时间和位移
- 格式:doc
- 大小:95.00 KB
- 文档页数:9
第2节 时间和位移理解领悟本节介绍了描述质点运动的时刻、时间间隔、路程、位移、矢量等概念,要弄清它们的含义和区别;这些概念和上节的内容都是为下面的速度和加速度的学习奠定基础的;时刻和时间间隔、路程和位移的含义容易混淆,要注意弄清它们的区别;1. 时刻和时间间隔的含义关于时刻和时间间隔,教材是举了如下例子来阐明的:我们说上午8时上课,8时45分下课,这里的“8时”“8时45分”是这节课开始和结束的时刻,而这两个时刻之间的45分钟,则是两个时刻之间的时间间隔;同样,“中国政府于1997年7月1日零时恢复对香港行使主权”,这里的“零时”是时刻;“中子的‘寿命’达”,这里的“”是时间间隔;在物理学中,时刻对应着物理状态,时间间隔对应着物理过程;时间间隔又简称为时间;2.用时间轴表示时刻和时间表示时间的数轴称为时间轴;在时间轴上,时刻用点表示,时间用线段表示;如图1-3所示,O 点表示初始时刻,A 点表示时刻第1s 末即1s 末或第2s 初,D 点表示时刻 , OA 、OB 、OC 分别表示从计时开始的时间头1s 内、头2s 内、头3s 内即1s 内、2s 内、3s 内,OA 、AB 、BC 分别表示时间第1s 内、第2s 内、第3s 内时间均为1s 等等;3. 为什么要引入“位移”概念教材所举的例子很能说明问题:从北京去重庆,可以乘火车,也可以乘飞机,还可以先乘12t / s34图火车到武汉,再乘轮船沿长江而上;然而,尽管路线各不相同,但位置的变动却是相同的,总是从北京到达了西南方向直线距离约1300km 的重庆;为了描述物体位置的变化,我们需要引入“位移”概念;4. 怎样表示位移描述物体位置的变化,需要确切地描述物体位置变化的大小和方向;为此,位移可以用从初始位置指向末位置的有向线段来表示;按照一定的标度,有向线段的长度表示位移的大小,有向线段的方向表示位移的方向;可见,物体的位移仅由初始位置和末位置决定,而与运动过程无关;如图1-4所示;不管物体质点自A 点经路径1、路径2还是路径3运动到B 点,其位移都相同,都可用有向线段AB 来表示;5. 路程和位移的区别位移与初中物理中讲的路程是两个不同的概念;位移是描述物体位置变化的物理量,而路程则是描述物体运动路径轨迹长短的物理量;位移既有大小又有方向,而路程只有大小没有方向;位移的大小等于物体初始位置到末位置的直线距离,与运动路径无关;而路程是按运动路径计算的实际长度;由于物体运动的路径可能是直线,也可能是曲线,两点间又以直线距离为最短,所以物体位移的大小只能小于、最多等于路程,不可能大于路程;6. 什么情况下,物体位移的大小等于路程对此,也许你会不假思索地说,当物体做直线运动时其位移的大小一定等于路程,因为两点间以直线距离为最短;然而,你忽略了物体沿直线往复运动的情况;如图1-5所示,物体从A 沿直线运动到B 再返图1-4; ; ;A B C图1回到A ,又沿同一直线运动到C;在运动的整个过程中,物体位移的大小s=AC ,而经过的路程s ′=2AB +AC >s ;事实上,只有物体做单向直线运动时,其位移的大小才等于路程; 7. 矢量和标量的区别与时间、温度、路程等物理量不同,位移既有大小又有方向,而时间、温度、路程等物理量只有大小没有方向;像位移这样的物理量叫做矢量,矢量既有大小又有方向;像时间、温度、路程这样的物理量叫做标量,标量只有大小没有方向;标量相加遵从算术加法的法则,而矢量相加则遵从几何加法的法则对此,我们将在下面加以探索;8.直线运动的位置和位移既然位移是描述物体位置变化的物理量,而物体的位置可用坐标来确定,那么位移就可用坐标的变化量来表示;当物体做直线运动时,若物体从A 运动到B ,而A 、B 的坐标分别为x 1、x 2,则物体的位移就可用它的坐标变化量△x 来表示:△x = x 2-x 19. 探索矢量相加的法则让我们来研究教材中提供的事例:该同学第一次由A 走到C ,位移为向北的40m ;第二次再由C 走到B ,位移为向东的30m;那么,该同学位置变化的总的结果是由A 走到了B ,即合位移为北偏东37°的50m;如图1-6所示;由此你能领悟出矢量相加的一般法则吗由上述例子不难看出,三个位移矢量构成了一个三角形;求B图1-6两个矢量的合矢量,只要将表示这两个矢量的有向线段首尾相接,那么从第一个矢量的箭尾指向第二个矢量箭头的有向线段就表示这两个矢量的合矢量;请亲自动手画一下,看看作图时若交换一下两个矢量的先后次序,得到的合矢量是否相同;假如要求多个矢量的合矢量,又该如何作图呢10. 平面曲线运动的位置和位移当物体做平面曲线运动时,其位置可用平面直角坐标系中的一组坐标来表示;如图1-7所示,设一辆汽车从A 点沿曲线运动到B 点,A 、B 两点的坐标分别为x 1,y 1x 2,y 2,则汽车位移的大小等于A 、B 两点间的距离,即212212)()(y y x x s -+-=位移的方向可用位移与x 轴正方向夹角的正切值表示tan 1212x x y y --=ϕ11. 运动的位移图象为了描述物体的位移随时间变化的关系,我们可以任意选择一个平面直角坐标系,用横轴表示时间,用纵轴表示位移,画出位移和时间的关系图线,这种图象叫做位移-时间图象,简称为位移图象;如图1-8所示,就是物体做匀速运动的位移图象;取初位置为坐标原点时,物体的位移等于末位置的坐标,因此这个图象也可以叫做物体的位置-时间图象;应用位移图象,我们可以求出物体在任意时间内的位移,也可以反过来求出物体通过任一位移所需的时间;位移图象中,两条图线的交点表示两物体处于同一位置,即两物体相遇;Ox2图1-7Ot图1-8应用链接本节知识的应用主要是对时刻与时间、路程与位移等概念的辨析,位移的表示以及路程和位移的计算;例1 请在如图1-9所示的时间轴上指出下列时刻或时间填相应的字母:1第1s 末,第3s 初,第2个两秒的中间时刻;2第2s 内,第5s 内,第8s 内;32s 内,头5s 内,前9s 内;提示 在时间轴上,时刻用一个点表示,时间用一段线段表示;解析 与题中相对应的时刻或时间分别是:1A ,B ,C ; 2AB ,DE ,GH ; 3OB ,OE ,OI ;点悟 在物理学中,时刻与时间是两个不同的概念;我们平时说的“时间”,有时指的是时刻,有时指的是时间间隔,要根据上下文认清它的含义;例2 物体沿半径分别为r 和R的半圆弧由A 点经B 点东图1-24 t / s68图1-9到达C 点,如图1-10所示,则它的位移和路程分别是A. 2 R + r , πR + rB. 2 R + r 向东,2πR 向东C. 2πR + r 向东,2πR + rD. 2 R + r 向东,πR + r提示 从位移和路程的概念出发进行分析;解析 位移是由初位置指向末位置的矢量,其大小等于A 、C 间的距离,即s =2r + 2R = 2R + r ;方向由A 指向B ,即向东;路程是标量,其大小等于两半圆弧长度之和,即 s ′=πr +πR=πR + r ,没有方向;选项D 正确;点悟 弄清位移和路程的含义以及它们的区别,是正确做出判断的关键;物理概念是研究物理规律、解决物理问题的基础,要正确理解,切不可掉以轻心;例3 一个皮球从5m 高的地方落下,若碰到地面后又反弹起1m 高,则皮球通过的路程是多少皮球的位移又是如何若皮球经过一系列碰撞后,最终停在地面上,则在整个运动过程中皮球的位移又是多少提示 计算位移时,只需关注物体的初、末两位置;而计算路程时必须关注物体的运动过程;解析 如图1-11所示,皮球从5m 高的地方落下,碰到地面后又反弹起1m 高,则皮球通过的路程是5m+1m=6m ;皮球运动到了初始位置下方5m -1m=4m 处,故皮球位移的大小等于4m,方向竖直向下;若皮球经过一系列图1-碰撞后,最终停在地面上,则皮球运动到了初始位置下方5m处,故皮球位移的大小等于5m,方向仍是竖直向下;点悟分析物理问题要有一定的空间想象力,必要时可画草图帮助思考;例4 一质点在x轴上运动,各个时刻的位置坐标如下表:则此质点开始运动后,1几秒内位移最大2几秒内路程最大提示注意初始时刻质点位于坐标原点,质点位移的起点在坐标原点;解析位移最大时,质点距离原点的距离最大;由表中提供的数据可知,此质点开始运动后4s内位移最大,是7m;质点的位置坐标在不断变化,说明它在不断运动,所以此质点开始运动后5s内路程最大;点悟有的同学可能会认为该质点在开始运动后1s内位移最大,而7s内位移却是最小,因为1s内位移为5m,4s内位移为-7m,5>-7;其实,位移的大小要看其绝对值,正负号只能表示它的方向;-7m表示位移大小为7m,负号表示位移方向沿x轴的负方向;例5某学生参加课外体育活动,他在一个半径为R的圆形跑道上跑步,从O点沿圆形跑道逆时针方向跑了434圈到达A 点,求它通过的位移和路程;提示 位移是矢量,求解物体在某一过程中通过的位移,一定既要求出其大小,还要标明其方向;初学者往往容易忽略后者,务必引起注意;解析 建立如图1-12所示的直角坐标系,图中有向线段OA即为该学生通过的位移,则其位移的大小为位移的方向为1tan =--=OA OA x x y y φ, φ=45°该学生在这段时间内通过的路程为点悟 描述物体的平面曲线运动,需要建立平面直角坐标系;从本例可以看出,当物体做曲线运动时,其位移的大小与路程是不等的,且路程大于位移的大小;例6 图1-13是做直线运动的甲、乙两个物体的位移—时间图象,由图象可知A. 乙开始运动时,两物体相距20mB. 在0~10s 这段时间内,两物体间的距离逐渐增大C. 在10~25s 这段时间内,两物体间的距离逐渐变小D. 两物体在10s 时相距最远,在25s 时相遇提示 甲、乙两个物体间的距离等于该时刻两物体;图1-t /s10 20 30图1-13解析由图象可知,乙在10s时刚开始运动,此时两物体间的距离已超过20m;在0~10s 这段时间内,两物体纵坐标的差值逐渐增大,说明两物体间的距离逐渐增大;在10~25s这段时间内,两物体纵坐标的差值逐渐减小,说明两物体间的距离逐渐变小;因此,两物体在10s 时相距最远;在25s时,两图线相交,两物体纵坐标相等,说明它们到达同一位置而相遇;选项B、C、D正确;课本习题解读问题与练习1.A. 8点42分指时刻,8分钟指一段时间;B. “早”指时刻,“等了很久”指一段时间;C. “前3秒钟”、“最后3秒钟”、“第3秒钟”指一段时间,“3秒末”指时刻;本题旨在强调“时刻”和“时间”的区别;2.“公里”指的是路程,因为汽车的路线一般不是直线;31路程是100m,位移是100m;2路程相同,都是800m;位移不同;对起点和终点相同的运动员,位移大小为零;其他运动员起跑点各不相同而终点相同,他们的位移、方向大小也不同;对以上两题的解答除了要分清“路程”和“位移”的含义外,对题述问题还需有常识性的了解;学习物理必须理论联系实际;4. 先确定各点的坐标值,再根据公式△x=x2-x1即可求得位移;计算结果如下表:练习巩固1—21. 下列说法所指时刻的有A. 学校每天上午8点钟上课B. 学校每节课上45min钟C. 数学考试考了120min钟D. 考试9︰40结束2.关于位移和路程,下列说法正确的是A. 物体沿直线向某一方向运动时,通过的路程就是位移B. 物体沿直线向某一方向运动时,通过的路程就等于位移的大小C. 物体通过的路程不等,但位移可能相同D. 物体通过一段路程,但位移可能为零3. 一个质点做半径为R的圆周运动;运动一周回到原地时,它运动过程中路程、位移的最大值分别是A. 2πR , 2πRB. 2R , 2RC. 2πR , 0D. 2πR , 2R 4. 图1-14表示做直线运动的质点从初位置A 经过B 运动到C ,然后从C 返回,运动到末位置B ;设AB 长7m , BC 长5m , 求质点的位移的大小和路程;5. 在图1-15中,汽车初位置的坐标是-2km,末位置的坐标是1km;求汽车的位移的大小和方向;6. 中学垒球场的内场是一个边长为的正方形,在它的四个角分别设本垒和一、二、三垒,如图1-16所示;一位击球员击球后,由本垒经一垒、二垒直跑到三垒;他运动的路程是多大位移是多大位移的方向如何7. 在地图上沿北京到上海的铁路线放置一条棉线,两端做上记号,然后把棉线拉直,量出长度,根据地图的比例估算北京到上海的路程;你能估算从北京到上海的位移的大小和方向吗8. 一个质点沿x 轴做直线运动,它的位置坐标随时间变化规律是x=-2t 2-3t +1m, 式中t 的单位为“s ”;关于质点的运动,下列说法正确的是A. 质点从坐标原点开始运动B. 质点一直向x 轴的负方向运动C. 在最初的1s 内,质点的位移是-4m,“-”表示位移的方向与x 轴的正方向相反本三图1-x /km-1 -2 1图1-15AB C图1-14D. 在最初的1s 内,质点的位移大小是5m,位移的方向与x 轴的正方向相反9. a 、b 、c 三个质点都在x 轴上做直线运动,它们的位移-时间图象如图1-18所示;下列说法正确的是A. 在0-t 3时间内,三个质点位移相同B. 在0-t 3时间内,质点c 的路程比质点b 的路程大C .质点a 在时刻t 2改变运动方向,质点c 在时刻t 1改变运动方向D .在t 2-t 3这段时间内,三个质点运动方向相同10. 一支长150m 的队伍匀速前进,通讯兵从队尾前进300m 赶到队首传达命令后立即返回;当通讯兵回到队尾时,队伍已前进了200m,则整个过程中通讯兵的位移多大通讯兵走的路程多大/x 图1-。
匀变速直线运动的位移与时间的关系公式
匀变速直线运动的位移与时间的关系公式可以由运动学公式推导得到,具体分为两种情况:
1. 匀速直线运动的位移与时间的关系公式:
位移 = 速度 ×时间
其中,位移表示物体在运动过程中从起点到终点的距离,速度表示物体的运动速度,时间表示运动的时间长度。
2. 变速直线运动的位移与时间的关系公式:
位移 = 初速度 ×时间 + 0.5 ×加速度 ×时间²
其中,初速度表示运动开始时的速度,加速度表示运动过程中的加速度。
这个公式描述了的位移与时间的关系可以用来计算变速直线运动下物体在不同时间点的位置。
注意,这个公式的适用条件是运动过程中加速度是一个常量。
另外还有一种特殊情况,匀变速直线运动中,如果物体的位移与时间的关系符合二次函数的形式,可以使用二次函数公式来描述位移与时间的关系。
例如:位移 = a ×时间² + b ×时间 + c,其中a、b和c是常数。
位移与时间的公式
物理学中,位移与时间的公式是衡量物体在一个特定的时间内位移的基本方程。
它的公式为 s=v*t,其中s表示位移(d),v表示速度(m/s),t表示时间(S)。
公式s=v*t表明,当物体在一定的时间内,得到同等位移,则其速度必然是一致的。
反之,当物体在一定的时间内,做出不定速度的非连续运动,那么它将有不同的位移量。
这个公式也能用来检查一个物体在给定的一段时间内,有多少位移量。
这个公式也能帮助人们理解物理学中的简单的概念。
例如,当球从高处自由落下时,它的速度会随时间的推移而增加。
而从这个公式中可以推导出,只要时间不变,其位移量必定是恒定的。
这个公式也能帮助人们了解其他物理学概念,如加速度。
当物体处于加速度状态时,其速度随时间的变化而变化,但并不是恒定的,而是根据加速度值而变化,这个公式也能被用来求出加速运动物体在一定时间内,所做的位移量。
总之,物理学中的位移与时间的公式非常重要,它不仅能帮助人们理解物理学的概念,还能帮助人们检查物体在给定的一段时间内有变化时,所做的位移量。
匀变速直线运动的位移与时间的关系【考点归纳】(1)匀变速直线运动的位移与时间的关系式:x=v0t+at2。
(2)公式的推导①利用微积分思想进行推导:在匀变速直线运动中,虽然速度时刻变化,但只要时间足够小,速度的变化就非常小,在这段时间内近似应用我们熟悉的匀速运动的公式计算位移,其误差也非常小,如图所示。
②利用公式推导:匀变速直线运动中,速度是均匀改变的,它在时间t内的平均速度就等于时间t内的初速度v0和末速度v的平均值,即=.结合公式x=vt和v=v t+at可导出位移公式:x=v0t+at2(3)匀变速直线运动中的平均速度在匀变速直线运动中,对于某一段时间t,其中间时刻的瞬时速度v t/2=v0+a×t=,该段时间的末速度v=v t+at,由平均速度的定义式和匀变速直线运动的位移公式整理加工可得===v0+at====v t/2。
即有:==v t/2。
所以在匀变速直线运动中,某一段时间内的平均速度等于该段时间内中间时刻的瞬时速度,又等于这段时间内初速度和末速度的算术平均值。
(4)匀变速直线运动推论公式:任意两个连续相等时间间隔T内,位移之差是常数,即△x=x2﹣x1=aT2.拓展:△x MN=x M﹣x N=(M﹣N)aT2。
推导:如图所示,x1、x2为连续相等的时间T内的位移,加速度为a。
【命题方向】例1:对基本公式的理解汽车在平直的公路上以30m/s的速度行驶,当汽车遇到交通事故时就以7.5m/s2的加速度刹车,刹车2s内和6s内的位移之比()A.1:1B.5:9C.5:8D.3:4分析:求出汽车刹车到停止所需的时间,汽车刹车停止后不再运动,然后根据位移时间公式求出2s内和6s内的位移。
解:汽车刹车到停止所需的时间>2s所以刹车2s内的位移=45m。
t0<6s,所以刹车在6s内的位移等于在4s内的位移。
=60m。
所以刹车2s内和6s内的位移之比为3:4.故D正确,A、B、C错误。
时间和位移举例引出时间和位移火车从北京到上海,需多长时间,走了多远例如:13时开始上课,14时20分下课,中间休息10分钟,14时30分上课1.时刻指的是某个时间点,指某一瞬间。
时间间隔又是指两个不同瞬时之间的一段时间时间间隔就是两个时间点之间的部分也就是通常人们所说的时间的长短。
时间和时间间隔可在时间数轴上表示出来,时刻用点表示,时间间隔用线段表示,我们平时所说的时间,有时指的是时刻,有时指的是时间间隔,要根据上下文认清它的含义!属于时刻的有:第几秒初;第几秒末;前几秒末;后几秒初属于时间间隔的有:第几秒内;几秒内;前几秒;后几秒内。
注意:第一秒末也是第三秒出第一秒是从0到1 第二秒内是从1到2 前三秒是从0到3举例:火车从上海到北京,坐飞机,坐火车,轨迹不一样2.初中就知道,路程是物体运动轨迹的长度,可见他所经过的路程是不相同的,但都是从北京到上海,位置的变动是相同的,当物体从某一点运动到另一点时,尽管可以沿不同的轨迹、走过不同的路程,但位置的变动是相同的,物理学中用一个叫位移的物理量来表示位置的变化。
位移:描述质点位置改变的物理量,方向由初位置指向末位置;大小是从初位置到末位置的线段长度。
3.矢量:既有大小,又有方向例:位移力速度标量:只有大小,没有方向例:路程质量、密度、温度、功、功率、动能、势能、体积、时间、热量、电阻、力矩、电流等等矢量加减用平行四边形定则或三角形定则标量的加减,用代数求和4.位移-时间图像在平面直角坐标系中,用横轴表示时间t,用纵轴表示位移x,给据给出的数据,作出几个点的坐标,用平滑的曲线将几个点连接起来,则这条曲线就表示了物体的运动特点,这种图像就叫做位移-时间图像.如图甲表示的位移-时间图像(1)x-t图像描述的是物体运动的位移随时间变化的规律。
一般以出发点为坐标原点来描述物体的位移,所以在直线运动中位移-时间图像有时可以理解为位置-时间图像,但并不表示图像是物体运动的轨迹。
如何计算物体的位移和位移时间要计算物体的位移和位移时间,首先需要清楚位移和位移时间的概念。
位移是指物体从一个位置到另一个位置的距离,而位移时间是指物体完成这个位移所花费的时间。
下面将介绍如何计算物体的位移和位移时间的方法。
一、位移的计算方法物体的位移可以通过以下的方法进行计算:1. 直线运动的位移计算在直线运动的情况下,可以使用以下的公式来计算位移:位移 = 终点位置 - 起点位置2. 曲线运动的位移计算在曲线运动的情况下,物体的位移可以通过对物体的运动轨迹进行积分来计算。
具体的计算方法会涉及到数学上的微积分原理和方法。
二、位移时间的计算方法物体的位移时间可以通过以下的方法进行计算:1. 直线运动的位移时间计算在直线运动的情况下,位移时间可以通过以下的公式计算:位移时间 = 终点时间 - 起点时间2. 曲线运动的位移时间计算在曲线运动的情况下,位移时间可以通过对物体的运动轨迹进行微分来计算。
具体的计算方法同样涉及到数学上的微积分原理和方法。
三、实例演示下面通过一个实例来演示如何计算物体的位移和位移时间。
假设一个汽车在 t=0 时刻从起点位置出发,经过 2 小时后到达终点位置,我们想要计算汽车的位移和位移时间。
根据直线运动的位移计算公式,我们可以得到:位移 = 终点位置 - 起点位置假设起点位置为 0 米,终点位置为 100 米,则位移为:位移 = 100 米 - 0 米 = 100 米根据直线运动的位移时间计算公式,我们可以得到:位移时间 = 终点时间 - 起点时间假设起点时间为 0 小时,终点时间为 2 小时,则位移时间为:位移时间 = 2 小时 - 0 小时 = 2 小时通过以上的计算,我们得到汽车在 2 小时内的位移为 100 米,位移时间为 2 小时。
四、总结计算物体的位移和位移时间是物理学中的基本问题之一。
在直线运动的情况下,可以通过位移的差值直接计算;在曲线运动的情况下,需要运用微积分原理进行计算。
位移和时间的关系(说课稿)各位评委老师大家好!我是高中物理组8号选手,我说课的题目是:匀变速直线运动位移与时间的关系本课是人教版2006版教科书必修一第二章第三节的内容。
一、教材分析1、教材的地位和作用必修第一章学习了描述运动的概念,本章学习匀变速直线运动几个物理量之间的定量关系,本节研究的是匀变速直线运动的位移与时间的关系。
上一章为本节奠定了全面的基础.本节是第一章概念和科学思维方法的具体应用。
作为最简单的变速运动,本节匀变速直线运动位移规律的学习将为认识自由落体运动和其他更复杂的运动如平抛运动创造了条件。
而且掌握了匀变速直线运动位移和时间的关系,再通过牛顿第二定律,就能进一步推导出动能定理的关系式。
可见本节的知识在整个力学中具有基础性的地位,起着承上启下的作用。
2、教学目标知识与技能1).正确理解v-t图线与时间轴所围面积的物理意义。
2).初步掌握匀变速直线运动的位移公式,并能运用解决实际问题。
过程与方法1).通对v-t图线下面积意义的探究,使学生接受一种研究物理问题的科学方法——微分法。
渗透极限思想。
2).通过v-t图象推出位移公式,培养学生运用数学函数图象解决物理问题的能力。
情感态度与价值观通过探究过程,逐步培养学生的科学思想及科学方法,形成严谨科学态度。
3、教学重点知识上以匀变速直线运动的位移与时间关系的公式及其应用为重点。
能力上使学生经历匀变速直线运动位移规律的探究过程,培养学生的科学思想和方法为重点。
4、教学难点知识难点是理解v-t图线与时间轴所围面积的物理意义。
能力难点是通过极限思想的渗透,学习微分法。
5、教学手段为了克服了微分法的抽象难懂,利用了多媒体课件形象地展示了无限细分的过程。
二、说教法:本节课主要运用的是启发探究式综合教学方法。
对教学的重难点即微分法的教学上采用了目标导学法,以思维训练为主线,创设问题情境,通过小组讨论和归纳,引导学生积极思考,探索和发现科学规律。
既明确了探究的目标和方向,又最大限度地调动了学生积极参与教学活动,充分体现“教师主导,学生主体”的教学原则。
在从匀速过渡到变速的教学上采用了比较法,启发学生从已有认识获得新知;并利用数学知识解决物理问题。
另外还通过知识的铺垫、方法的迁移、多媒体课件的演示等手段,分散教学难点,引导学生动口、动脑、动手获取知识,提高学生的综合素质。
三、说学法:匀速运动是学生初中学习的内容,上一章的学习中,学生已经掌握了运动图象,在理解瞬时速度的概念时也渗透了微分、极限的思想,针对学生的掌握情况,我采用了学案辅助学生学习的方式。
课前设计知识回顾,锻炼学生总结复述已学知识的能力。
引导学生以学过的瞬时速度概念和匀速运动为基础,利用实例,巧妙设疑,启发学生思考,让学生在自主讨论的学习环境下深化对微分法的理解,培养学生分析问题的能力;学生用已有的知识演绎推理、归纳总结出匀变速运动的位移时间规律,培养了学生对知识的迁移能力。
让学生通过面积自行计算求位移时采用多种方法,培养了学生的数形结合能力和发散思维能力。
最后又通过实例分析加深学生对知识规律的消化理解;强化有意注意,及时评价鼓励学生,让学生经历从实际到理论,再从理论到实践的探究过程。
四、教学程序:知识回顾针对学生对已学知识的掌握程度不同,我在课前利用学案的形式对本节课涉及到的已有知识做了回顾,为本节课作了知识上的储备。
新课引入我以位移用x表示的来历作为切入点。
这是本节书下注释的内容,但我认为第一章用△x表示位移而本节用x,会造成学生认知混乱。
让学生明确后,匀速直线运动的位移公式可写为x=vt,然后过渡到让学生思考匀速直线运动的位移如何形象地体现在v-t图像中。
这样引入清楚明了,自然流畅,还为矩形面积的出现埋下了伏笔。
新课教学首先处理的是匀速运动某段时间的位移就是v–t图线与t轴所夹的矩形的“面积”的问题。
为匀变速直线运动位移打好基础,为学生知识迁移做好准备。
要求学生独立画出匀速直线运动的v-t图象,检验学生对已学知识的掌握。
让学生边观察边思考,引导学生把位移与矩形的面积联系起来。
并且说明面积有正负表示位移的正负方向。
由于有前面的伏笔和准备,学生能很容易地独立得出结论,激活了学生继续探究匀变速直线运动位移的积极性和愿望。
接下来是本节的重点和难点,探究匀变速直线运动的位移是否也能用v–t图线与t轴所围图形的面积来表示。
这一部分在时间分配和师生投入精力方面都是最大的。
主要注重培养学生观察、分析问题的能力和对知识的迁移能力,注重渗透科学的思维方法。
我是引用课本上思考与讨论中的实例组织学生展开对匀变速直线运动的位移的讨论的。
为了注重学生的自主学习,由我提出问题,学生进行小组讨论,,最后各小组派一名代表总结发言。
实例是一次测量记录,引导学生用最简便的方法粗略估算物体的位移。
问题一是引导学生明确研究对象,即要研究的是何运动。
讨论的结果是,变速运动现阶段只能用平均速度粗略估算物体的位移,但显然不能用任一时刻的速度乘上整个运动的时间去计算位移.这将导致巨大的误差。
问题二中的方法给学生提供了一条解决问题的途径,并指引学生正确的思维方向,而且学生也发现仍然有误差。
问到如何评价此方法时,有学生提出此方法的依据是瞬时速度可以近似地代表短时间的平均速度,这里体现出学生掌握了第一章瞬时速度的概念,并且学会了应用。
接下来的问题引导学生思考,若时间间隔取得很小,误差会很小,甚至接近真实值。
通过问题的一步步升级,使学生的思维得到了锻炼和升华。
在思考与讨论成果的基础上,我在v-t图象上,利用计算机课件形象地展示了无限细分的过程,把一个变速运动在极短时间内当作匀速运动来处理的方法直观的呈现在学生面前,许多小矩形面积之和就非常非常接近于梯形的面积,到此,匀变速直线运动的位移对应v-t图象中“面积”的结论水到渠成。
对这个难点的突破,我采用的是师生互动的渗透方式,而不是简单的说教方式。
渗透了极限的思想,但没有使用极限的语言,既解决了问题,又留下了今后进一步渗透的空间。
学生自己分组讨论,能够发挥小团体合作学习的优点,经过思考、讨论的过程,学生的科学探究能力有所加强,科学思想也逐步形成。
在把“面积”与v-t图线相联系的问题上,我采取了和课本不同的方式处理。
课本是先画出匀变速直线运动的v-t图线,再通过无限细分的过程使图线下小矩形上端的“锯齿形”越来越小,直到接近于梯形的面积。
而我是先通过无限细分的过程给出面积与位移的对应关系,让学生自己观察,分析得出所有小矩形的上边连成的直线刚好是匀变速直线运动v-t图线,所以所有小矩形的面积之和刚好等于v-t图象下与时间轴所围面积。
这样避免了“锯齿形”面积的干扰,还锻炼了学生对图像的观察分析能力。
从学生的反应来看,效果很好,顺利得出结论,增强了学生的自信心和学习兴趣。
接下来的通过计算“面积”推导出位移公式几乎都是由学生通过板演和学案的形式自主完成,推导时充分调动他们的发散思维,“面积”可看作梯形,还可看作小矩形加上三角形,锻炼他们使用数形结合的数学方法解决物理问题。
最后总结强调公式的矢量性,正方向问题。
本节课我安排了两个例题,通过学案的辅助,以学生自己分析解题为主,师生交流共同完成。
练习能帮助学生巩固新知识,有利于物理概念的理解和物理规律的应用。
例一是书上的例题即匀加速运动分析,解题时注重书写格式规范和运动示意图的画法,让学生养成良好的做题习惯。
例二是刹车问题,这是一个典型的匀减速运动问题。
我特意让学生自己解决,用实物投影展示不同的解题情况,学生马上看到矛盾所在,认识到物理知识与实际问题要相符合,求刹车后一段时间内的位移应特殊处理。
事实证明,学生自己研究得出的结果在加深记忆方面比教师讲要好很多。
最后,我设计了小结和导学反思。
导学反思是我在新教材教学中尝试的新内容,重在引导学生能够自发重视思想上收获和体会,总结自己的错误,使认识得到升华。
在作业的处理上我只是留了简单的书后习题,目的是巩固公式。
五、教学反思:在这节课里,我把一个在物理学发展中极为深刻而有效的思维方法—微分法,以简约化的方式呈现出来了。
这样处理的目的是为了防止教学中仅仅侧重知识点“套用”,而忽视了科学思维方法的培养。
“一个变化过程在极短时间内可以认为是不变的”.这也是一种科学的思路。
而且常常是对待复杂物理问题的一种科学方法。
本节课让学生在渗透中形成了科学的思路,掌握了基本的方法,达到了提高解决问题能力的目的。
我对本节教材进行适当的处理:利用教材中“思考与讨论”栏目的内容,通过学生小组讨论的形式,对“v-t图象面积位移关系”进行充分探究,把“做一做”栏目的内容移到下一节课。
这种做法既实现了运用数学方法和极限思想研究并解决物理问题,又使教学过程更流畅,重点更突出,提高学生的学习主动性和积极性,有利于培养学生发散思维的能力和科学探究的能力。
不足之处是在教学过程中发现学生小组讨论时,设计的问题还不够开放,实际上学生可以自己找到正确方法,应该让学生有更充分的讨论空间。
以上就是我对本节课的处理和认识,谢谢大家!。