作点的设定1.1.1、静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。
根据MC1496的特性参数,对于图10-1所示的内部电路,应用时,静态偏置电压(输入电压为0时)应满足下列关系,即ν8=ν10, ν1=ν4, ν6=ν1212V ≥ν6 (ν12)-ν8 (ν10)>2V12V ≥ν8 (ν10)-ν1 (ν4)>2.7V12V ≥ν1 (ν4)-ν5>2.7V1.1.2、静态偏置电流主要由恒流源I 0的值来确定。
单元八调幅信号的解调(检波)课题:8-1 检波器概述8-2 同步检波器教学目的:1. 理解检波器的概念(从频谱、波形)、分类、组成、主要技术指标。
2、掌握同步检波器的实现模型及工作原理。
教学重点:1.检波的概念、类型、组成、主要技术指标;2.同步检波器的实现模型及工作原理。
教学难点:教学方法:讲授课时:2学时教学进程单元八调幅信号的解调(检波)8.1 检波器概述一. 检波器的作用和组成1.检波器的概念:从高频调幅中检出原调制信号的过程,称为检波。
完成这个功能的电路称为检波器。
下面我们分别从频谱和波形来理解检波的实质。
我们画出检波前和检波后信号的频谱,如下:从图可以看出,检波是调幅的逆过程,则其频谱变换也与调幅相反,即把调幅波的。
可见,检波器也是频谱搬移电路。
频谱由高频不失真地搬到低频,其频谱向左搬移了fC我们再画出检波前和检波后信号的波形,如下:(1)当输入为高频等幅波时,如下图8-2所示:(2)当输入为单频正弦信号调制的普通调幅波时,如下图8-3所示:从以上两种波形可以看出,对于普通调幅波,由于其包络反映了调制信号变化的规律,因此对普通调幅波进行检波,检波器的输出电压uO (t)波形与输入调幅波uI(t)的包络相同,如图8-2和8-3所示,其中图8-2输入为高频等幅波,故输出为直流电压;图8-3输入为单频正弦信号调制的普通调幅波,故输出为正弦波。
2.检波器的分类和组成分类:同步检波器(相干检波器)、非同步检波器(非相干检波器)。
前面我们知道检波器是频谱搬移电路,所以检波器的组成中非线性器件是其核心元件,同时用低通滤波器滤除无用频率分量,取出原调制信号的频率分量。
(1)同步检波器的组成框图同步检波器在工作时,必需给非线性器件输入一个与载波同频同相的本地参考电压,即同步电压cos r rm c u t U t ω=()。
因此,检波器由乘法器(或其他非线性器件)、低通滤波器和同步信号发生器组成,这种检波器就称为同步检波器,它适合于各种调幅波的检波(AM 、DSB 、SSB )。
课程设计课程名称调幅和检波电路的设计课题名称高频电子线路专业电子信息工程班级电信1401学号21姓名曾举正指导老师周细凤2016年6月24日湖南工程学院课程设计任务书湖南工程学院课程设计任务书课程名称高频电子线路题目调幅和检波电路的设计与仿真分析学生姓名曾举正专业班级电信1401 学号21指导老师周细凤课题审批下达日期2016年06月07日一、设计内容1、普通调幅电路的设计与仿真分析2、检波电路的设计与仿真分析二.设计要求1、给出用模拟乘法器实现单频调幅的具体设计思路和实现电路。
2、给出用模拟乘法器实现多频调幅(要求调制信号含有三个频率)的具体设计思路和实现电路。
3、利用上一步中实现的单频调幅电路输出作为输入,用模拟乘法器和低通滤波电路实现同步检波。
4、自定义载波、调制信号的幅值及频率。
采用EWB或者ORCAD等专业软件仿真,能够观察输入输出波形。
5、编写课程设计说明书;6、课程设计说明书和所有图纸要求用计算机打印(A4纸)。
三、进度安排第1天:下达设计任务书,介绍课题内容与要求;第2、3天:查找资料,确定系统组成;第4~7天:单元电路分析、设计、仿真;第8~9天:课程设计说明书撰写;第10天:整理资料,答辩。
(共两周)四、参考文献1. 张肃文主编.,《高频电子线路》,高等教育出版社.。
2. 谢自美主编,《电子线路设计、实验、测试》,华中理工大学出版社。
3. 沈伟慈主编,《通信电路》,西安电子科技大学出版社。
五、说明书基本格式1)课程设计封面;2)设计任务书;3)目录;4)设计思路,系统基本原理和框图;5)单元电路设计分析;6)设计总结;7)附录;8)参考文献;9)电路原理图;10)评分表目录...........................................................................................一、课程设计的任务要求 (5)二、设计思路设计步骤 (6)三、电路图的设计与绘制 (9)四、仿真调试及结果 (14)五、总结 (17)六、评分表 (18)一、课程设计的任务要求1、给出用模拟乘法器实现单频调幅的具体设计思路和实现电路。
2、给出用模拟乘法器实现多频调幅(要求调制信号含有三个频率)的具体设计思路和实现电路。
3、利用上一步中实现的单频调幅电路输出作为输入,用模拟乘法器和低通滤波电路实现同步检波。
4、自定义载波、调制信号的幅值及频率。
采用EWB或者ORCAD等专业软件仿真,能够观察输入输出波形。
5、编写课程设计说明书;6、课程设计说明书和所有图纸要求用计算机打印(A4纸)。
二、设计思路设计步骤1、调幅的概念调幅(AM):使载波振幅按照调制信号改变的调制方式叫调幅。
经过调幅的电波叫调幅波。
它保持着高频载波的频率特性,但包络线的形状则和信号波形相似。
调幅波的振幅大小,由调制信号的强度决定。
调幅波用英文字母AM表示。
2、检波的概念与检波的分类将音频信号或视频信号从高频信号(无线电波)中分离出来叫解调,也叫检波。
幅度调制的解调简称检波,其作用是从幅度调制波中不失真的检出调制信号来。
根据是否需要同步信号,检波可分为同步检波和包络检波。
3、集成模拟乘法器1496的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。
所以目前在无线通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
下面介绍MC1496集成模拟乘法器。
(1)MC1496的内部结构MC1496 是目前常用的平衡调制/解调器。
它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。
MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。
(a) (b)(a)1496内部电路(b)1496引脚图图1 MC1496的内部电路及引脚图网络上能查到两种它的引脚图一种是10管脚的,一种是14管脚的,两者功能没有区别,其中10管脚的相比14管脚的少了7、9、11、13四个N/C管脚,N/C管脚只是为了方便接插和焊接用的它内部电路含有8 个有源晶体管,引脚8 与10 接输入电压VX、1与4接另一输入电压VY,6 与12 接输出电压VO。
一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。
为了得到好的精度,必须消除VXOS、VYOS与VZOX 三项失调电压。
引脚2 与 3 之间需外接电阻,对差分放大器T5与T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。
各引脚功能如下:1:SIG+ 信号输入正端2: GADJ 增益调节端3:GADJ 增益调节端 4: SIG- 信号输入负端5:BIAS 偏置端 6: OUT+ 正电流输出端7: NC 空脚 8: CAR+ 载波信号正端9: NC 空脚 10: CAR- 载波信号输入负端 11: NC 空脚 12: OUT- 负电流输出端13: NC 空脚 14: V- 负电源(2)MC1496电路实现原理工作原理如下:在乘法器的一个输入端输 入载波信号t V c cm ωcos v c(t)=另一输入端输入调制信号t V m Ω=ΩΩcos t v )(,则经乘法器相乘,可得输出抑制载波的双边带调幅信号的表达为:t V KV t V KV tt V KV t v t Kv c m cm c cm c m cm c m )cos(2/1)cos(2/1cos cos )()(t v 0Ω-+Ω+=Ω==ΩΩΩΩωωω)(若要输出普通调幅信号,只要调节外部电路的平衡电位器,使输出信号中有载波即可。
输出信号表达式为:t m t mV t V tt m V t c c cm c cm c cm )cos(2/1)cos(2/1cos cos )cos 1(v 0Ω-+Ω++=Ω+=ωωωω)(普通振幅调制电路的原理框图与抑制载波双边带振幅调制电路的原理框图如图2所示图2(3)Multisim建立MC1496电路模块启动multisim14程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。
被选择的电路部分由周围的方框标示,表示完成子电路的选择。
为了能对子电路进行外部连接,需要对子电路添加输入/输出。
单击Place / HB/SB Connecter 命令或使用Ctrl+I 快捷操作,屏幕上出现输入/输出符号,将其与子电路的输入/输出信号端进行连接。
带有输入/输出符号的子电路才能与外电路连接。
单击Place/Replace by Subcircuit命令,屏幕上出现Subcircuit Name对话框,在对话框中输入MC1496,单击OK,完成子电路的创建选择电路复制到用户器件库,同时给出子电路图标。
双击子电路模块,在出现的对话框中单击Edit Subcircuit 命令,屏幕显示子电路的电路图,可直接修改该电路图。
MC1496内部结构multisim电路图和电路模块如图1所示。
三、电路图的设计与绘制1、普通调幅电路的设计图3是由MC1496组成的普通调幅电路。
由图可知,X通道两输入端⑧、⑩脚直流电位均为6V,可作为载波输入通道;Y通道两输入端①、④脚之间外接有调节电路,可以通过调节50KΩ电位器使①脚电位比④脚高Uy,调制信号UΩ(t)与直流电压Uy 相加后输入到Y通道。
调节电位器可改变调制指数Ma。
输出端⑹、⑿脚外应接调谐于载频的带通滤波器。
②、③之间外接Y通道负反馈电阻。
图32、多频调幅电路的设计实现了单频调幅以后,多频调幅就能较简单的进行了。
首先使用一个加法器对两个信号进行相加,然后再用一个加法器使前一个以合成的信号和第三个信号相合成,最后将输出地合成信号加入到模拟乘法器条幅电路中。
本实验将要用到加法器。
图4为加法器电路:图4实验电路图如图5所示:图53检波电路的设计振幅调制信号的解调过程称为检波。
常用方法有包络检波和同步检波两种。
由于普通调幅波(AM)信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。
而双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,所以无法用包络检波进行解调,必须采用同步检波方法。
MC1496模拟乘法器构成的同步检波解调器电路原理框图6所示。
其中y端输入同步载波信号U C,x端输入已调波信号U S。
解调器输出信号经低通后输出解调信号。
其1496构成的同步检波电路与外接元件参数与AM调制电路无异,仅需接一低通滤波器实际设计电路如图7所示,图8为单独的检波电路:图6 图7图8 输入任务一中输出的调幅波如图9所示:图9同步信号设置为任务一中的载波如图10:图10四、仿真调试及结果1、普通调幅电路的仿真本次试验采用的载波信号为y=0.012*sin2*10^6t,采用的调制信号为y=0.005*sin4*10^4t。
波形图如图11所示:波形顺序从上到下依次为:输出信号,载波,调制信号:图112、多频调幅电路的仿真叠加总波形图如图12所示:输出波形如13图:图133、检波电路的仿真分析输出波形如图14所示:图144、仿真过程中出现的问题和解决方法①电路图检查好是接对的,但是示波器中没有波形出现如图15图15这是因为刚刚接触Multisim仿真,不熟悉示波器的运用,导致调不出波形,这种情况是因为标度和刻度太大,导致波形又小出现的又慢,可以调小标度和刻度来解决,如图16图16②大部分调制不出波形的不是因为不熟悉示波器的运用就是因为电路图没接对,如果发现第一种方法无论怎么用都不出波形,就检查一下电路图吧,一,看芯片内部电路图是否正确,二,检查外部电路,如电源的大小,电阻的大小,电路中有没有线接错了,该接地的都接了地没有等。
③在画图过程中我有个元器件总是不能连接得像参考原理图一样,后来发现是因为用错了一个滑动变阻器,我用的只有两个管脚,而要用三个管脚的。
最后想说的是,不懂的不要觉得是自己实力太差,要有积极的态度,可以去百度,实在百度不到可以问老师,主要还是自己要积极解决问题。
五、总结通过此次的课程设计,我了解并熟悉了用MC1496设计调幅电路,在学习设计的过程当中接触了一些软件如Orcad,Multisim,了解并掌握了Multisim的一部分功能,熟悉了Multisim中各种示波器的使用,能够用Multisim进行一些常规电路的仿真分析。