电源拓扑电路详解
- 格式:doc
- 大小:155.50 KB
- 文档页数:7
拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。
拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。
通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。
拓扑学对于研究对象的长短、大小面积、体积等度量性质和数量关系都无关。
即不考虑图形的大小形状,仅考虑点和线的个数。
实质上拓扑学(TOPOLOGY)是一种研究与大小、距离无关的几何图形特性的方法。
电路的拓扑结构就是指电路中节点、支路、回路的数量,这些都反映了电路中各部分连接的实质状况。
同一个拓扑结构可以画成几何形状不同的电路图拓扑电路非常适用于DC-DC变换器。
每种拓扑都有其自身的特点和适用场合。
因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。
DC/DC电源变换器的拓扑类型主要有以下13种:(1)Buck Converter降压式变换器;(2)Boost Conyerter升压式变换器;(3)Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器;(4)Cuk Converter升压,升压串联式变换器;(5)SEPIC(Single Endcd Pdimary Inductor Converter)单端一次侧电感式变换器;(6)F1yback Converter反激式(亦称回扫式)变换器;(7)Eorward Converter正激式变换器:(8)Double Switches Forward Converter双开关正激式变换器;(9)Active Clamp Forward Converter有源箝位(0)Half Bridge Converter半桥式变换器;(11)Full Bridge Converter全桥式变换器;(12)Push—pall Convener推挽式变换器:(13)Phase Shift Switching ZVT(Phase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。
DC-DC电源拓扑及其工作模式讲解一、DC-DC电源基本拓扑分类:开关电源的三种基本拓扑结构有Buck、Boost、Buck-boost(反极性Boost)。
如果电感连接到地,就构成了升降压变换器,如果电感连接到输入端,就构成了升压变换器。
如果电感连接到输出端,就构成了降压变换器。
基本拓扑图如下:1.Buck2.Boost3.Buck-Boost二、DC-DC复杂拓扑结构1.反激隔离电源(FlyBack)另外有些隔离电源拓扑就是通过基本拓扑增加变压器或者变化得到的,例如反激隔离电源(FlyBack)。
2.Buck+Boost拓扑本质是用一个降压“加上”一个升压,来实现升降压。
SEPIC拓扑:集成了Boost和Flyback拓扑结构3.Cuk、Sepic、Zeta拓扑通过基本拓扑直接组合,形成了三个有实用价值的拓扑结构:Cuk、Sepic、Zeta。
Cuk的本质是Boost变换器和Buck变换器串联,Sepic的本质是Boost和Buck-Boost串联,Zeta可以看成Buck和Buck-Boost串联。
但是里面有些细节按照电流的方向在演进的过程中调整了二极管的方向,两极串联拓扑节省了复用的器件。
通过这样串联和演进,产生了新的三个电源拓扑。
同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑。
4.四开关Buck-Boost拓扑同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑5.反激、正激、推挽拓扑的演进利用变压器代替电感,可以把Boost演进为一个新拓扑FlyBack即反激变换器(反激的公式来看又是很像Buck-Boost,这里变压器不同于电感,也有说法会说反激是Buck-Boost变过来的)。
可以把Buck电路的开关通过一个变压器进行能量传递,就形成正激变换器。
将两个正激变换器进行并联,可以形成推挽拓扑。
正激的变压器,是直接输送能量过去,而不是像反激变压器那样传递能量。
25种开关电源拓扑电路结构与连接原理与及特点选择与设计方法开关电源是一种将交流电转换为直流电的电源装置,其常见的拓扑电路结构包括单端(Buck)、反相(Boost)和反相-反相(Buck-Boost)等。
下面将详细介绍这些拓扑电路的连接、原理与特点,并给出选择与设计方法。
1.单端拓扑电路结构与连接:单端拓扑电路主要由功率开关器件、电感元件和输出滤波电容组成。
它的连接方式为输入电压接到开关电源的输入端,输出电压则输出到输出端。
单端拓扑电路常用于输出电压比输入电压更低的应用场景。
2.反相拓扑电路结构与连接:反相拓扑电路也是由功率开关器件、电感元件和输出滤波电容组成。
不同之处在于它的连接方式,输入电压通过开关电源的输入端接到电感上,输出电压则从电感上接出。
反相拓扑电路适用于输出电压比输入电压更高的应用场景。
3.反相-反相拓扑电路结构与连接:反相-反相拓扑电路结构是将单端拓扑与反相拓扑结合起来的一种结构,它可以实现输入电压和输出电压的翻转。
输入电压通过开关电源的输入端接到电感上,输出电压同样从电感上输出。
这种拓扑电路可以根据输入输出电压的差异实现升压或降压功能。
这些拓扑电路的原理与特点如下:1.单端拓扑电路原理与特点:单端拓扑电路使用开关器件以一定的频率开关电源输入,通过电感和输出滤波电容将开关输出的方波转换为稳定的直流电。
这种电路的特点是简单、成本较低,但效率较低,适用于输出电压较低的场景。
2.反相拓扑电路原理与特点:反相拓扑电路通过控制开关器件的导通和截止来改变电感中的电流,从而改变输出电压。
与单端拓扑电路相比,它的效率较高,但成本较高。
反相拓扑电路适用于输出电压较高的场景。
3.反相-反相拓扑电路原理与特点:反相-反相拓扑电路通过将输入电压先升压或降压至一个中间电压,再通过反向变换输出所需的电压。
这种电路可以实现较大范围的升压和降压功能,但需要多个开关器件和电感,因此成本和复杂度较高。
在选择与设计开关电源的方法上,应注意以下几点:1.根据实际需求确定输出电压和电流的要求,然后选择适合的拓扑电路结构。
简单介绍开关电源拓扑结构---Buck电路
Buck电路也称之为降压(step-down)变换器,Buck电路属于最简单的开关电源拓扑结构,它的等效电路模型入下图所示:
它由开关管(有些图画成一个开关),二极管,电感,电容构成了。
控制回路一般采用PWM(脉冲宽度调制)芯片控制占空比决定开关管的通断。
Buck电路的功能是把直流电压Vin转换成直流电压Vout,实现降压目的。
1、电路中主要器件Q,我们称呼为开关管,一般实现采用了IGBT或者MOS管,主要功能是实现电路的通断;
2、电路中主要器件D,我们称呼为续流二极管,主要功能是实现了开关管在关断的时候储能电感上的电量能完成一个回路输出,另外一个功能是保护开关管,因为储能电感在开关管由导通到关断的时候会产生很高的电势;
3、电路中主要器件C,我们称呼为输出滤波电容,主要功能当然就是滤除输出电压所带的杂波。
4、电路中主要器件L,我们称呼为储能电感,在开关管导通的时候,Vin给负载供电,由于自感的原因,L是左正右负,电能转换为磁能储存起来;在开关管断开的时候,电感L是左负右正,磁能转换成电能给负载供电。
Buck电路有三种工作模式,分别是CCM(连续模式),BCM (临界模式),DCM(断续模式)
1、连续模式
2、临界模式
3、断续模式。
各类电源拓扑结构分析一.非隔离型开关变换器1. 降压变换器(Buck ):输入输出极性相同。
由于稳态时,电感充放电伏、秒积相等,因此,输入输出电压关系为: (Ui-Uo)*ton=Uo*toff => Uo/Ui=ton/(ton+toff)=Δ => Uo/Ui=Δ(占空比)。
Chart 1: buck circuit topology在S 导通时,输入电源通过L 和C 滤波后向负载端提供电流;当S 断开后,L 通过二极管续流,保持负载电流连续。
输出电压因为占空比的作用,不会超过输入电源电压。
2. 升压变换器(Boost ):输入输出极性相同。
利用同样的方法,根据稳态时电感L 的充放电伏、秒积相等的原理,推导出输入输出电压关系为:Uo/Ui=1/(1-Δ)。
Chart 2: boost circuit topology开关管S 和负载构成并联,在S 导通时,电流通过L 滤波,电源对L 充电。
当S 断开时,L 向负载及电源放电,输出电压将是Ui+U L ,达到升压的目的。
3. 逆向变换器(Boost-Buck ):升、降压斩波器,输入输出极性相反,电感传输能量。
Uo I S I VD I I C I UiUo I D S I D D L C I D电压关系:Uo/Ui= -Δ/(1-Δ)Chart 3: boost-buck circuit topology在S 导通时,输入电源仅对电感L 充电;当S 断开时,再通过电感对负载放电来实现电源传输。
所以,这里的L 用于传输能量。
4. 丘克变换器(Cuk ):升、降压斩波器,输入输出极性相反,电容传输能量。
电压关系:Uo/Ui= -Δ/(1-Δ)。
Chart 4: cuk circuit topology在S 导通时,Ui 对L1充电。
当S 断开时,Ui+L1通过D 对C1进行充电。
再当S 导通时,D 关断,L1继续充电,C1通过L2、C2滤波对负载放电。
《精通开关电源设计》笔记三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dtdILV ==T I L ∆∆,推出ΔI =V ×ΔT/L2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。
那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD→t OFF =(1-D )/f电流纹波率r P51 52r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面:A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。
电源拓扑结构及工作原理电源拓扑结构是电源的基本组成部分,是指电源中各部分组成的结构和电路,是电源工作的关键。
不同的电源拓扑结构在工作原理上也有所不同,我们可以根据需要选择适合自己的电源拓扑结构。
一、直流电源的拓扑结构1. 线性稳压器线性稳压器是最简单的直流电源拓扑结构,其工作原理是利用功率晶体管控制电源的输出电压。
直流电源通过变压器降压之后会进入一个整流电路,其将交流电压转换为直流电压。
而后直流电压进入一个滤波电路,其可以去除电源的电流突变和波动,使输出的直流电压更加平稳稳定。
2. 开关稳压器开关稳压器(Switching regulator)是一种可随意调整输出电压的电源拓扑结构,其工作原理是通过周期性开关控制电源的输出电压。
开关稳压器主要由四个部件组成:开关管、电感器、滤波电容和稳压管。
在工作时,一般都是通过工作周期和调节占空比来控制直流电源的输出电压。
二、交流电源的拓扑结构1. 单相全控桥电路单相全控桥电路是交流电源的基本拓扑结构之一,其工作原理为四个可控硅管组成的桥式电路。
通过控制可控硅管的通断状态,可以实现交流电源的开关及输出控制。
2. 三相桥式整流电路三相桥式整流电路是交流电源比较成熟的一种拓扑结构,其工作原理是在交流电源端加装三相桥式整流电路。
可以使交流电源的波形更为平稳,输出功率更加稳定。
总结:电源拓扑结构及其工作原理是电源研究的重要基础,而且在实际应用中,应根据不同的使用需求,选择不同的电源拓扑结构。
同时,随着技术的不断发展,电源拓扑结构也会不断更新,我们需要不断学习新技术,以便更好地为实际应用服务。
开关电源各种拓扑集锦1、先给出六种基本DC/DC变换器拓扑依次为buck,boost,buck-boost,cuk,zeta,sepic变换器以上六种拓扑被认为是DC/DC变换器的六种基本拓扑,不过也有专家认为最基本的拓扑是buck和boost,其他均由此演变而来。
buck变换器为降压变换器,也是最常用的变换器,工程上常用的拓扑基本上是buck族的,如正激,半桥,全桥,推挽等等。
boost变换器为buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上,对于隔离的boost 变换器也有推挽,双电感,全桥等电路。
buck-boost是反激变换器的原型,属于升降压变换器。
后面三种电路不是很常用,都是升降压变换器。
从效率的角度来说,这些变换器的输入和输出等同时候,效率最高。
也就是buck最佳占空比为1,boost 为0,buck-boost为0.5。
2、正激变换器:A、绕组复位正激变换器B、LCD复位正激变换器C、RCD复位正激变换器D、有源钳位正激变换器E、双管正激F、无损吸收双正激:G、有源钳位双正激H、原边钳位双正激、I、软开关双正激评论:正激变换器是常用变换器之一,特别在中小功率场合。
正激变换器属于单端变换器,所用开关管少,可靠性高,虽然变压器利用率低,但是在较高频率下其变压器磁通摆幅可以与双端变换器相当。
但是开关管电压应力较大。
双管正激开关管电压应力为输入电压,虽然用了两个管子,但是耐压低,导通电阻也小,损耗也小,同时散热面积相对大了,所以可靠性更好,在中大功率比较常用。
但是双管正激实现软开关较难,就目前的一些拓扑来说,都需要辅助开关管来实现。
如果能不加入辅助管而实现软开关,一定超有前途。
正激变换器也常用来交错并联,来扩大功率,能减小输出滤波器体积。
3、推挽变换器A、推挽变换器B、无损吸收推挽变换器C、推挽正激推挽变换器:推挽变换器是双端变换器。
其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。
拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。
拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。
通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。
拓扑学对于研究对象的长短、大小面积、体积等度量性质和数量关系都无关。
即不考虑图形的大小形状,仅考虑点和线的个数。
实质上拓扑学(TOPOLOGY)是一种研究与大小、距离无关的几何图形特性的方法。
电路的拓扑结构就是指电路中节点、支路、回路的数量,这些都反映了电路中各部分连接的实质状况。
同一个拓扑结构可以画成几何形状不同的电路图拓扑电路非常适用于DC-DC变换器。
每种拓扑都有其自身的特点和适用场合。
因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。
DC/DC电源变换器的拓扑类型主要有以下13种:(1)Buck Converter降压式变换器;(2)Boost Conyerter升压式变换器;(3)Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器;(4)Cuk Converter升压,升压串联式变换器;(5)SEPIC(Single Endcd Pdimary Inductor Converter)单端一次侧电感式变换器;(6)F1yback Converter反激式(亦称回扫式)变换器;(7)Eorward Converter正激式变换器:(8)Double Switches Forward Converter双开关正激式变换器;(9)Active Clamp Forward Converter有源箝位(0)Half Bridge Converter半桥式变换器;(11)Full Bridge Converter全桥式变换器;(12)Push—pall Convener推挽式变换器:(13)Phase Shift Switching ZVT(Phase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源拓扑主回路的组成:主回路(开关电源中,功率电流流经的通路)一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
一、常见电源拓扑介绍。
1、Buck Converter降压式变换器。
如图1图1 BUCK 降压拓扑特点:a、把输入降至一较低电压。
b、输出总是小于或等于输入。
c、输入电流不连续(斩波)。
d、输出电流平滑。
e、电感/电容滤波器滤平开关后的方波。
2、Boost Conyerter升压式变换器。
如图2图2 BOOST升压拓扑特点:a、把输入电压升至一较高电压。
b、与降压所用器件一样,只是重新安排了电感、二极管、开关的位置。
c、输出总是大于或等于输入(忽略二极管的正向压降)。
d、输入电流平滑。
e、输出电流不连续(斩波)。
3、Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器;如图3图3 反相性开关变换拓扑特点:a、电感、开关、二极管的另一种安排方案。
b、输入电流不连续(斩波),输出电流也不连续(斩波)。
c、输出总是和输入反相,但是幅度可以小于和大于输入。
4、F1yback Converter反激式(亦称回扫式)变换器。
如图4图4 反激式拓扑特点:a、“反激”变换器实际上是降压-升压电路隔离(变压器耦合)形式。
b、如降压-升压一样工作,但电感有两个绕组,而且同时作为变压器和电感。
c、输出可以为正,也可以为负,由线圈和二极管的极性决定。
d、输出电压可以大于或小于输入电压,由变压器的匝数决定。
e、这是隔离拓扑结构中最简单的电路。
f、增加次级绕组和电路可以得到多个输出。
5、Eorward Converter正激式变换器。
如图5图5 正激式拓扑特点:a、降压电路的变压器耦合形式。
b、不连续的输入电流,平滑的输出电流。
c、由于采用变压器,输出可大于或小于输入,可以是任何极性。
d、增加绕组和电路可以有多路输出。
e、每个开关周期中必须对磁芯去磁,通常的做法是增加一个和初级绕组匝数相同的绕组,在开关接通阶段存储在初级绕组中的能量,在开关断开阶段通过另一个绕组和二极管泄放。
6、Double Switches Forward Converter双开关正激式变换器。
如图6图6 双正激式拓扑变换特点:a、两个开关同时工作。
b、开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。
c、每个开关上的电压永远不会超过输入电压。
d、无需对绕组磁通复位。
7、Push—pall Convener推挽式变换器。
如图7图7 推挽式拓扑特点:a、开关(FET)的驱动不同相,进行PWM调制以调节输出电压。
b、良好的变压器磁芯利用率,在两个半周期中都传输功率。
c、全波拓扑结构,所以输出纹波频率是变压器频率的两倍。
d、施加到FET的电压是输入电压的两倍。
8、Half Bridge Converter半桥式变换器。
如图8图8 半桥式拓扑变换特点:a、较高功率变换器极为常用的拓扑结构。
b、开关(FET)的驱动不同相,进行PWM调制以调节输出电压。
c、良好的变压器磁芯利用率,在两个半周期中都传输功率。
而且初级绕组的利用率优于推挽电路。
d、全波拓扑结构,所以输出纹波频率是变压器频率的两倍。
e、施加在FET的电压与输入电压相等。
9 Full Bridge Converter全桥式变换器.如图9图9 全桥式拓扑特点:a、较高功率变换器最为常用的拓扑结构。
b、开关(FET)以对角对的形式驱动,进行脉冲宽度调制以调整输出电压。
c、良好的变压器磁芯利用率,在两个半周期中都传输功率。
d、全波拓扑结构,所以输出纹波频率是变压器频率的两倍。
e、施加在FET上的电压与输入电压相等。
f、在给定的条件下,初级电流是半桥的一半。
10、SEPIC(Single Endcd Pdimary Inductor Converter)单端一次侧电感式变换器。
如图10如图10 单端初级电感式变换拓扑特点:a、输出电压可以大于或小于输入电压。
b、与升压电路一样,输入电流平滑,但输出电流不连续。
c、能量通过电容从输入传至输出。
d、需要两个电感。
11、Cuk Converter升压,升压串联式变换器.如图11图11 CUK拓扑特点:a、输出与输入反相。
b、输出电压幅度可以大于或小于输入电压。
c、输入、输出电流都是平滑的。
d、能量通过电容从输入传至输出。
e、需要两个电感,电感可以耦合获得零纹波电感电流。
二、DC-DC开关电源拓扑的分类。
根据主其回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构。
串联——在主回路中开关器件与输入端、输出端、电感器L、负载RL 四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck拓扑型开关电源就是属于串联式的开关电源。
1.2. 并联式结构。
并联——在主回路中,相对于输入端而言,开关器件与输出端负载成并联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。
并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。
并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。
例如boots 拓扑型的开关电源就是属于并联型式的开关电源。
1.3.极性反转型变换器结构(inverting)。
极性反转——输出电压与输入电压的极性相反。
电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。
(也是串联式开关电源的一种,一般又称为反转式串联开关电源)。
开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。
2. 隔离式电路的类型:隔离——输入端与输出端电气不相通,通过脉冲变压器的磁偶合方式传递能量,输入输出完全电气隔离。
2.1. 单端正激式single Forward Converter(又叫单端正激式变压器开关电源)。
单端——通过一只开关器件单向驱动脉冲变压器。
正激式:就是只有在开关管导通的时候,能量才通过变压器或电感向负载释放,当开关关闭的时候,就停止向负载释放能量。
目前属于这种模式的开关电源有:串联式开关电源,buck 拓扑结构开关电源,激式变压器开关电源、推免式、半桥式、全桥式都属于正激式模式。
反激式:就是在开关管导通的时候存储能量,只有在开关管关断的时候释放才向负载释放能量。
属于这种模式的开关电源有:并联式开关电源、boots、极性反转型变换器、反激式变压器开关电源。
正激变压器——脉冲变压器的原/付边相位关系,确保在开关管导通,驱动脉冲变压器原边时,变压器付边同时对负载供电。
所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。
(正激式变压器开关电源是推免式变压器开关电源衍生过来的,推免式有两个控制开关,正激式改成一个开关控制。
)2.2. 单端反激式Single F1yback Converter(单端反激式变压器开关电源)所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。
反激式电路与正激式电路相反,脉冲变压器的原/付边相位关系,确保当开关管导通,驱动脉冲变压器原边时,变压器付边不对负载供电,即原/付边交错通断。