高中数学【配套Word版文档】四.4.4函数y=Asin(ωx+φ)的图象及应用
- 格式:doc
- 大小:584.00 KB
- 文档页数:17
第四节 函数y =A sin(ωx +φ)的图象及三角函数模型的简单应用突破点一 函数y =A sin(ωx +φ)的图象[基本知识]1.函数y =A sin(ωx +φ)的有关概念用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:ω>0)的图象的两种方法[基本能力]一、判断题(对的打“√”,错的打“×”)(1)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的单位长度一致.( )(2)将y =3sin 2x 的图象左移π4个单位后所得图象的解析式是y =3sin ⎝⎛⎭⎪⎫2x +π4.()答案:(1)× (2)×二、填空题1.函数y =13sin ⎝ ⎛⎭⎪⎫32x +π4的振幅为__________,周期为________,初相为________.答案:13 4π3 π42.将函数y =sin 2x 的图象向左平移π4个单位长度,再向上平移1个单位长度,所得图象的函数解析式是________.答案:y =1+cos 2x3.函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的图象如图,则点(ω,φ)的坐标是________.答案:⎝⎛⎭⎪⎫4,2π3[全析考法]考法一 函数y =A sin(ωx +φ)的图象及变换1.“五点法”画图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.三角函数图象的变换函数y =A sin(ωx +φ)+k (A >0,ω>0)中,参数A ,ω,φ,k 的变化引起图象的变换:(1)A 的变化引起图象中振幅的变换,即纵向伸缩变换; (2)ω的变化引起周期的变换,即横向伸缩变换;(3)φ的变化引起左右平移变换,k 的变化引起上下平移变换.图象平移遵循的规律为:“左加右减,上加下减”.[例1] (2019·大庆实验中学期初)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -ωπ6(ω>0)的最小正周期为π,则函数f (x )的图象( )A .可由函数g (x )=cos 2x 的图象向左平移π3个单位长度得到B .可由函数g (x )=cos 2x 的图象向右平移π3个单位长度得到 C .可由函数g (x )=cos 2x 的图象向左平移π6个单位长度得到 D .可由函数g (x )=cos 2x 的图象向右平移π6个单位长度得到 [解析] 由已知得,ω=2ππ=2,则f (x )=cos ⎝⎛⎭⎪⎫2x -π3的图象可由函数g (x )=cos 2x 的图象向右平移π6个单位长度得到,故选D.[答案] D[例2] (2019·景德镇测试)已知函数f (x )=4cosx ·sin ⎝⎛⎭⎪⎫x +π6+a的最大值为2.(1)求a 的值及f (x )的最小正周期; (2)画出f (x )在[0,π]上的图象.[解](1)f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6+a=4cos x ·⎝⎛⎭⎪⎪⎫32sin x +12cos x +a =3sin 2x +2cos 2x +a =3sin 2x +cos 2x +1+a=2sin ⎝⎛⎭⎪⎫2x +π6+1+a ,∵f (x )的最大值为2,∴a =-1,最小正周期T =2π2=π.(2)由(1)知f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,列表:[方法技巧] 三角函数图象变换的两个要点考法二 由图象求函数y =A sin(ωx +φ)的解析式[例3] (1)(2018·怀仁期末联考)若函数f (x )=sin(ωx -φ)⎝⎛⎭⎪⎫|φ|≤π2的部分图象如图所示,则ω和φ的值是( )A .ω=1,φ=π3B .ω=1,φ=-π3C .ω=12,φ=π6D .ω=12,φ=-π6(2)(2019·武邑中学调研)已知函数f (x )=A sin ( π3x +φ )⎝⎛⎭⎪⎫A >0,0<φ<π2,y =f (x )的部分图象如图所示,P ,Q 分别为该图象的最高点和最低点,作PR ⊥x 轴于点R ,点R 的坐标为(1,0).若∠PRQ =2π3,则f (0)=( )A.12B.32C.34D.24[解析] (1)由图象可知,函数的周期为4[ 2π3-⎝⎛⎭⎪⎫-π3 ]=4π,所以ω=2π4π=12,将⎝ ⎛⎭⎪⎫2π3,1代入y =sin ⎝ ⎛⎭⎪⎫12x -φ,又|φ|≤π2,得φ=-π6,故选D.(2)过点Q 作QH ⊥x 轴于点H .设P (1,A ),Q (a ,-A ).由函数图象得2|a -1|=2ππ3=6,即|a -1|=3.因为∠PRQ =2π3,所以∠HRQ =π6,则tan ∠QRH =A 3=33,解得A = 3.又P (1,3)是图象的最高点,所以π3×1+φ=π2+2k π,k ∈Z.又因为0<φ<π2,所以φ=π6,所以f (x )=3sin ⎝ ⎛⎭⎪⎫π3x +π6,f (0)=3sin π6=32.故选B.[答案] (1)D (2)B [方法技巧]确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m2,b=M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT;(3)求φ:常用的方法有代入法和五点法.①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点是在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.[集训冲关]1.[考法一]将函数f (x )=cos 2x -sin 2x 的图象向左平移π8个单位长度后得到函数F (x )的图象,则下列说法中正确的是( )A .F (x )是奇函数,最小值是-2B .F (x )是偶函数,最小值是-2C .F (x )是奇函数,最小值是-2D .F (x )是偶函数,最小值是-2 解析:选C f (x )=cos 2x -sin 2x =2cos ⎝⎛⎭⎪⎫2x +π4,则F (x )=2cos ⎣⎢⎢⎡⎦⎥⎥⎤2⎝⎛⎭⎪⎫x +π8+π4= 2cos ⎝⎛⎭⎪⎫2x +π2=-2sin 2x ,故选C.2.[考法一]已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为6π,将其图象向右平移2π3个单位长度后得到函数g (x )=sin ωx 的图象,则φ等于( )A.4π9B.2π9C.π6D.π3解析:选B 由题意得2πω=6π,∴ω=13.∴f (x )=sin ⎝ ⎛⎭⎪⎫13x +φ.将其图象向右平移 2π3个单位长度后得到的函数图象的解析式为g (x )=sin⎣⎢⎢⎡⎦⎥⎥⎤13⎝ ⎛⎭⎪⎫x -2π3+φ=sin ⎝ ⎛⎭⎪⎫13x -2π9+φ=sin 13x ,∴φ-2π9=2k π(k ∈Z).解得φ=2k π+2π9(k ∈Z),∵|φ|<π2,∴φ=2π9.故选B.3.[考法一、二]已知函数f (x )=A sin(ωx +φ)( A >0,ω>0,|φ|<π2 )的部分图象如图所示,则将y =f (x )的图象向左平移π3个单位长度后,得到的图象对应的函数解析式为( )A .y =-cos 2xB .y =cos 2xC .y =sin ⎝⎛⎭⎪⎫2x +5π6D .y =sin ⎝⎛⎭⎪⎫2x -π6解析:选C 设函数f (x )的最小正周期为T .由题图知,34T =1112π-π6,得T =π=2πω, ∴ω=2;由f (x )的最大值为1,得A =1,∴f (x )=sin ()2x +φ,将⎝ ⎛⎭⎪⎫π6,1的坐标代入可得sin (π3+φ )=1,又∵|φ|<π2,∴φ=π6,∴f (x )=sin ⎝⎛⎭⎪⎫2x +π6.f (x )的图象向左平移π3个单位长度,可得g (x )=sin [ 2( x +π3 )+π6]=sin ⎝⎛⎭⎪⎫2x +5π6的图象.故选C.突破点二 三角函数模型的简单应用三角函数模型在实际中的应用体现在两个方面:(1)已知函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应法则.(2)把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.[典例感悟]塔斯马尼亚·琼斯试图寻回丢失的Zambeji 钻石.钻石是埋在死亡峡谷内4公里的一个地方,这里被野蛮的昆虫所侵扰.为了寻回钻石,塔斯马尼亚将要闯入这个峡谷,挖取钻石,并从原路返回.在这个峡谷中,昆虫密度是时间的一个连续函数.密度记为C ,是指每平方米的昆虫数量,这个C 的函数表达式为C (t )=⎩⎪⎨⎪⎧1 000⎣⎢⎡⎦⎥⎤cos πt -82+22-1 000,8≤t ≤16,m ,0≤t <8或16<t ≤24,这里的t 是午夜后的小时数,m 是一个实常数. (1)求m 的值;(2)求出昆虫密度的最小值和出现最小值时的时间t ;(3)如果昆虫密度超过1 250只/平方米,那么昆虫的侵扰将是致命性的,午夜后几点,昆虫的密度首次出现非致命性的侵扰.解:(1)因为C (t )是一个连续的函数,所以当t =8时,得到C (8)=1 000×(1+2)2-1 000=8 000=m ,即m =8 000.(2)当cosπt -82=-1时,C 达到最小值.即πt -82=(2k +1)π,k ∈Z ,解得t =10,14.所以在10:00和14:00时,昆虫密度达到最小值,最小值为0.(3)令1 000⎣⎢⎡⎦⎥⎤cos πt -82+22-1 000≤1 250,则⎣⎢⎡⎦⎥⎤cos πt -82+22≤2.25,∴cos πt -82≤-0.5.即2k π+23π≤πt -82≤2k π+43π,k ∈Z ,4k +283≤t ≤4k +323,k ∈Z.又8≤t ≤16,∴t min =283,即上午9:20,昆虫的密度首次出现非致命性的侵扰.[方法技巧]解决三角函数实际应用题的4个注意点(1)活用辅助角公式准确化简;(2)准确理解题意,实际问题数学化; (3)“ωx +φ”整体处理;(4)活用函数图象性质,数形结合.[针对训练]1.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6x -6(x =1,2,3,…,12)来表示,已知6月份的平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温值为________℃.解析:依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎢⎡⎦⎥⎤π6x -6,当x =10时,y =23+5cos ( π6×4 )=20.5.答案:20.52.如图,某地夏天从8~14时用电量变化曲线近似满足函数y=A sin(ωx +φ)+b ⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2.(1)求这一天的最大用电量及最小用电量. (2)写出这段曲线的函数解析式.解:(1)最大用电量为50万kW·h,最小用电量为30万kW·h.(2)由图象可知,8~14时的图象是y =A sin(ωx +φ)+b 的半个周期的图象,∴A =12×(50-30)=10,b =12×(50+30)=40. ∵12×2πω=14-8,∴ω=π6.∴y =10sin ⎝ ⎛⎭⎪⎫π6x +φ+40.将x =8,y =30代入上式,解得φ=π6.∴所求解析式为y =10sin ⎝ ⎛⎭⎪⎫π6x +π6+40,x ∈[8,14].。
函数y=A sin(ωx+φ)的图象及性质韩忠刚考试目标1.考查正弦函数y=A sin(ωx+φ)的图象变换.2.考查y=A sin(ωx+φ)的性质及应用.考点梳理1.“五点法”作函数y=A sin(ωx+φ)(A>0,ω〉0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个交点,作图时的一般步骤为:(1)定点:先确定五点.即令ωx+φ分别等于0,错误!,π,错误!,2π,得对应的五点为-错误!,错误!,错误!,错误!,错误!.(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx+φ)在一个周期内的图象.(3)扩展:1、将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.2、定区间的“五点法”作图。
2.三角函数图象的变换3.函数y=A sin(ωx+φ)的物理意义当函数y=A sin(ωx+φ)(A〉0,ω>0,x∈[0,+∞))表示一个振动时,A叫做振幅,T=错误!叫做周期,f=错误!叫做频率,ωx+φ叫做相位,φ叫做初相.注意点:1、(1)列表技巧:表中“五点”中相邻两点的横向距离均为错误!,利用这一结论可以较快地写出“五点”的坐标.(2)定区间的“五点法”作图要注意范围内的特殊角的取值和端点值2、图象变换有两条路径,在解题中,一般采用先平移后伸缩的方法.3、(1)要弄清楚是平移哪个函数的图象,得到哪个函数的图象;(2)要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;(3)由y=A sin ωx的图象得到y=A sin(ωx+φ)的图象时,需平移的单位数应为错误!,而不是|φ|.考点自测1.函数y=(sin x+cos x)2+1的最小正周期是().A.错误! B.π C.错误! D.2π2。
已知简谐运动f(x)=A sin(ωx+φ)错误!的部分图象如图所示,则该简谐运动的最小正周期T和初相φ分别为().A.T=6π,φ=π6B.T=6π,φ=错误!C.T=6,φ=错误! D.T=6,φ=错误!3.要得到函数y=cos(2x+1)的图象,只要将函数y=cos 2x的图象().A.向左平移1个单位 B.向右平移1个单位C.向左平移12个单位 D.向右平移错误!个单位4.将函数y=sin错误!的图象上各点的横坐标伸长到原来的3倍,再向右平移错误!个单位,得到的函数的一个对称中心是( ).A。
§4.4 函数y =A sin(ωx +φ)的图象及应用2014高考会这样考 1.考查函数y =A sin(ωx +φ)的图象变换;2.结合三角恒等变换考查y =A sin(ωx +φ)的性质和应用;3.考查给出图象的解析式.复习备考要这样做 1.掌握“五点法”作图,抓住函数y =A sin(ωx +φ)的图象的特征;2.理解三种图象变换,从整体思想和数形结合思想确定函数y =A sin(ωx +φ)的性质.1. 用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点.如下表所示.3. 图象的对称性函数y =A sin(ωx +φ) (A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下: (1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中ωx k +φ=k π+π2,k ∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. [难点正本 疑点清源] 1. 作图时应注意的两点(1)作函数的图象时,首先要确定函数的定义域.(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.2. 图象变换的两种方法的区别由y =sin x 的图象,利用图象变换作函数y =A sin(ωx +φ)(A >0,ω>0) (x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x 轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是|φ|个单位,而先周期变换(伸缩变换)再平移变换,平移的量是|φ|ω个单位.1. 已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ (|φ|<π2)的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为__________. 答案 6,π6解析 由题意知1=2sin φ,得sin φ=12,又|φ|<π2,得φ=π6;而此函数的最小正周期为T =2π÷⎝⎛⎭⎫π3=6. 2. (2012·浙江改编)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是______.(填序号)答案 ①解析 y =cos 2x +1――――――――→横坐标伸长2倍纵坐标不变y =cos x +1――――――――→向左平移1个单位长度y =cos(x +1)+1――――――――→向下平移1个单位长度y =cos(x +1). 由此可知图象为①.3. (2011·大纲全国)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于________. 答案 6解析 由题意可知,nT =π3 (n ∈N *),∴n ·2πω=π3 (n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.4. 把函数y =sin ⎝⎛⎭⎫5x -π2的图象向右平移π4个单位,再把所得函数图象上各点的横坐标缩短为原来的12,所得的函数解析式为__________________.答案 y =sin ⎝⎛⎭⎫10x -7π4 解析 将原函数的图象向右平移π4个单位,得到函数y =sin ⎣⎡⎦⎤5⎝⎛⎭⎫x -π4-π2=sin ⎝⎛⎭⎫5x -7π4的图象;再把所得函数图象上各点的横坐标缩短为原来的12,得到函数y =sin ⎝⎛⎭⎫10x -7π4的图象.5. 已知简谐运动f (x )=A sin(ωx +φ) (|φ|<π2)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为__________. 答案 6,π6解析 由图象易知A =2,T =6,∴ω=π3,又图象过(1,2)点,∴sin ⎝⎛⎭⎫π3×1+φ=1, ∴φ+π3=2k π+π2,k ∈Z ,又|φ|<π2,∴φ=π6.题型一 函数y =A sin(ωx +φ)的图象及变换 例1 已知函数y =2sin ⎝⎛⎭⎫2x +π3. (1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到. 思维启迪:(1)由振幅、周期、初相的定义即可解决.(2)五点法作图,关键是找出与x 相对应的五个点. (3)只要看清由谁变换得到谁即可.解 (1)y =2sin ⎝⎛⎭⎫2x +π3的振幅A =2,周期T =2π2=π, 初相φ=π3.(2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X . 列表,并描点画出图象:(3)方法一 把y =sin x 的图象上所有的点向左平移π3个单位,得到y =sin ⎝⎛⎭⎫x +π3的图象,再把y =sin ⎝⎛⎭⎫x +π3的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象,最后把y =sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 方法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍,纵坐标不变,得到y=sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位,得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 探究提高 (1)作三角函数图象的基本方法就是五点法,此法注意在作出一个周期上的简图后,应向两端伸展一下,以示整个定义域上的图象;(2)变换法作图象的关键是看x 轴上是先平移后伸缩还是先伸缩后平移,对于后者可利用ωx +φ=ω⎝⎛⎭⎫x +φω来确定平移单位.已知函数f (x )=3sin ⎝⎛⎭⎫12x -π4,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象? 解 (1)列表取值:(2)先把y =sin x 的图象向右平移π4个单位,然后把所有的点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象. 题型二 求函数y =A sin(ωx +φ)的解析式例2 (1)(2011·江苏)已知f (x )=A sin(ωx +φ) (A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是______.(2)(2011·辽宁)已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)=__________.思维启迪:(1)由平衡点和相邻最低点间的相对位置确定周期;根据待定系数法求φ.(2)将“ωx +φ”看作一个整体放在一个单调区间内求解. 答案 (1)62(2) 3 解析 (1)由题图知A =2,T 4=7π12-π3=π4,∴T =π,ω=2ππ=2.∴2×π3+φ=2k π+π,k ∈Z ,∴φ=2k π+π3(k ∈Z ).令k =0,得φ=π3.∴函数解析式为f (x )=2sin ⎝⎛⎭⎫2x +π3, ∴f (0)=2sin π3=62.(2)由图形知,T =πω=2(38π-π8)=π2,∴ω=2.由2×38π+φ=k π,k ∈Z ,得φ=k π-34π,k ∈Z .又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π4),∴f (π24)=tan(2×π24+π4)=tan π3= 3.探究提高 根据y =A sin(ωx +φ)+k 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;②k 的确定:根据图象的最高点和最低点,即k =最高点+最低点2;③ω的确定:结合图象,先求出周期T ,然后由T =2πω(ω>0)来确定ω;④φ的确定:由函数y =A sin(ωx +φ)+k 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φω)确定φ.已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________. 答案 f (x )=2sin ⎝⎛⎭⎫2x +π6 解析 观察图象可知:A =2且点(0,1)在图象上,∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6.又∵1112π是函数的一个零点,且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2.∴f (x )=2sin ⎝⎛⎭⎫2x +π6. 题型三 函数y =A sin(ωx +φ)的图象和性质的综合应用例3 已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域. 解 (1)由最低点为M ⎝⎛⎭⎫2π3,-2得A =2. 由x 轴上相邻两个交点之间的距离为π2,得T 2=π2,即T =π,∴ω=2πT =2ππ=2.由点M ⎝⎛⎭⎫2π3,-2在图象上得2sin ⎝⎛⎭⎫2×2π3+φ=-2, 即sin ⎝⎛⎭⎫4π3+φ=-1,故4π3+φ=2k π-π2(k ∈Z ), ∴φ=2k π-11π6(k ∈Z ).又φ∈⎝⎛⎭⎫0,π2,∴φ=π6, 故f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)∵x ∈⎣⎡⎦⎤π12,π2,∴2x +π6∈⎣⎡⎦⎤π3,7π6, 当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=7π6,即x =π2时,f (x )取得最小值-1,故f (x )的值域为[-1,2].探究提高 本题属三角函数模型的应用,通常的解决方法:转化为y =sin x ,y =cos x 等函数解决图象、最值、单调性等问题,体现了化归的思想方法;用三角函数模型解决实际问题主要有两种:一种是用已知的模型去分析解决实际问题,另一种是需要建立精确的或者数据拟合的模型去解决问题,尤其是利用数据建立拟合函数解决实际问题,充分体现了新课标中“数学建模”的本质.设函数f (x )=sin ⎝⎛⎭⎫π4x -π6-2cos 2π8x +1. (1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈⎣⎡⎦⎤0,43时,y =g (x )的最大值.解 (1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x=32sin π4x -32cos π4x =3sin ⎝⎛⎭⎫π4x -π3,故f (x )的最小正周期为T =2ππ4=8.(2)方法一 在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )). 由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,从而g (x )=f (2-x )=3sin ⎣⎡⎦⎤π4(2-x )-π3 =3sin ⎝⎛⎭⎫π2-π4x -π3 =3cos ⎝⎛⎭⎫π4x +π3.当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间⎣⎡⎦⎤0,43上的最大值为 g (x )max =g (0)=3cos π3=32.方法二 因区间⎣⎡⎦⎤0,43关于x =1对称区间为⎣⎡⎦⎤23,2,且y =g (x )与y =f (x )的图象关于x =1对称,故y =g (x )在⎣⎡⎦⎤0,43上的最大值即为y =f (x )在⎣⎡⎦⎤23,2上的最大值. 由(1)知f (x )=3sin ⎝⎛⎭⎫π4x -π3, 当23≤x ≤2时,-π6≤π4x -π3≤π6. 所以f (x )max =f (2)=32. 因此y =g (x )在⎣⎡⎤0,43上的最大值为32.利用三角函数的性质求解析式典例:(14分)如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位后得y =f (x ),求f (x )的对称轴方程.审题视角 (1)图象是y =A sin(ωx +φ)的图象.(2)根据“五点法”作图的原则,M 可以看作第一个零点;⎝⎛⎭⎫5π6,0可以看作第二个零点. 规范解答解 (1)由图象知A =3,以M ⎝⎛⎭⎫π3,0为第一个零点,N ⎝⎛⎭⎫5π6,0为第二个零点.[2分] 列方程组⎩⎨⎧ω·π3+φ=0,ω·5π6+φ=π,解之得⎩⎪⎨⎪⎧ω=2,φ=-2π3.[5分]∴所求解析式为y =3sin ⎝⎛⎭⎫2x -2π3.[7分] (2)f (x )=3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-2π3 =3sin ⎝⎛⎫2x -π3,[9分] 令2x -π3=π2+k π(k ∈Z ),则x =512π+k π2 (k ∈Z ),[13分]∴f (x )的对称轴方程为x =512π+k π2(k ∈Z ).[14分]第一步:根据图象确定第一个平衡点、第二个平衡点或 最高点、最低点.第二步:将“ωx +φ”作为一个整体,找到对应的值. 第三步:列方程组求解. 第四步:写出所求的函数解析式.第五步:反思回顾,查看关键点、易错点及答题规范.温馨提醒 (1)求函数解析式要找准图象中的“五点”,利用方程求解ω,φ;(2)讨论性质时将ωx +φ视为一个整体.方法与技巧1. 五点法作函数图象及函数图象变换问题(1)当明确了函数图象基本特征后,“描点法”是作函数图象的快捷方式.运用“五点法”作正、余弦型函数图象时,应取好五个特殊点,并注意曲线的凹凸方向. (2)在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.2. 由图象确定函数解析式由函数y =A sin(ωx +φ)的图象确定A 、ω、φ的题型,常常以“五点法”中的第一个零点⎝⎛⎭⎫-φω,0作为突破口,要从图象的升降情况找准第一个零点的位置.要善于抓住特殊量和特殊点. 3. 对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻平衡点间的距离). 失误与防范1.由函数y =sin x (x ∈R )的图象经过变换得到函数y =A sin(ωx +φ)的图象,在具体问题中,可先平移变换后伸缩变换,也可以先伸缩变换后平移变换,但要注意:先伸缩,后平移时要把x 前面的系数提取出来.2.函数y =A sin(ωx +φ)的图象和性质是本节考查的重点,也是高考热点,复习时尽可能使用数形结合的思想方法,如求解对称轴、对称中心和单调区间等.3.注意复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.在单调性应用方面,比较大小是一类常见的题目,依据是同一区间内函数的单调性.A 组 专项基础训练 (时间:35分钟,满分:62分)一、填空题(每小题5分,共35分)1. 将函数y =sin x 的图象向左平移φ (0≤φ<2π)个单位后,得到函数y =sin ⎝⎛⎭⎫x -π6的图象,则φ=________. 答案116π 解析 将函数y =sin x 向左平移φ(0≤φ<2π)个单位得到函数y =sin(x +φ).只有φ=116π时有y =sin ⎝⎛⎭⎫x +116π=sin ⎝⎛⎭⎫x -π6. 2. 把函数y =sin ⎝⎛⎭⎫x +π6图象上各点的横坐标缩短为原来的12倍(纵坐标不变),再将图象向右平移π3个单位,那么所得图象的对称轴方程为____________.答案 x =k π2(k ∈Z 解析 由题意得,把函数y =sin ⎝⎛⎭⎫x +π6图象上各点的横坐标缩短为原来的12倍,得y =sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π3个单位, 得y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π6=sin ⎝⎛⎭⎫2x -π2=-cos 2x ,所以对称轴为x =k π2(k ∈Z . 3. 将函数f (x )=2cos ⎝⎛⎭⎫x 3+π6的图象向左平移π4个单位,再向下平移1个单位,得到函数g (x )的图象,则g (x )的解析式为____________.答案 g (x )=2cos ⎝⎛⎭⎫x 3+π4-1解析 g (x )=2cos ⎣⎡⎦⎤13⎝⎛⎭⎫x +π4+π6-1 =2cos ⎝⎛⎭⎫x 3+π4-1.4. 若函数f (x )=2sin(ωx +φ),x ∈R (其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=______,φ=______.答案 2 π3解析 ∵T =π,∴ω=2.又2sin φ=3,|φ|<π2,∴φ=π3. 5. 函数y =A sin(ωx +φ) (A ,ω,φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________.答案 3解析 由图象可以看出32T =π,∴T =23π=2πω,因此ω=3. 6. 已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=_________________.答案 143解析 依题意,x =π6+π32=π4时,y 有最小值, ∴sin ⎝⎛⎭⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2(k ∈Z ). ∴ω=8k +143 (k ∈Z ),∵f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,∴π3-π4<πω,即ω<12.∴令k =0,得ω=143. 7. 设函数f (x )=sin x -cos x ,若0≤x ≤2 011π,则函数f (x )的各极值之和为________.答案 2解析 f ′(x )=cos x +sin x =2sin ⎝⎛⎭⎫x +π4,令f ′(x )=0,得x =-π4+k π (k ∈Z ),∵f (x )=2sin ⎝⎛⎭⎫x -π4, ∴f ⎝⎛⎭⎫-π4+k π=2sin ⎝⎛⎭⎫-π4+k π-π4 =2sin ⎝⎛⎭⎫k π-π2=-2·cos k π, 当k 为奇数时,函数取得极大值2;当k 为偶数时,函数取得极小值-2,∵0≤x ≤2 011π,∴14≤k ≤8 0454, ∴此函数在此区间上各极值的和为 2.二、解答题(共27分)8. (13分)(2012·陕西)函数f (x )=A sin ⎝⎛⎭⎫ωx -π6+1(A >0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为π2. (1)求函数f (x )的解析式;(2)设α∈⎝⎛⎭⎫0,π2,f ⎝⎛⎭⎫α2=2,求α的值. 解 (1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期T =π,∴ω=2,∴函数f (x )的解析式为y =2sin ⎝⎛⎭⎫2x -π6+1. (2)∵f ⎝⎛⎭⎫α2=2sin ⎝⎛⎭⎫α-π6+1=2, ∴sin ⎝⎛⎭⎫α-π6=12.∵0<α<π2, ∴-π6<α-π6<π3,∴α-π6=π6,∴α=π3. 9. (14分)已知函数f (x )=23sin ⎝⎛⎭⎫x 2+π4cos ⎝⎛⎭⎫x 2+π4-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.解 (1)因为f (x )=3sin ⎝⎛⎭⎫x +π2+sin x =3cos x +sin x =2⎝⎛⎭⎫32cos x +12sin x =2sin ⎝⎛⎭⎫x +π3, 所以f (x )的最小正周期为2π.(2)∵将f (x )的图象向右平移π6个单位,得到函数g (x )的图象, ∴g (x )=f ⎝⎛⎭⎫x -π6=2sin[⎝⎛⎭⎫x -π6+π3] =2sin ⎝⎛⎭⎫x +π6. ∵x ∈[0,π],∴x +π6∈⎣⎡⎦⎤π6,7π6, ∴当x +π6=π2,即x =π3时,sin ⎝⎛⎭⎫x +π6=1,g (x )取得最大值2. 当x +π6=7π6,即x =π时,sin ⎝⎛⎭⎫x +π6=-12,g (x )取得最小值-1.B 组 专项能力提升(时间:35分钟,满分:58分)一、填空题(每小题5分,共30分)1. 若将函数y =tan ⎝⎛⎭⎫ωx +π4 (ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为________.答案 12解析 y =tan ⎝⎛⎫ωx +π4 y =tan ⎣⎡⎦⎤ω⎝⎛⎭⎫x -π6+π4=tan ⎝⎛⎭⎫ωx +π6, ∴π4-π6ω+k π=π6 (k ∈Z ),∴ω=6k +12(k ∈Z ). 又∵ω>0,∴ωmin =12.2. 若函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)在一个周期内的图象 如图所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0,则A ·ω=________.答案 76π 解析 由题图可知,T =π,所以ω=2,易得sin ⎝⎛⎭⎫2×π12+φ=1,又|φ|<π2,所以φ=π3, 因此y =A sin ⎝⎛⎭⎫2x +π3,又M ⎝⎛⎭⎫π12,A ,N ⎝⎛⎭⎫7π12,-A , 若OM →·ON →=0,则π12×7π12-A 2=0,所以A =712π, 因此A ·ω=2×712π=76π.3. 电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是 ______________安.答案 -5解析 由图象知A =10,T 2=4300-1300=1100, ∴ω=2πT=100π.∴I =10sin(100πt +φ). ⎝⎛⎭⎫1300,10为五点中的第二个点,∴100π×1300+φ=π2. ∴φ=π6.∴I =10sin ⎝⎛⎭⎫100πt +π6, 当t =1100秒时,I =-5安. 4. 若f (x )=2sin(ωx +φ)+m 对任意实数t 都有f ⎝⎛⎭⎫π8+t =f ⎝⎛⎭⎫π8-t ,且f ⎝⎛⎭⎫π8=-3,则实数m 的值等于________.答案 -1或-5解析 依题意得,函数f (x )的图象关于直线x =π8对称,于是当x =π8时,函数f (x )取得最值,因此有±2+m =-3,解得m =-5或m =-1.5. 已知函数f (x )=sin(ωx +φ) (ω>0,-π2≤φ≤π2)的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f (x )=____________________.答案 sin ⎝⎛⎭⎫πx 2+π6解析 据已知两个相邻最高及最低点距离为22,可得⎝⎛⎭⎫T 22+(1+1)2=22,解得T =4,故ω=2πT =π2,即f (x )=sin ⎝⎛⎭⎫πx 2+φ,又函数图象过点⎝⎛⎭⎫2,-12,故f (2)=sin(π+φ)=-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f (x )=sin ⎝⎛⎭⎫πx 2+π6. 6. 某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为________℃.答案 20.5解析 由题意得⎩⎪⎨⎪⎧ a +A =28,a -A =18, ∴⎩⎪⎨⎪⎧a =23,A =5, ∴y =23+5cos ⎣⎡⎦⎤π6(x -6),x =10时,y =23+5×⎝⎛⎭⎫-12=20.5. 二、解答题(共28分)7. (14分)(2012·湖南)已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω>0,0<φ<π2)的部 分图象如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f ⎝⎛⎭⎫x -π12-f ⎝⎛⎭⎫x +π12的单调递增区间. 解 (1)由题设图象知,周期T =2⎝⎛⎭⎫11π12-5π12=π,所以ω=2πT=2.因为点⎝⎛⎭⎫5π12,0在函数图象上, 所以A sin ⎝⎛⎭⎫2×5π12+φ=0,即sin ⎝⎛⎭⎫5π6+φ=0. 又因为0<φ<π2,所以5π6<5π6+φ<4π3. 从而5π6+φ=π,即φ=π6. 又点(0,1)在函数图象上,所以A sin π6=1,解得A =2. 故函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π6.(2)g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+π6-2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π6 =2sin 2x -2sin ⎝⎛⎭⎫2x +π3 =2sin 2x -2⎝⎛⎭⎫12sin 2x +32cos 2x =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3. 由2k π-π2≤2x -π3≤2k π+π2, 得k π-π12≤x ≤k π+5π12,k ∈Z . 所以函数g (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z . 8. (14分)已知定义在R 上的函数f (x )=a sin ωx +b cos ωx +1 (ω>0,a >0,b >0)的周期为π,f ⎝⎛⎭⎫π4=3+1,且f (x )的最大值为3.(1)写出f (x )的表达式;(2)写出函数f (x )的对称中心、对称轴方程;(3)说明f (x )的图象由函数y =2sin x 的图象经过怎样的变换得到.解 (1)f (x )=a 2+b 2sin(ωx +φ)+1,∵周期为π,∴2πω=π,∴ω=2. ∴f (x )=a sin 2x +b cos 2x +1.f ⎝⎛⎭⎫π4=a +1=3+1,∴a = 3.又a 2+b 2+1=3,∴b =1.∴f (x )=3sin 2x +cos 2x +1=2sin ⎝⎛⎭⎫2x +π6+1. (2)由f (x )=2sin ⎝⎛⎭⎫2x +π6+1, 令2x +π6=k π(k ∈Z ),得x =k π2-π12(k ∈Z ), ∴对称中心为⎝⎛⎭⎫k π2-π12,1 (k ∈Z ), 由2x +π6=k π+π2,得x =k π2+π6(k ∈Z ), ∴对称轴方程为x =k π2+π6(k ∈Z ).(3)f (x )=2sin ⎝⎛⎭⎫2x +π6+1的图象可先由函数y =2sin x 的图象向左平移π6个单位,得到函数y =2sin ⎝⎛⎭⎫x +π6的图象;再将y =2sin ⎝⎛⎭⎫x +π6图象的横坐标缩小到原来的12,得到y =2sin ⎝⎛⎭⎫2x +π6的图象;再将y =2sin ⎝⎛⎭⎫2x +π6的图象向上平移一个单位,即得f (x )=2sin ⎝⎛⎭⎫2x +π6+1的图象.。