金属氧化物避雷器试验
- 格式:ppt
- 大小:188.00 KB
- 文档页数:27
金属氧化物避雷器的特点和试验方法金属氧化物避雷器(Metal Oxide Surge Arrester,简称MOA)是一种用于保护电力设备和设施免受雷电冲击的重要设备。
它具有以下特点:1. 高电压击穿能力:金属氧化物避雷器可以快速响应及吸收来自雷击的冲击电流,并将其分散到大地,从而防止过压损坏电力设备。
其击穿电压一般在几千伏至上百千伏。
2. 高紧接闪络电压:金属氧化物避雷器具有高紧接闪络电压特点,即使在雷暴天气下也能有效降低潜在的雷电传入系统的概率。
3. 快速响应速度:金属氧化物避雷器能够在微秒时间内响应并分散雷击过电压,以保护电力设备。
这对于对设备损坏的保护至关重要。
4. 长寿命:金属氧化物避雷器具有优异的耐老化性能和稳定的工作性能,可以保持长时间的稳定运行,减少维护和更换的频率。
金属氧化物避雷器的试验方法如下:1. 预处理试验:在进行实际试验之前,需要对金属氧化物避雷器进行预处理试验,以确保其功能正常。
预处理试验包括绝缘电阻测量、绝缘泄漏电流试验、感应泄漏电流试验、击穿电压试验等。
2. 高电压试验:高电压试验是对金属氧化物避雷器在额定电压下进行的试验。
其目的是验证避雷器能够正常工作和承受额定电压的能力。
高电压试验一般包括5分钟的持续试验和1分钟的间歇试验。
3. 防爆性能试验:防爆性能试验是对金属氧化物避雷器在外部短路故障情况下的试验。
通过该试验,可以判断避雷器在外部短路时是否能够及时切断故障电流,保护设备不受损害。
4. 失效模式试验:失效模式试验是对金属氧化物避雷器在过压冲击下的试验。
通过该试验,可以判断避雷器在实际运行中是否能够快速响应和吸收过压,保护设备不受损害。
综上所述,金属氧化物避雷器具有高电压击穿能力、高紧接闪络电压、快速响应速度和长寿命等特点。
在试验方法中,预处理试验、高电压试验、防爆性能试验和失效模式试验是常见的试验项目。
这些试验能够确保金属氧化物避雷器能够正常工作,并保护电力设备免受雷击冲击。
220KV避雷器试验指导书(金属氧化物)1目的范围:规范作业,明确责任。
本作业指导书适用于此种型号避雷器的高压试验。
2 引用标准:2000年2月1日颁布《电力设备交接试验和预防性试验规程》。
电力部颁布DL/T596—1996《电气设备预防性试验规程》GB50150--91《电气装置安装工程电气设备交接试验规程》。
3 术语定义:无专业术语。
4 职责:5 工作程序:5.1 工作人员配备与技能:5.1.1 工作负责人1名:具备3年以上220kV金属氧化物避雷器高压试验经验。
5.1.2 专责试验工1名:具备2年以上220kV金属氧化物避雷器高压试验经验。
5.1.3 试验工2名:具备电气设备试验知识。
5.2 使用设备、仪器仪表:5.2.1 ZGF—1802直流高压发生器1套。
5.2.2 JDC—1兆欧表1套。
5.2.3 温度计1只。
5.2.4 绝缘杆2根。
5.2.5 电源盘1个、刀闸盒。
5.2.6 遮栏一套。
5.2.7 绝缘绳一卷。
5.2.8 地线若干。
5.2.9 计算机一台。
5.2.10 电容器。
5.3 消耗性材料:5.3.1 砂纸一张。
5.3.2 1.5伏5号电池16节。
5.4 工作流程:工作前准备安全组织技术措施绝缘电阻底座绝缘电阻直流1mA电压V1Ma及0.75V1MA下的泄露电流放电计数器动作检查运行电压下的交流泄露电流5.5 工作项目及工作要求:5.5.1 工作前准备:5.5.1.1 工作前由工作负责人组织学习试验规程和本指导书。
5.5.1.2工作负责人及成员查看历史试验报告。
5.5.2 安全组织技术措施:5.5.2.1 被试验具备试验条件后由变配电通知高压班试验,全部试验由高压班负责,变配电配合。
5.5.2.2 试验所需试验人员不少于4人。
5.5.2.3 进入工作现场时,试验负责人必须交代试验现场安全注意事项,在现场试验准备工作完成后,对所有参试人员必须有明确的责任分工。
5.5.2.4 各参试人员必须按其分工认真履行自己的职责,不得从事其它的工作。
金属氧化物避雷器的特点和试验方法金属氧化物避雷器(Metal Oxide Surge Arrester, MOA)是一种常用的电力设备,用于保护电力系统中的设备免受过电压影响。
其主要特点是高阻抗、快速响应和大放电能力。
MOA通过将金属氧化物(通常是锌氧化物)作为主要材料,可以有效地将过电压引流到地线上,保护系统设备不受损坏。
金属氧化物避雷器的特点如下:1. 高阻抗:MOA具有高阻抗特性,可以在正常工作状态下提供高电阻,保护系统设备免受过电压的影响。
2. 快速响应:MOA的响应速度非常快,可以在数微秒内将过电压引流到地线上,避免电压过高对设备造成损坏。
3. 大放电能力:MOA能够承受大电流的放电,保护系统设备不受过电压的破坏。
4. 长寿命:MOA的金属氧化物材料具有优良的耐热和耐老化性能,能够长时间稳定运行。
5. 防止电弧延续:MOA在放电时能够迅速熔断电路,防止电弧的延续,保护设备免受二次损坏。
经过一段时间的使用后,金属氧化物避雷器需要进行试验以确保其正常运行。
下面是金属氧化物避雷器试验的一般步骤:1. 外观检查:检查避雷器外观是否完好,无明显变形、损伤或渗漏现象。
2. 影视放电测量:通过对避雷器施加电压,观察避雷器放电情况,并使用特定设备记录放电的电压波形。
3. 泄放电流测量:通过将避雷器连接到电流表,测量其泄放电流。
泄放电流应在合理范围内,不能过高或过低。
4. 承受重复高电压试验:通过对避雷器施加高电压,观察避雷器是否能够正常承受重复高电压。
5. 动态放电电压测量:通过对避雷器施加动态电压,观察避雷器放电情况,并使用特定设备记录放电的电压波形。
6. 热试验:将避雷器加热并观察其性能和耐久性。
7. 复合波击穿电压试验:通过对避雷器施加复合波电压,观察避雷器是否能够正常工作。
以上试验方法仅供参考,具体的试验方法和标准需参考国家和行业标准。
在进行试验时,需要使用专用的设备和仪器,并由专业人员进行操作。
无间隙金属氧化物避雷器试验一、试验项目1、绝缘电阻;2、直流1mA电压U1mA,及0.75U1mA下的泄漏电流;3、运行电压下的交流泄漏电流;4、工频参考电流下的工频参考电压;5、底座绝缘电阻;6、放电计数器动作检查。
二、试验方法及步骤1)使用2500V及以上兆欧表。
1、使用2500V及以上兆欧表,摇测避雷器的两极绝缘电阻,1min,记录绝缘电阻值。
2、用接地线对避雷器的两极充分放电注意;无间隙金属氧化物避雷器:35kV以上,绝缘电阻不低于2500MΩ;35kV 及以下,绝缘电阻不低于1000MΩ。
2)直流1mA电压U1mA,及0.75U1mA下的泄漏电流测量1、将避雷器瓷套表面擦拭干净。
2、采用高压直流发生器进行试验接线(选用的试验设备额定电压应高于被试避雷器的直流1mA电压),泄漏电流应在高压侧读表,测量电流的导线应使用屏蔽线。
3、升压。
在直流泄漏电流超过200μA时,此时电压升高一点,电流将会急剧增大,所以应放慢升压速度,在电流达到1mA时,读取电压值U1mA后,降压至零。
4、计算0.75倍U1mA值。
5、升压至0.75U1mA,测量泄漏电流大小。
6、降压至零,断开试验电流。
7、待电压表指示基本为零时,用放电杆对避雷器放电,挂接地线,拆试验接线。
8、记录环境温度。
判断方法;避雷器直流1mA电压的数值不应该低于GB11032中的规定数值,且U1mA实测值与初始值或制造厂规定值比较变化不应超过土5%,0.75 U1mA 下的泄漏电流不得大于50μA,且与初始值相比较不应有明显变化。
如试验数据虽未超过标准要求,但是与初始数据出现比较明显变化时应加强分析,并且在确认数据无误的情况下加强监视,如增加带电测试的次数等。
注意事项1、由于无间隙金属氧化物避雷器表面的泄漏原因,在试验时应尽可能地将避雷器瓷套表面擦拭干净。
如果仍然试验直流1mA电压不合格,应在避雷器瓷套表面装一个屏蔽环,让表面泄漏电流不通过测量仪器,而直接流入地中。
35kv金属氧化物避雷器试验标准35kV金属氧化物避雷器试验标准是指对35kV电力系统中使用的金属氧化物避雷器进行试验的一套规范。
金属氧化物避雷器是用于保护电力设备、线路免受雷电冲击的重要设备,通过对其进行试验可以验证其质量和性能的可靠性,确保其能够正常工作并保护电力系统的安全运行。
以下是35kV金属氧化物避雷器试验标准的详细内容:1.试验目的:明确35kV金属氧化物避雷器试验的目的,即验证其绝缘性能、耐电压能力、动击特性等方面的指标,确保其符合相关标准和技术要求。
2.试验对象:确定参加试验的35kV金属氧化物避雷器的型号、规格、技术要求等信息。
3.试验条件:规定试验的环境条件,包括温度、湿度、气压等。
4.试验设备:列举试验所需的设备、仪器和测量工具,如高压发生器、耐压试验装置、冲击试验装置等。
5.试验方法:(1)绝缘性能试验:对试验样品的绝缘电阻、介质损耗因数等进行测量,评估其绝缘性能是否合格。
(2)耐电压试验:按照规定的试验电压对试验样品进行耐压测试,评估其耐压能力是否合格。
(3)动击试验:利用冲击试验装置对试验样品进行冲击试验,观察其外观是否受损、内部结构是否完好,并检查其保护功能是否正常。
(4)其他试验:根据需要,还可进行其他试验,如避雷器跌落试验、低温试验等。
6.试验结果评定:对试验数据进行分析、计算和记录,评定试验结果是否合格。
7.试验报告:撰写试验报告,记录试验过程、试验结果、评定结论等内容,并附上试验数据和结果图表。
8.试验的安全注意事项:强调试验过程中的安全注意事项,确保试验人员和设备的安全。
通过以上的试验标准,可以全面评估35kV金属氧化物避雷器的性能和可靠性,为电力系统的安全运行提供保障。
同时,也为相关行业制定金属氧化物避雷器的质量标准和使用规范提供了参考。
本标准的执行将有利于提高金属氧化物避雷器的质量水平,推动电力系统的安全稳定运行。
金属氧化物避雷器的特点和试验方法一、概述金属氧化物避雷器(Metal Oxide Surge Arrester,简称MOSA)是一种应用于交流电力系统中的高压避雷器。
它具有高容量、高分断能力、效能稳定等优点,成为近年来最常用的一种避雷器。
本文将主要介绍金属氧化物避雷器的特点和试验方法。
二、MOSA的特点1.电气特性好金属氧化物避雷器在正常工作状态下,具有高电阻值和小电容值的特点,从而不对电力系统带来负载。
2.温度响应小MOSA的电气特性与温度无关,不会因环境温度变化而发生变化,能保持长久的稳定性。
3.防雷性能好MOSA具有很好的防雷性能,能迅速响应电力系统中的超压和过电流,有效控制电压瞬变波,保证电力系统的安全运行。
4.寿命长金属氧化物避雷器具有较长的使用寿命,约为20年,且使用寿命并不受器件充电延迟的影响。
5.安装方便MOSA采用直接安装、插装、侧侧安装等方式,操作简便,方便节省空间和维护成本。
三、MOSA的试验方法1.静态压力测试静态压力测试即为在负责的电流和重量下对MOSA的耐压性进行测试。
2.静态电容测试静态电容测试即为对MOSA的电容性能进行测试,测试其所能容纳外部电容的大小。
3.能量放电测试能量放电测试即为在预设的时间和电流下对MOSA内部的放电能力进行测试。
4.循环放电测试循环放电测试即为不断对MOSA进行放电测试,以检查其长期使用后的稳定性能。
5.耐受电能测试耐受电能测试即为在预设电流下,让MOSA所承受的放电电能达到一定程度时进行测试,以检测其是否损坏或失效。
四、总结金属氧化物避雷器具有良好的电气特性、防雷性能、寿命长和安装方便等优点,在电力系统中具有重要的应用价值。
对于MOSA的试验方法,需要进行一系列的测试,如静态压力测试、静态电容测试、能量放电测试、循环放电测试和耐受电能测试,以保证其长时间稳定的应用效果。
金属氧化物避雷器的试验及数据分析摘要:结合金属氧化物避雷器的两种试验方法,对带电测试过程的数据如何分析进行了全面阐述。
特别是对数据超标后如何判断分析提出了几点分析思路。
关键词:金属氧化物避雷器;试验;数据分析一、引言金属氧化物避雷器因体积小,安装方便,通流能力大,续流能力强等优点被电力系统广泛采用。
目前金属氧化物避雷器广泛应用于我系统110kv、35kv、10kv电网中。
下面就系统中常用的无间隙金属氧化物避雷器试验和数据分析谈谈自己的看法。
二、金属氧化物避雷器的试验金属氧化物避雷器试验分为停电试验和带电测试,带电测试是交流试验,停电试验则为直流试验。
带电测试可以在系统正常供电情况下通过测试流过避雷器阀片泄露电流来判断其性能和运行状态,它能准确反映避雷器实时工况。
金属氧化物避雷器停电试验首先要测量其绝缘电阻是否符合规程要求。
35kv以上不得低于2500m?%r,35kv以下不得低于1000m?%r,并且必须使用2500v及以上兆欧表测量。
绝缘电阻值只是一个定性参考值,其目的是要定性的判断被测避雷器是好还是坏。
要确定避雷器存在问题则还需要进行其他试验项目。
比如进行直流泄漏电流测试,其1ma时的电压与制造厂比较变化不应大于正负5%;0.75倍避雷器直流1ma电压下的泄漏电流不应大于50ua。
它的测量主要为了检验金属氧化物电阻片或避雷器整体质量状况,并作为以后运行过程中所有0.75倍避雷器直流1ma电压下泄漏电流测试结果的基准值。
其次35kv金属氧化物避雷器还要测量底座绝缘电阻,使用2500v兆欧表进行。
金属氧化物避雷器带电测试主要应用于35kv及以上系统中,更重要的是带电测试避雷器必须安装放电计数器。
部分变电站10kv母线避雷器也安装了放电计数器,但因10kv避雷器爬电距离短,其测量数据容易受绝缘表面脏污程度和其他因素影响而变化,不便于分析判断。
加之10kv避雷器停电测试比较方便,数据更为准确,操作更安全,所以笔者认为10kv避雷器不应带电测试。
金属氧化物避雷器的试验项目、周期和要求金属氧化物避雷器的试验项目、周期和要求表 40 金属氧化物避雷器的试验项目、周期和要求序号项目周期要求说明1绝缘电阻1)发电厂、变电所避雷器每年雷雨季节前2)必要时1)35kV以上,不低于2500MΩ2)35kV及以下,不低于1000MΩ采用2500V及以上兆欧表2直流1mA电压(U1mA)及0.75U1mA下的泄漏电流1)发电厂、变电所避雷器每年雷雨季前2)必要时1)不得低于GB11032规定值2) U1mA实测值与初始值或制造厂规定值比较,变化不应大于±5%3)0.75U1mA下的泄漏电流不应大于50μA1)要记录试验时的环境温度和相对湿度2)测量电流的导线应使用屏蔽线3)初始值系指交接试验或投产试验时的测量值3运行电压下的交流泄漏电流1)新投运的110kV及以上者投运3个月后测量1次;以后每半年1次;运行1年后,每年雷雨季节前1次2)必要时测量运行电压下的全电流、阻性电流或功率损耗,测量值与初始值比较,有明显变化时应加强监测,当阻性电流增加1倍时,应停电检查应记录测量时的环境温度、相对湿度和运行电压。
测量宜在瓷套表面干燥时进行。
应注意相间干扰的影响4工频参考电流下的工频参考电压必要时应符合GB11032或制造厂规定1)测量环境温度20±15℃2)测量应每节单独进行,整相避雷器有一节不合格,应更换该节避雷器(或整相更换),使该相避雷器为合格5底座绝缘电阻1)发电厂、变电所避雷器每年雷雨季前2)必要时自行规定采用2500V及以上兆欧表6检查放电计数器动作情况1)发电厂、变电所避雷器每年雷雨季前2)必要时测试3~5次,均应正常动作,测试后计数器指示应调到“0”。