人教版初中数学二次根式解析
- 格式:doc
- 大小:397.50 KB
- 文档页数:9
二次根式的定义性质和概念如果一个数的平方等于a,那么这个数叫做a的平方根。
a可以是具体的数,也可以是含有字母的代数式。
即:若,则x叫做a的平方根,记作x= 。
其中a叫被开方数。
其中正的平方根被称为算术平方根。
关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。
被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
二次根式的性质:1.任何一个正数的平方根有两个,它们互为相反数。
如正数a的算术平方根是,则a的另一个平方根为﹣ ;最简形势中被开方数不能有分母存在。
2.零的平方根是零,即 ;3.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
4.无理数可用有理数形式表示, 如: 。
二次根式的几何意义1、(a≥0)[任何一个非负数都可以写成一个数的平方的形式;利用此性质在实数范围内因式分解];2、都是非负数;当a≥0时, ;而中a取值范围是a≥0,中取值范围是全体实数。
3、c= 表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论;4、逆用可将根号外的非负因式移到括号内,如﹙a>0﹚,﹙a<0﹚﹙a≥0﹚,﹙a<0﹚5、注意: ,即具有双重非负性。
算术平方根正数a的正的平方根和零的平方根统称为算术平方根,用(a≥0)来表示。
0的算术平方根为0.开平方运算求一个非负数的平方根的运算,叫做开平方。
开平方与平方互为逆运算。
化简化简二次根式是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
最简二次根式定义概要(❶被开方数不含分母❷被开方数中不含能开得尽的因数或因式)二次根式化简一般步骤:①把带分数或小数化成假分数;②把开方数分解成质因数或分解因式;③把根号内能开得尽方的因式或因数移到根号外;④化去根号内的分母,或化去分母中的根号;⑤约分。
有理化因式两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式注意﹙①他们必须是成对出现的两个代数式;②这两个代数式都含有二次根式;③这两个代数式的积化简后不再含有二次根式④一个二次根式可以与几个二次根式互为有理化因式﹚分母有理化在分母含有根号的式子中,把分母的根号化去,叫做分母有理化。
人教版数学八年级下册16.1《二次根式》说课稿1一. 教材分析人教版数学八年级下册16.1《二次根式》是初中数学的重要内容,主要让学生了解二次根式的概念、性质和运算。
本节内容是在学生已经掌握了实数、有理数、无理数等基础知识的基础上进行学习的,为后续学习二次根式的应用和进一步学习高中数学打下基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对实数、有理数、无理数等概念有一定的了解。
但是,对于二次根式的概念和性质,学生可能初次接触,理解起来有一定的难度。
因此,在教学过程中,需要引导学生通过观察、思考、讨论等方式,逐步理解和掌握二次根式的相关知识。
三. 说教学目标1.知识与技能:让学生掌握二次根式的概念、性质和运算方法。
2.过程与方法:通过观察、思考、讨论等方式,培养学生的逻辑思维能力和团队合作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:二次根式的概念、性质和运算方法。
2.教学难点:二次根式的性质和运算规律。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型等教学手段,帮助学生形象直观地理解二次根式的概念和性质。
六. 说教学过程1.导入新课:通过复习实数、有理数、无理数等基础知识,引出二次根式的概念。
2.探究二次根式的性质:让学生观察、分析例子,引导学生发现二次根式的性质。
3.学习二次根式的运算:通过讲解和练习,让学生掌握二次根式的运算方法。
4.应用拓展:布置一些相关的练习题,让学生巩固所学知识,并能够灵活运用。
七. 说板书设计板书设计要简洁明了,突出二次根式的概念、性质和运算方法。
可以设计如下:1.二次根式的概念–定义:形如√a(a≥0)的式子称为二次根式。
2.二次根式的性质–√a = √b(a=b≥0)–√a × √b = √(ab)(a≥0,b≥0)–√a ÷ √b = √(a/b)(a≥0,b>0)3.二次根式的运算方法–加减法:同底数相加减,指数不变;–乘除法:底数相乘除,指数相加减。
人教版初一数学二次根式的运算二次根式是初中数学中一个重要的概念,也是数学运算的基础之一。
在人教版初一数学教材中,二次根式的运算是一个重要的知识点。
本文将从基本概念、运算法则等方面进行讲解,帮助学生更好地掌握二次根式的运算。
一、基本概念在初一数学中,我们学习了一次根式,它是一个数的 n 次方根。
而二次根式则是一个数的平方根。
如果一个数 a 的平方等于 b,则表示 a是 b 的平方根,记作√b=a。
在这里,b 是被开方数,a 是开方后得到的结果。
二、运算法则1. 同号相乘法则当两个二次根式的被开方数具有相同的正负号时,可以将它们的被开方数相乘,再开平方,结果仍然具有相同的正负号。
例如:√a * √b = √(a * b)。
2. 开方的分配律如果 a 和 b 都大于等于 0,那么有:√a + √b = √(a + b)。
同理,对于减法也成立,即:√a - √b = √(a - b)。
3. 分数的二次根式运算对于二次根式的运算,特别需要注意分数的情况。
如果一个分数先开方,然后再化简,结果通常不等于先化简再开方。
例如:√(2/3) ≠ √2 / √3。
因此,在进行二次根式的运算时,需要特别注意对分数进行化简后再做运算。
三、练习题1. 计算√4 + √9的值。
解:根据同号相乘法则,可以得到√4 + √9 = √(4 * 9) = √36 = 6。
2. 计算2√3 + 3√2的值。
解:根据开方的分配律,可以得到2√3 + 3√2 = √(2^2 * 3) + √(3^2 *2) = 2√6 + 3√6 = 5√6。
3. 计算√(2/3)的值。
解:根据前面提到的分数的二次根式运算注意事项,需要先化简再开方。
√(2/3) = √(2 * 1/3) = √(2 * 1) / √3 = √2 / √3。
四、总结二次根式的运算是初中数学中的重要内容,需要掌握运算法则以及化简分数的方法。
通过数学练习题的反复练习,可以巩固对二次根式的运算法则的理解和掌握。
《二次根式》知识讲解及例题解析【学习目标】1、理解二次根式及最简二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论: a ≥0,(a ≥0),(a ≥0),(a ≥0),并利用它们进行计算和化简.【要点梳理】要点一、二次根式的概念一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号. 要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.要点二、二次根式的性质 1.a ≥0,(a ≥0); 2.(a ≥0);3..4.积的算术平方根等于积中各因式的算术平方根的积,即(a ≥0,b ≥0).5.商的算术平方根等于被除数的算术平方根与除数的算术平方根的商, 即()a a a b a b b b=÷=÷或(a ≥0,b >0).要点诠释: (1)二次根式(a ≥0)的值是非负数。
一个非负数可以写成它的算术平方根的形式,即2()(0a a a =≥).(22a 2()a 要注意区别与联系:①a 的取值范围不同,2()a 中a ≥02a a 为任意值。
②a ≥0时,2()a 2a a ;a <0时,2()a 2a a -.要点三、最简二次根式(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况: (1) 被开放数是分数或分式; (2)含有能开方的因数或因式.【典型例题】类型一、二次根式的概念1.当x 是__________时,+在实数范围内有意义?【答案】 x ≥-且x ≠-1【解析】依题意,得由①得:x ≥-由②得:x ≠-1 当x ≥-且x ≠-1时,+在实数范围内有意义.【总结升华】本题综合考查了二次根式和分式的概念.举一反三:【变式】方程480x x y m -+--=,当0y >时,m 的取值范围是( )A .01m << B.m ≥2 C.2m < D.m ≤2【答案】C.类型二、二次根式的性质2.根据下列条件,求字母x 的取值范围:(1); (2).【答案与解析】(1)(2)【总结升华】二次根式性质的运用.举一反三:【变式】问题探究:因为,所以,因为,所以请你根据以上规律,结合你的以验化简下列各式:(1);(2).【答案】解:(1)==;(2)==.3.我们可以计算出①=2=;=3而且还可以计算=2==3(1)根据计算的结果,可以得到:①当a>0时=a;②当a<0时=.(2)应用所得的结论解决:如图,已知a,b在数轴上的位置,化简﹣﹣.【思路点拨】(1)直接利用a 的取值范围化简求出答案;(2)利用a ,b 的取值范围,进而化简二次根式即可.【答案与解析】解:(1)由题意可得:①当a >0时=a ;②当a <0时=﹣a ;故答案为:a ,﹣a ;(2)如图所示:﹣2<a <﹣1,0<b <1, 则﹣﹣=﹣a ﹣b +(a +b )=0.【总结升华】此题主要考查了二次根式的性质与化简以及实数与数轴,正确化简二次根式是解题关键.类型三、最简二次根式4 (122389)+++【思路点拨】此类题型为规律题型,应该是在分母有理化的基础上寻找规律. 【答案与解析】原式1(21)1(32)19-8...(12)(21)(23)(32)+9-8⨯-⨯-⨯++-+-()(89)()2132...9891 =2【总结升华】找出规律,是这一类型题的特点,要总结此类题型并加以记忆.举一反三: 2323+-a ,小数部分是b ,求22a ab b -+的值.【答案】2(23)(23)=3=7+43(23)(23)-+原式()又因为整数部分是a ,小数部分是b 则a =13,b =43622221313(436)(436)a ab b ∴-+=-⨯+=3311003-。
初中数学知识点二次根式:二次根式1.二次根式:一样地,式子叫做二次根式。
注意:(1)若那个条件不成立,则不是二次根式;(2)是一个重要的非负数,即a≥0.积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积;二次根式的乘法法则:(a≥0,b≥0)。
二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小。
商的算术平方根:=(a≥0,b0),商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式运算的最后结果必须化为最简二次根式。
10.同类二次根式:几个二次根式化成最简二次根式后,假如被开方数相同,这几个二次根式叫做同类二次根式。
12.二次根式的混合运算:教师范读的是阅读教学中不可缺少的部分,我常采纳范读,让幼儿学习、仿照。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录同时阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。
如此下去,除假期外,一年便能够积存40多则材料。
假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,往常学过的,在有理数范畴内的一切公式和运算律在二次根式的混合运算中都适用;要练说,得练听。
初中数学二次根式的知识点汇总二次根式是代数中的一个重要概念,它是一个含有平方根的表达式。
在初中数学中,学生将会学习有关二次根式的一些基本知识,以及如何进行运算和简化。
以下是一些关于初中数学二次根式的知识点的汇总。
一、二次根式的定义和表示方法1.二次根式是一个非负实数的平方根或一组二次根目标。
它可以表示为√a或±√a。
2.在二次根式中,a被称为根式的被开方数,表示所求的数;√a被称为二次根号,表示开方操作。
3.如果a是一个非负实数,那么二次根式√a表示的是非负的实数。
如果a是一个负实数,那么二次根式√a没有实数解。
4.二次根式的定义域是非负实数集合[0,∞)。
二、二次根式的比较大小1.二次根式的大小比较可以通过比较根式的被开方数来进行。
2.如果a和b是两个非负实数,且a>b,则有√a>√b。
3.如果a和b是两个非负实数,且a=b,则有√a=√b。
4.如果a和b是两个非负实数,且a<b,则有√a<√b。
三、二次根式的加减法运算1.只有具有相同的被开方数的二次根式才能进行加减法运算。
2.二次根式的加减法运算可以通过合并同类项的方式进行。
3.合并同类项时,需要注意二次根式的正负号是否一致。
四、二次根式的乘法运算1.二次根式的乘法运算可以通过乘法分配律进行。
2.二次根式的乘法运算可以通过提取同类项的方式进行。
3.提取同类项时,需要注意二次根式的正负号是否一致。
五、二次根式的除法运算1.二次根式的除法运算可以通过乘以倒数的方式进行。
2.二次根式的除法运算可以通过有理化的方式进行,即将分母有理化为无二次根式的形式。
六、二次根式的化简1.将一个二次根式化简为最简形式时,需要将其内部的二次根式去除。
2.二次根式化简的基本原则是尽量将被开方数的因式分解为平方数的积。
3.化简二次根式时,需要注意遵循二次根式的定义域,确保结果是有意义的。
七、二次根式的应用1.二次根式广泛应用于几何、物理和计算机科学等领域。
人教版初中数学二次根式解析一、选择题1.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、22=⨯=D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.2.在下列算式中:=②=;③42==;=,其中正确的是( ) A .①③B .②④C .③④D .①④ 【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】①错误;=②正确;222==,故③错误;==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.3.x 的取值范围是( )A .x <1B .x ≥1C .x ≤﹣1D .x <﹣1【答案】B【解析】【分析】根据二次根式有意义的条件判断即可.【详解】解:由题意得,x ﹣1≥0,解得,x ≥1,故选:B .【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.4.下列计算结果正确的是( )A 3B ±6CD .3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A 、原式=|-3|=3,正确;B 、原式=6,错误;C 、原式不能合并,错误;D 、原式不能合并,错误.故选A .【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.5.若代数式1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠ B .3x >-且1x ≠ C .3x ≥- D .3x ≥-且1x ≠【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.6.若代数式1y x =-有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠ 【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:010x x ≥⎧⎨-≠⎩, 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.7.下列运算正确的是( )A B .1)2=3-1 C D 5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得【详解】解:A.3+25≠,故本选项错误;B. (3-1)2=3-23+1=4-23,故本选项错误;C. 3×2=6,故本选项正确;D.2253-=25916-= =4,故本选项错误.故选C. 【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.8.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可: ∵由数轴可知,b >0>a ,且 |a|>|b|,()2a a b a a b b +=-++=.故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.9.下列计算错误的是( )A 2598a a a =B 14772=C .3223=D 60523=【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:259538a a a a a ==,正确;14727772=⨯⨯=C. 32222=D. ==故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.有意义,则x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.11.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.12.a 的取值范围为() A .0a >B .0a <C .0a =D .不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0.所以a=0.故选C .13.下列各式中,是最简二次根式的是( )A B C D 【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A 被开方数含分母,错误.(2)B 满足条件,正确.(3) C 被开方数含能开的尽方的因数或因式,错误.(4) D 被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.14.362+在哪两个整数之间( ) A .4和5B .5和6C .6和7D .7和8 【答案】C【解析】【分析】36222+== 1.414≈,即可解答.【详解】36222+== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.15.有意义时,a 的取值范围是( ) A .a ≥2B .a >2C .a ≠2D .a ≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a ≠2,∴a >2.故选B .16.a 的取值范围是( )A .a >1B .a ≥1C .a =1D .a ≤1 【答案】B【解析】【分析】根据二次根式有意义的条件可得a ﹣1≥0,再解不等式即可.【详解】由题意得:a ﹣1≥0,解得:a≥1,故选:B .【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.17.已知1a b ==+,a b 的关系是( ) A .a b =B .1ab =-C .1a b =D .=-a b 【答案】D【解析】【分析】根据a 和b 的值去计算各式是否正确即可.【详解】A. 1a b -===B. 1ab =≠-,错误;C. 1ab =≠,错误;D. 10a b +++=,正确; 故答案为:D .【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.18.若二次根式3x -在实数范围内有意义,则x 的取值范围是( ) A .3x > B .3x ≠ C .3x ≥ D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】解:∵二次根式3x -在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.19.下列运算正确的是( )A .18126-=B .822÷=C .3223-=D .1422= 【答案】B【解析】【分析】根据二次根式的混合运算的相关知识即可解答.【详解】A. 181232-23-=,故错误;B. 822÷=,正确;C. 32222-=,故错误;D. 1422≠,故错误;故选B.【点睛】此题考查二次根式的性质与化简,解题关键在于掌握运算法则.20.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D【答案】A【解析】【分析】先化简原式得44【详解】原式=4由于23,∴1<42.故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.。