【IT专家】Linux设备驱动开发详解
- 格式:pdf
- 大小:265.24 KB
- 文档页数:4
linux驱动开发(⼀)1:驱动开发环境要进⾏linux驱动开发我们⾸先要有linux内核的源码树,并且这个linux内核的源码树要和开发板中的内核源码树要⼀直;⽐如说我们开发板中⽤的是linux kernel内核版本为2.6.35.7,在我们ubuntu虚拟机上必须要有同样版本的源码树,我们再编译好驱动的的时候,使⽤modinfo XXX命令会打印出⼀个版本号,这个版本号是与使⽤的源码树版本有关,如果开发板中源码树中版本与modinfo的版本信息不⼀致使⽆法安装驱动的;我们开发板必须设置好nfs挂载;这些在根⽂件系统⼀章有详细的介绍;2:开发驱动常⽤的⼏个命令lsmod :list moduel 把我们机器上所有的驱动打印出来,insmod:安装驱动rmmod:删除驱动modinfo:打印驱动信息3:写linux驱动⽂件和裸机程序有很⼤的不同,虽然都是操作硬件设备,但是由于写裸机程序的时候是我们直接写代码操作硬件设备,这只有⼀个层次;⽽我们写驱动程序⾸先要让linux内核通过⼀定的接⼝对接,并且要在linux内核注册,应⽤程序还要通过内核跟应⽤程序的接⼝相关api来对接;4:驱动的编译模式是固定的,以后编译驱动的就是就按照这个模式来套即可,下⾯我们来分下⼀下驱动的编译规则:#ubuntu的内核源码树,如果要编译在ubuntu中安装的模块就打开这2个#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build# 开发板的linux内核的源码树⽬录KERN_DIR = /root/driver/kernelobj-m += module_test.oall:make -C $(KERN_DIR) M=`pwd` modulescp:cp *.ko /root/porting_x210/rootfs/rootfs/driver_test.PHONY: cleanclean:make -C $(KERN_DIR) M=`pwd` modules cleanmake -C $(KERN_DIR) M=`PWD` modules这句话代码的作⽤就是到 KERN_DIR这个⽂件夹中 make modules把当前⽬录赋值给M,M作为参数传到主⽬录的Makefile中,实际上是主⽬录的makefile中有⽬标modules,下⾯有⼀定的规则来编译驱动;#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build我们在ubuntu中编译内核的时候⽤这两句代码,因为在ubuntu中为我们保留了⼀份linux内核的源码树,我们编译的时候直接调⽤那个源码树的主Makefile以及⼀些头⽂件、内核函数等;了解规则以后,我们设置好KERN_DIR、obj-m这两个变量以后直接make就可以了;经过编译会得到下⾯⼀些⽂件:下⾯我们可以使⽤lsmod命令来看⼀下我们ubuntu机器现有的⼀些驱动可以看到有很多的驱动,下⾯我们使⽤insmod XXX命令来安装驱动,在使⽤lsmod命令看⼀下实验现象可以看到我们刚才安装的驱动放在了第⼀个位置;使⽤modinfo来打印⼀下驱动信息modinfo xxx.ko这⾥注意vermagic 这个的1.8.0-41是你⽤的linux内核源码树的版本号,只有这个编译的版本号与运⾏的linux内核版本⼀致的时候,驱动程序才会被安装注意license:GPL linux内核开元项⽬的许可证⼀般都是GPL这⾥尽量设置为GPL,否则有些情况下会出现错误;下⾯使⽤rmmod xxx删除驱动;-------------------------------------------------------------------------------------5:下⾯我们分析⼀下驱动。
以下电子书来源于宋宝华《Linux设备驱动开发详解:基于最新的Linux 4.0内核》第19章《Linux电源管理系统架构和驱动》本章导读Linux在消费电子领域的应用已经铺天盖地,而对于消费电子产品而言,省电是一个重要的议题。
本章将介绍Linux设备树(Device Tree)的起源、结构和因为设备树而引起的驱动和BSP 变更。
19.1节阐述了Linux电源管理的总体架构。
19.2~19.8节分别论述了CPUFreq、CPUIdle、CPU热插拔以及底层的基础设施Regulator、OPP以及电源管理的调试工具PowerTop。
19.9节讲解了系统Suspend to RAM的过程以及设备驱动如何提供对Suspend to RAM的支持。
19.10节讲解了设备驱动的Runtime suspend。
本章是相对《Linux设备驱动开发详解(第2版)》全新的一章内容,也是Linux设备驱动工程师必备的知识体系。
第十九章Linux电源管理系统架构和驱动1.Linux电源管理全局架构Linux电源管理非常复杂,牵扯到系统级的待机、频率电压变换、系统空闲时的处理以及每个设备驱动对于系统待机的支持和每个设备的运行时电源管理,可以说和系统中的每个设备驱动都息息相关。
对于消费电子产品来说,电源管理相当重要。
因此,这部分工作往往在开发周期中占据相当大的比重,图19.1呈现了Linux内核电源管理的整体架构。
大体可以归纳为如下几类:1.CPU在运行时根据系统负载进行动态电压和频率变换的CPUFreq2.CPU在系统空闲时根据空闲的情况进行低功耗模式的CPUIdle3.多核系统下CPU的热插拔支持4.系统和设备对于延迟的特别需求而提出申请的PM QoS,它会作用于CPUIdle的具体策略5.设备驱动针对系统Suspend to RAM/Disk的一系列入口函数6.SoC进入suspend状态、SDRAM自刷新的入口7.设备的runtime(运行时)动态电源管理,根据使用情况动态开关设备8.底层的时钟、稳压器、频率/电压表(OPP模块完成)支撑,各驱动子系统都可能用到图19.1 Linux电源管理系统架构2.CPUFreq驱动CPUFreq子系统位于drivers/cpufreq目录,负责进行运行过程中CPU频率和电压的动态调整,即DVFS(Dynamic Voltage Frequency Scaling,动态电压频率调整)。
Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。
为此,的内核一般不能动态的增加新的功能。
为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。
利用这个机制“模块”(module)。
利用这个机制,可以)。
利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。
正是这种机制,走已经安装的模块。
正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。
和可扩充性。
内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。
严格来说,卸载的内核软件。
严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。
但是,另一方面,可安装模块的形式实现的。
但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。
密切相关的部分(如文件系统等)。
课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。
且创建好该系统中的硬件设备的列表树:/sys 文件系统。
(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。
)。
linux usb wifi驱动开发原理Linux USB WiFi驱动开发原理一、引言随着无线网络的普及,WiFi成为了人们生活中不可或缺的一部分。
而在Linux操作系统中,为了支持各种WiFi设备,需要进行对应的驱动开发。
本文将介绍Linux USB WiFi驱动开发的原理和过程。
二、USB WiFi驱动开发的基本原理1. USB接口USB(Universal Serial Bus)是一种通用的串行总线标准,用于连接计算机与外部设备。
USB WiFi设备通过USB接口与计算机通信,传输数据和控制命令。
2. 驱动程序驱动程序是用于操作和控制硬件设备的软件。
USB WiFi驱动程序负责与USB WiFi设备进行通信,实现数据的传输和接收。
驱动程序需要与操作系统紧密结合,通过操作系统提供的API接口与设备进行交互。
三、USB WiFi驱动开发的过程1. 设备识别与初始化USB WiFi设备插入计算机后,操作系统会通过USB子系统进行设备的识别和初始化。
在Linux系统中,USB设备的识别和初始化由USB核心驱动完成。
核心驱动会根据设备的VID(Vendor ID)和PID (Product ID)来匹配对应的驱动程序。
2. 驱动程序注册驱动程序需要在Linux系统中进行注册,以便系统能够正确识别和加载驱动。
注册过程通常包括向系统注册设备类型、设备ID等信息。
3. 设备操作接口的实现驱动程序需要实现设备操作接口,包括设备的打开、关闭、读取数据、写入数据等功能。
这些操作接口是通过USB子系统提供的API 来实现的。
4. 数据传输与控制USB WiFi驱动程序需要实现数据的传输和控制功能。
数据传输主要包括从设备读取数据和向设备写入数据,而控制功能包括设置设备参数、配置网络等操作。
5. 错误处理与调试在USB WiFi驱动开发中,错误处理和调试是非常重要的一部分。
驱动程序需要处理各种异常情况,如设备断开连接、传输错误等。
一、设备驱动程序概述自Linux在中国发展以来,得到了许多公司的青睐。
在国内的玩家也越来越多了,但目前还是停留在玩的水平上,很少有玩家对Linux的系统进行研究。
因为它的开放,我们可以随时拿来“把玩”。
这也是Linux一个无可比拟的优势,这样我们可以修改后再加入到里面。
但很少有专门的书籍讲到Linux驱动程序的开发,像上海这样的大城市也很少有讲Linux驱动开发的资料,唉,谁让这个是人家的东西呢,我们还是得跟着人家跑。
我现在讲的这些驱动开发的细节,并不特定哪个版本的内核,这只是大体的思路与步骤。
因为大家都知道Linux 2.6.x 与Linux 2.4.x是有不少改动的。
所以,具体的大家可以去参考Linux Device Driver 2.4 和Linux Device Driver 2.6这几本书。
这是我们学习开发驱动必不可少的东西。
好了,下面就开始学习吧。
根据设备的行为,我们可以把设备分为字符设备和块设备,还有网络设备。
字符设备是以字节为单位进行顺序读写,数据缓冲系统对它们的访问不提供缓存。
而块设备则是允许随机访问与读写,每次读写的数据量都是数据块长度的整数倍,并且访问还会经过缓冲区缓存系统才能实现。
与Unix版本不同的是:Linux的内核允许不是数据块长度整数倍的数据量被读取,用官方的语言就是:但这种不同只是纯粹学术方面的东西。
大多数设备驱动程序都要通过文件系统来进行访问的,但网络设备是不同的。
/dev子目录里都是关于设备的特殊文件,但看起来它们与普通的目录没有什么两样。
如下:$ ls -l /dev...brw-rw--- 1 root disk 22, 1 May 5 1998 hdc1crw-rw--- 1 root daemon 6 0 May 5 1998 lp0与普通文件有所不同是开头的“C” 和“B”,即char 和block的意思,即字符设备和块设备。
再后面的“22,1” 和“6,0”即设备的主设备号和次设备号,主设备号表明它是哪一种设备,这与你在Windows里添加硬件时看到的那些是一个意思。
LINUX设备驱动开发详解概述LINUX设备驱动开发是一项非常重要的任务,它使得硬件设备能够与操作系统进行有效地交互。
本文将详细介绍LINUX设备驱动开发的基本概念、流程和常用工具,帮助读者了解设备驱动开发的要点和技巧。
设备驱动的基本概念设备驱动是连接硬件设备和操作系统的桥梁,它负责处理硬件设备的输入和输出,并提供相应的接口供操作系统调用。
设备驱动一般由设备驱动程序和设备配置信息组成。
设备驱动程序是编写解决设备驱动的代码,它负责完成设备初始化、IO操作、中断处理、设备状态管理等任务。
设备驱动程序一般由C语言编写,使用Linux内核提供的API函数进行开发。
设备配置信息是定义硬件设备的相关参数和寄存器配置的文件,它告诉操作系统如何与硬件设备进行交互。
设备配置信息一般以设备树或者直接编码在设备驱动程序中。
设备驱动的开发流程设备驱动的开发流程包括设备初始化、设备注册、设备操作函数编写和设备驱动注册等几个主要步骤。
下面将详细介绍这些步骤。
设备初始化设备初始化是设备驱动开发的第一步,它包括硬件初始化和内存分配两个主要任务。
硬件初始化是对硬件设备进行基本的初始化工作,包括寄存器配置、中断初始化等。
通过操作设备的寄存器,将设备设置为所需的状态。
内存分配是为设备驱动程序分配内存空间以便于执行。
在设备初始化阶段,通常需要为设备驱动程序分配一块连续的物理内存空间。
设备注册设备注册是将设备驱动程序与设备对象进行关联的过程,它使得操作系统能够正确地管理设备。
设备注册包括设备号分配、设备文件创建等操作。
设备号是设备在系统中的唯一标识符,通过设备号可以找到设备对象对应的设备驱动程序。
设备号分配通常由操作系统负责,设备驱动程序通过注册函数来获取设备号。
设备文件是用户通过应用程序访问设备的接口,它是操作系统中的一个特殊文件。
设备文件的创建需要通过设备号和驱动程序的注册函数来完成。
设备操作函数编写设备操作函数是设备驱动程序的核心部分,它包括设备打开、设备关闭、读和写等操作。
Linux网络设备驱动程序开发Linux系统对网络设备驱动的体系结构如下图所示,划分为4层:开发网络设备驱动程序,我们需要完成的主要工作是编写设备驱动功能层的相关函数以填充net_device数据结构的内容并将net_device注册入内核。
各层介绍一、网络设备接口层网络设备接口层为网络设备定义了统一、抽象的数据结构net_device结构体,包含网络设备的属性描述和操作接口。
主要包含如下几部分:(1)全局信息。
char name[IFNAMESIZ]; //name是网络设备的名称int (*init)(struct net_device *dev); /*init 为设备初始化函数指针,如果这个指针被设置了,则网络设备被注册时将调用该函数完成对net_device 结构体的初始化。
设备驱动程序可以不实现这个函数并将其赋值为NULL。
*/(2)硬件信息。
unsigned long mem_end; //设备所使用的共享内存的起始地址unsigned long mem_start; //设备所使用的共享内存的结束地址unsigned long base_addr; //网络设备I/O 基地址unsigned char irq; //设备使用的中断号unsigned char if_port; //多端口设备使用哪一个端口,该字段仅针对多端口设备unsigned char dma; //指定分配给设备的DMA通道(3)接口信息。
unsigned short hard_header_len; //网络设备的硬件头长度,以太网设备为ETH_HLEN-14unsigned short type; //接口的硬件类型unsigned mtu; //最大传输单元(MTU)unsigned char dev_addr[MAX_ADDR_LEN]; //存放设备的硬件地址unsigned char broadcast[MAX_ADDR_LEN]; /*存放设备的广播地址, 以太网设备的广播地址为6个0xFF。
Linux开发入门必读书单推荐给每个新手的经典书籍Linux是一种操作系统,被广泛用于服务器和嵌入式设备中。
对于想要从事Linux开发的新手们来说,选择一本合适的书籍是非常重要的。
本文将为大家推荐几本经典的Linux开发入门书籍,帮助新手们快速了解并掌握Linux开发技能。
1. 《鸟哥的Linux私房菜》-作者:鸟哥这本书被誉为Linux界的经典之作,是Linux爱好者的必读书籍。
作者通过通俗易懂的语言,深入浅出地介绍了Linux的基本概念、常用命令以及系统管理等内容。
适合初学者入门学习,帮助他们构建Linux的基础知识框架。
2. 《Linux Shell脚本攻略》-作者:志刚、殷蓝天Shell脚本是Linux开发中非常重要的一环,可以自动化完成一些重复性的工作。
这本书从简单入门到深入应用,详细介绍了Shell脚本的基本语法、文件处理、正则表达式等内容,同时还提供了大量实例供读者练习和参考。
3. 《深入理解Linux内核》-作者:谢希仁对于想要从事Linux内核开发的初学者来说,这本书是一本非常重要的参考资料。
作者以清晰的语言和丰富的实例,剖析了Linux内核的各个组成部分,包括进程管理、内存管理、文件系统等。
读者通过学习这本书可以深入理解Linux内核的工作原理,为进一步深入研究打下基础。
4. 《Linux设备驱动开发详解:基于最新的Linux 4.0内核》-作者:周立功这本书适合想要从事Linux设备驱动开发的新手们阅读。
作者通过详细的讲解和实例演示,帮助读者了解Linux设备驱动的基本原理、开发流程和调试技巧。
对于想要深入研究Linux设备驱动的读者来说,这本书是一本难得的宝藏。
5. 《Linux网络编程》-作者:Richard Stevens, Bill Fenner, Andrew M. Rudoff对于想要从事网络编程的开发人员来说,这本书是必读的经典之作。
作者通过深入浅出的方式,介绍了Linux系统的网络编程接口、套接字编程、多线程编程等内容。
linux设备驱动程序的设计与实现
Linux设备驱动程序的设计与实现是一个涉及底层系统编程和硬件交互的复杂过程。
下面是一个简单的步骤指南,以帮助你开始设计和实现Linux设备驱动程序:
1. 了解硬件:首先,你需要熟悉你要驱动的硬件设备的规格和特性。
这包括硬件的内存空间、I/O端口、中断请求等。
2. 选择驱动程序模型:Linux支持多种设备驱动程序模型,包括字符设备、块设备、网络设备等。
根据你的硬件设备和需求,选择合适的驱动程序模型。
3. 编写Makefile:Makefile是一个文本文件,用于描述如何编译和链接你的设备驱动程序。
它告诉Linux内核构建系统如何找到并编译你的代码。
4. 编写设备驱动程序:在Linux内核源代码树中创建一个新的驱动程序模块,并编写相应的C代码。
这包括设备注册、初始化和卸载函数,以及支持读写和配置硬件的函数。
5. 测试和调试:编译你的设备驱动程序,并将其加载到运行中的Linux内核中。
使用各种测试工具和方法来验证驱动程序的正确性和稳定性。
6. 文档和发布:编写清晰的文档,描述你的设备驱动程序的用途、用法和已知问题。
发布你的代码以供其他人使
用和改进。
linux 开发新驱动步骤Linux作为一款开源的操作系统,其内核源码也是开放的,因此,许多开发人员在Linux上进行驱动开发。
本文将介绍在Linux上进行新驱动开发的步骤。
第一步:确定驱动类型和接口在进行驱动开发前,需要确定驱动类型和接口。
驱动类型包括字符设备驱动、块设备驱动、网络设备驱动等。
接口包括设备文件、系统调用、ioctl等。
根据驱动类型和接口的不同,驱动开发的流程也有所不同。
第二步:了解Linux内核结构和API驱动开发需要熟悉Linux内核的结构和API。
Linux内核由许多模块组成,每个模块都有自己的功能。
API是应用程序接口,提供了许多函数和数据结构,开发人员可以使用这些函数和数据结构完成驱动开发。
第三步:编写驱动代码在了解了Linux内核结构和API后,就可以编写驱动代码了。
驱动代码需要按照Linux内核的编码规范编写,确保代码风格统一、可读性好、可维护性强等。
在编写代码时,需要使用API提供的函数和数据结构完成相应的功能。
第四步:编译驱动代码和内核模块驱动代码编写完成后,需要编译成内核模块。
编译内核模块需要使用内核源码中的Makefile文件。
编译完成后,会生成一个.ko文件,这个文件就是内核模块。
第五步:加载和卸载内核模块内核模块编译完成后,需要加载到Linux系统中。
可以使用insmod命令加载内核模块,使用rmmod命令卸载内核模块。
在加载和卸载内核模块时,需要注意依赖关系,确保依赖的模块已经加载或卸载。
第六步:调试和测试驱动开发完成后,需要进行调试和测试。
可以使用printk函数输出调试信息,在/var/log/messages文件中查看。
测试时需要模拟各种可能的情况,确保驱动程序的稳定性和可靠性。
Linux驱动开发需要掌握Linux内核结构和API,熟悉驱动类型和接口,按照编码规范编写驱动代码,并进行编译、加载、调试和测试。
只有掌握了这些技能,才能进行高效、稳定和可靠的驱动开发。
Linux设备驱动开发入门本文以快捷而简单的方式讲解如何像一个内核开发者那样开发linux设备驱动源作者: Xavier Calbet版权:GNU Free Documentation License 翻译: 顾宏军()中文版权:创作共用.署名-非商业用途-保持一致知识准备要开发Linux 设备驱动,需要掌握以下知识:•C 编程 需要掌握深入一些的C 语言知识,比如,指针的使用,位处理函数,等。
•微处理器编程 需要理解微机的内部工作原理:存贮器地址,中断,等。
这些内容对一个汇编程序员应该比较熟悉。
Linux 下有好几种不同的设备。
为简单起见,本文只涉及以模块形式加载的字符设备。
使用2.6.x 的内核。
(特别是Debian Sarge 使用的2.6.8内核。
)用户空间和内核空间当你开发设备驱动时,需要理解“用户空间”和内核空间之间的区别。
1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:•内核空间 :Linux 操作系统,特别是它的内核,用一种简单而有效的方法管理机器的硬件,给用户提供一个简捷而统一的编程接口。
同样的,内核,特别是它的设备驱动程序,是连接最终用户/程序员和硬件的一坐桥或者说是接口。
任何子程序或者函数只要是内核的一部分(例如:模块,和设备驱动),那它也就是内核空间的一部分。
•用户空间. 最终用户的应用程序,像UNIX 的shell 或者其它的GUI 的程序(例如,gedit),都是用户空间的一部分。
很显然,这些应用程序需要和系统的硬件进行交互。
但是,他们不是直接进行,而是通过内核支持的函数进行。
它们的关系可以通过下图表示:图1: 应用程序驻留在用户空间, 模块和设备驱动驻留在内核空间26:27:28:29:30:31:32:33:34:35:36:37:38:39:40:用户空间和内核空间之间的接口函数内核在用户空间提供了很多子程序或者函数,它们允许用户应用程序员和硬件进行交互。
linux设备驱动spi详解5-应⽤到驱动的完整流程所有的应⽤程序使⽤dev/⽬录下创建的设备,这些字符设备的操作函数集在⽂件spidev.c中实现。
1static const struct file_operations spidev_fops = {2 .owner = THIS_MODULE,3/* REVISIT switch to aio primitives, so that userspace4 * gets more complete API coverage. It'll simplify things5 * too, except for the locking.6*/7 .write = spidev_write,8 .read = spidev_read,9 .unlocked_ioctl = spidev_ioctl,10 .open = spidev_open,11 .release = spidev_release,12 };1 spidev_ioctl函数以上是所有应⽤程序所能够做的所有操作,由此开始追踪spi 驱动程序的完整执⾏流程其中,最重要的就是ioctl, 从这⾥开始先重点剖析ioctl函数1 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)2 {3int err = 0;4int retval = 0;5struct spidev_data *spidev;6struct spi_device *spi;7 u32 tmp;8 unsigned n_ioc;9struct spi_ioc_transfer *ioc;10//ioctl cmd 检查11/* Check type and command number */12if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)13return -ENOTTY;1415/* Check access direction once here; don't repeat below.16 * IOC_DIR is from the user perspective, while access_ok is17 * from the kernel perspective; so they look reversed.18*/19if (_IOC_DIR(cmd) & _IOC_READ)20 err = !access_ok(VERIFY_WRITE,21 (void __user *)arg, _IOC_SIZE(cmd));22if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)23 err = !access_ok(VERIFY_READ,24 (void __user *)arg, _IOC_SIZE(cmd));25if (err)26return -EFAULT;2728/* guard against device removal before, or while,29 * we issue this ioctl.30*/31//通过以下⽅式获取spi_device-----spi(是之后操作的基础)32 spidev = filp->private_data;33 spin_lock_irq(&spidev->spi_lock);34 spi = spi_dev_get(spidev->spi);35 spin_unlock_irq(&spidev->spi_lock);3637if (spi == NULL)38return -ESHUTDOWN;3940/* use the buffer lock here for triple duty:41 * - prevent I/O (from us) so calling spi_setup() is safe;42 * - prevent concurrent SPI_IOC_WR_* from morphing43 * data fields while SPI_IOC_RD_* reads them;44 * - SPI_IOC_MESSAGE needs the buffer locked "normally".45*/46 mutex_lock(&spidev->buf_lock);47//以上是进⾏check,检查命令有效性,以及进⾏初始化数据,这⾥不在多做说明48switch (cmd) {49/* read requests */50case SPI_IOC_RD_MODE://获取模式信息,将信息发送给⽤户51 retval = __put_user(spi->mode & SPI_MODE_MASK,52 (__u8 __user *)arg);53break;54case SPI_IOC_RD_LSB_FIRST://获取spi最低有效位55 retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,56 (__u8 __user *)arg);57break;58case SPI_IOC_RD_BITS_PER_WORD:59 retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);61case SPI_IOC_RD_MAX_SPEED_HZ:62 retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);63break;6465/* write requests */66case SPI_IOC_WR_MODE://设置数据传输模式,这⾥只是把设置的数据保存在spi 中,但并没有对spi device做任何操作,对spi device的操作⼀并在最后进⾏ 67 retval = __get_user(tmp, (u8 __user *)arg);68if (retval == 0) {69 u8 save = spi->mode;7071if (tmp & ~SPI_MODE_MASK) {72 retval = -EINVAL;73break;74 }7576 tmp |= spi->mode & ~SPI_MODE_MASK;77 spi->mode = (u8)tmp;78 retval = spi_setup(spi);79if (retval < 0)80 spi->mode = save;81else82 dev_dbg(&spi->dev, "spi mode %02xn", tmp);83 }84break;85case SPI_IOC_WR_LSB_FIRST://设置设置spi写最低有效位,同上86 retval = __get_user(tmp, (__u8 __user *)arg);87if (retval == 0) {88 u8 save = spi->mode;8990if (tmp)91 spi->mode |= SPI_LSB_FIRST;92else93 spi->mode &= ~SPI_LSB_FIRST;94 retval = spi_setup(spi);95if (retval < 0)96 spi->mode = save;97else98 dev_dbg(&spi->dev, "%csb firstn",99 tmp ? 'l' : 'm');100 }101break;102case SPI_IOC_WR_BITS_PER_WORD://设置spi写每个字含多个个位,同上103 retval = __get_user(tmp, (__u8 __user *)arg);104if (retval == 0) {105 u8 save = spi->bits_per_word;106107 spi->bits_per_word = tmp;108 retval = spi_setup(spi);109if (retval < 0)110 spi->bits_per_word = save;111else112 dev_dbg(&spi->dev, "%d bits per wordn", tmp);113 }114break;115case SPI_IOC_WR_MAX_SPEED_HZ://设置spi写最⼤速率,同上116 retval = __get_user(tmp, (__u32 __user *)arg);117if (retval == 0) {118 u32 save = spi->max_speed_hz;119120 spi->max_speed_hz = tmp;121 retval = spi_setup(spi);122if (retval < 0)123 spi->max_speed_hz = save;124else125 dev_dbg(&spi->dev, "%d Hz (max)n", tmp);126 }127break;128129default:130/* segmented and/or full-duplex I/O request */131if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))//查看是否为数据write命令132 || _IOC_DIR(cmd) != _IOC_WRITE) {133 retval = -ENOTTY;134break;135 }136//pay more time on understanding below method137 tmp = _IOC_SIZE(cmd);//从命令参数中解析出⽤户数据⼤⼩138if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {//数据⼤⼩必须是struct spi_ioc_transfer的整数倍139 retval = -EINVAL;140break;141 }142 n_ioc = tmp / sizeof(struct spi_ioc_transfer);//将要传输的数据分成n个传输数据段143if (n_ioc == 0)145146/* copy into scratch area */147 ioc = kmalloc(tmp, GFP_KERNEL);//获取n个数据段的数据管理结构体的内存空间148if (!ioc) {149 retval = -ENOMEM;150break;151 }152if (__copy_from_user(ioc, (void __user *)arg, tmp)) {//从⽤户空间获取数据管理结构体的初始化值153 kfree(ioc);154 retval = -EFAULT;155break;156 }157158/* translate to spi_message, execute */159 retval = spidev_message(spidev, ioc, n_ioc);//数据传输,这是整个流程中的核⼼160 kfree(ioc);161break;162 }163164 mutex_unlock(&spidev->buf_lock);165 spi_dev_put(spi);166return retval;167 }通过调⽤函数spi->master->setup()来设置SPI模式。
原子嵌入式linux驱动开发详解原子嵌入式Linux驱动开发详解:Linux操作系统一直都是工业控制、物联网、安防等领域中嵌入式设备的首选操作系统。
Linux系统的优良特性使其成为用户和开发者的首选,而Linux内核驱动则是面向嵌入式应用领域核心技术之一。
它是嵌入式设备在硬件及软件之间接口的重要组成部分。
本文将详细介绍使用原子嵌入式Linux驱动进行嵌入式设备驱动的开发,并且介绍使用原子嵌入式Linux驱动实现并行的多线程驱动。
一、嵌入式设备驱动的基本原理:所谓嵌入式设备驱动,就是处理器与外部设备之间进行数据传递的程序,将设备中的信息读取到处理器中,或将处理器中的信息发送至设备中。
嵌入式设备驱动的核心逻辑是控制输入输出模块,以完成外部信息的读取和发送任务。
在Linux系统下,设备驱动一般以内核模块存在,片上驱动是一个相对独立的模块,不妨做一番详细的介绍。
二、原子嵌入式Linux驱动的使用:原子嵌入式Linux驱动根据功能的不同划分成了两类,即原子操作和读写自旋锁。
这两类驱动的使用方法不同,且有自己的特殊应用场景。
1、原子操作:在多线程的情况下,通过锁来保证同一时间只能有一个线程操作共享资源是一种常见的方法。
原子操作则是一种替代锁的方式,在多线程操作共享资源的情况下采用原子操作方式相对于锁来说会更加高效。
原子操作是一种特殊的指令操作,执行完原子操作之后,CPU不允许其他线程读写该地址的值,因此可以避免竞争。
下面是一个使用原子操作的例子:radio_chan = atomic_read(&radio->chan);digital_chan =atomic_read(&radio->digital_chan);radio_write_register(radio, 0x0011, 2,&radio_chan);radio_write_register(radio, 0x5111, 2,&digital_chan);在上述代码中,使用了atomic_read来获得变量radio_chan和digital_chan的值,这两个变量是共享资源,这里使用原子操作来避免竞争和冲突。
C语言嵌入式Linux开发驱动和系统调用在嵌入式系统领域中,C语言是最常用的编程语言之一。
它具有高效性、可移植性和灵活性,使得它成为开发嵌入式Linux驱动和系统调用的理想选择。
本文将详细介绍C语言在嵌入式Linux开发中的应用,包括驱动开发和系统调用的实现。
一、驱动开发1.1 驱动的定义和作用驱动是连接硬件和操作系统的关键组件,它允许操作系统与具体的硬件设备进行通信。
驱动的主要作用是提供对硬件设备的控制、管理和数据传输。
在嵌入式Linux系统中,驱动的开发需要使用C语言来编写。
1.2 驱动的开发流程驱动的开发可以分为以下几个步骤:1)了解硬件设备:首先要对驱动所涉及的硬件设备有一定的了解,包括设备的主要功能和寄存器的操作方式等。
2)驱动代码编写:使用C语言编写驱动代码,根据硬件设备的数据发送和接收过程设计函数和数据结构。
3)编译和链接:将驱动代码编译成可执行文件,并将其链接到操作系统的内核中。
4)加载和卸载:通过调用命令加载和卸载驱动,使其生效或失效。
5)测试和调试:进行驱动功能的测试和调试工作,确保驱动的正确性和稳定性。
1.3 驱动示例:LED驱动以一个简单的LED驱动为例,说明驱动的开发过程:1)定义LED设备的数据结构:创建一个结构体来表示LED设备的相关信息,例如设备的名称、设备的状态等。
2)实现LED控制函数:编写LED控制函数,通过操作硬件寄存器来控制LED的开关。
3)注册驱动:将驱动注册到操作系统的驱动框架中,使其与操作系统进行通信。
4)加载和卸载驱动:通过命令加载和卸载驱动,对LED进行控制。
二、系统调用2.1 系统调用的定义和作用系统调用是用户程序与操作系统之间的接口,它允许用户程序访问操作系统提供的服务和资源。
系统调用的主要作用是提供对底层硬件和操作系统功能的访问。
2.2 系统调用的分类系统调用可以分为以下几类:1)进程控制:如创建、终止和等待进程等。
2)文件操作:如打开、读取和关闭文件等。
嵌入式Linux设备驱动程序开发分析摘要:为了探讨嵌入式linux设备驱动程序开发,文中对其设备驱动程序完成了以下分析:linux设备驱动程序开发过程;基本组成结构;设备驱动程序的框架。
关键词:嵌入式;linux设备;驱动程序;开发过程中图分类号:tp311.521 设备驱动程序1.1 linux设备驱动程序开发过程linux操作系统的主要设备是块设备、字符设备和网络设备这三类类型的文。
字符设备能够保证在文件存取时减少缓存垃圾,这样一来就能使字符设备能够驱动程序能够像访问文件一样的字符设备以此来负责实现这些行为,并实现操作。
块设备可以看作是类似磁盘这样的文件系统的宿主。
同时能被linux允许一次传输的字节数目不限,在读取设备时也能像读取字符设备那样并且能使两者的读取数方式是一致。
而网络设备异于其他两者,因为其设备面向的上一层是一个网络协议层,要想实现数据访问就必须得需要通过bsd套接口。
但实际上,无论所有嵌入式linux设备的驱动程序有多少不同,都会有一些共性,所以在开发过程中,能够实现任何类型的驱动程序通用化,这些特性举例如下:(1)读/写。
输入和输出是几乎所有设备都支持的两种基本操作,并由各个驱动程序自身来完成。
接口是由系统规定好并实行读/写操作的,这样一来就能直接由驱动程序来实践并完成具体的操作和功能。
一旦当驱动程序逐渐初始化的过程中,那么则需要注册读/写函数到操作系统的接口中。
(2)中断。
作为计算机中的一个非常重要的功能,中断处理程序也应当同读写一样注册到系统中,因为使操作系统在程序无响应时能够提供使驱动程序中断的能力。
这样一来操作系统会在硬件中断发生后自动调用驱动程序并处理程序。
(3)时钟。
许多开发设备驱动程序时上也会运用到时钟,由于驱动程序必须由操作系统提供定时机制,所以在注册时钟函数时通常是在预定的时问过了之后。
完成一个linux嵌入式设备驱动程序的流程如下:给主、次设备号下定义,或实现动态获取;完成初始化或清除驱动函数→设计好预定要实现的文件的各种操作→审核定义file—operations结构→调试所需的文件操作→向内核保证实现中断服务并注册→用命令将驱动编译到内核并完成加载→优化生成设备节点的文件。
本文由我司收集整编,推荐下载,如有疑问,请与我司联系
Linux设备驱动开发详解
2010/05/09 0 typedef void (*lpFunction) ();//定义一个无参数,无返回类型的函数指针类型
//定义一个函数指针,指向cpu启动后所执行的第一条指令的位置
lpFunction lpReset = (lpFunction)0xF000FFF0;
lpReset();//调用函数
MMU停供虚拟地址和物理地址的映射、内存访问权限保护和Cache缓存控制等硬件支持。
操作系统内核借助MMU,可以让用户感觉到好像程序可以使用非常大的内存空间,从而使得编程人员在写程序时不用考虑计算机的物理内存的实际容量 如图,当ARM要访问存储器时,MMU先查找TLB中的虚拟地址表。
如果ARM 的结构支持分开的数据TLB(DTLB)和指令TLB(ITLB),则除去指令使用的ITLB外,其他的都是用DTLB
若TLB中没有虚拟地址的入口,则转换表遍历硬件从存放于主存储器中的转换表中获取地址转换信息和访问权限(即执行TTW),同时将这些信息放入TLB,它或者被放在一个没有使用的入口或者替换一个已经存在的入口。
之后,在TLB条目中控制信息的控制下,当访问权限允许时,对真实物理地址的访问将在Cache或者在内存中发生
用户空间0-3GB,内核空间3-4GB,用户进程通常情况下只能访问用户空间的虚拟地址,不能访问内核空间虚拟地址。
用户进程只能通过系统调用等方式才能访问到内核空间
每个进程的用户空间都是完全独立、互不相干的,用户进程各自有不同的页表。
而内核空间是由内核负责映射,它并不会跟着进程改变,是固定的。
内核空间地址有自己对应的叶表,内核的虚拟空间独立于其他程序
Linux中的1GB内核地址空间又被划分为内存映射区,虚拟内存分配区、高端页面映射区、专用页面映射区和系统保留映射区。