视电阻率曲线幅度降低实际电位电极系
- 格式:ppt
- 大小:331.50 KB
- 文档页数:28
视电阻率测井理论曲线分析一、梯度电极系理论曲线分析(一)、高阻厚层理想梯度电极系理论曲线分析假设条件:1)岩层水平;2)钻孔条件忽略;3)理想顶部梯度(NMA,AO>>MN);4)岩层为厚层。
分析公式式中J0=(I/4πL2)为一个常数,表示在均匀情况下记录点O点的正常电流密度;JMN是O点的实际电流密度;RMN是O点的实际电阻率。
分析如下(图1-11):图1-11顶部梯度电极系理论曲线ab段:此时电极系位于界面以下足够远(2~3AO),此时界面对电极系的影响忽略不计(其原因是电极系到界面的距离超过了电极系的探测范围),就好像电极系置于电阻率为R1的无限介质一样,因此上述关系式中:RMN=R1则bc段:此时电极系上移,直到O点到底界面为止。
随着电极系上移,J0=I/(4πL2)和RMN=R1不变,而JMN随电极系上移而减小(随电极系上移,高阻对A极的供电电流的排斥作用增大,使JMN减小)JMN↘,并且JMN<J0,RMN=R1,则Ra↘,所以当O点到达界面时,JMN达极小值,因此Ra达极小值。
由于所以cd段:电极系上移很小一点距离,即O点过界面很小一点距离。
即O点由介质R1进入介质R2中,在这无限小的距离内。
因为电流密度的法向分量相等:JMNc=JMNd;又Rad=JMNdRMNd/J0;Rac=JMNcRMNc/J0;将两个式子相除,其中JMNc=JMNd,便有:这就是说,O点由介质R1进入介质R2时,RMN从RMNc=R1跳跃到RMNd=R2,造成Ra发生跳跃,即Ra从Rac跳跃到Rad,也就是MNR突变多少倍,Ra突变多少倍。
D点的Ra值为:de段:从O点过底界面直到A极到底界面为此,此时AO横跨界面两侧,可计算得到:,,即:从O点过底界面直到A极到底界面为止,为Ra常数段,常数段的长度为1倍的AO,数值为Ra=2R1R2/(R1+R2)。
ef段:当A极越过底界面直到电极系接近岩层中部时,随着电极系上移,J0=I/(4πL2)和RMN=R2不变,而JMN随电极系上移而增大(随电极系上移,低阻对A极的供电电流的吸引作用减小,使JMN增大),由于JMN增大,RMN=R2,所以Ra增大,当A极接近岩层中部时,JMN≈J0 RMN=R2 有Ra ≈R2fg段:电极系处在岩层中部时,此时顶底界面对电极系的影响忽略不计(其原因是电极系到界面的距离超过了电极系的探测范围),就好像电极系置于电阻率为R2的无限介质一样,因此:JMN=J0=I/(4πL2) RMN=R2 ,所以gh段:当电极系上移,直到O点到顶界面为止。
测井曲线的基本应用一、自然电位测井(SP)1、自然电位测井曲线(SP)的影响因素a、地层水和泥浆滤液中含盐浓度比值的影响*当泥浆滤液浓度大于地层水浓度时,SP曲线为正异常;*当泥浆滤液浓度小于地层水浓度时,SP曲线为负异常。
b、岩性的影响在砂泥岩剖面中,自然电位曲线以泥岩为基线,只有在砂质渗透性岩层处才出现自然电位曲线异常。
在其他条件不变的情况下,自然电位曲线异常幅度会随目的层泥质含量的增加而相对变低。
c、地层厚度的影响自然电位曲线的幅度随着地层厚度的变薄而减小,且曲线变得平缓。
d、井径扩大和侵入的影响在有侵入的渗透层井段的自然电位曲线异常幅度值比同样渗透层没有泥浆侵入(或侵入极浅)时所测的自然电位曲线异常幅度值要低;侵入越深越低。
2、自然电位测井曲线(SP)的应用a、划分渗透层*在淡水泥浆的砂泥岩地层中,出现负异常的井段都可以认为是渗透层;其中纯砂岩井段出现最大的负异常,异常幅度随泥质含量的增多而下降。
此外异常幅度还决定于砂岩渗透层孔隙中所含流体的性质,一般含水砂岩的自然电位幅度比含油砂岩的自然电位幅度要高。
*在识别出渗透层后,可用“半幅点”法来确定渗透层的界面位置。
b、估计泥质含量c、确定地层水电阻率d、判断水淹层1水淹水平界面处SP曲线上无异常变化,而只发生基线偏移。
由统计资料表明:偏移量>8mv时为高含水层;5mv<偏移量<8mv时为中含水层;偏移量<5mv 时,则可能是低含水层或由于岩性变化引起的基线偏移。
二、视电阻率曲线1、岩石电阻率的影响因素a、岩性的影响不同的岩石、矿物的电阻率各不相同。
金属矿物的电阻率极低,而造岩矿物及石油的电阻率都很高,它们几乎不导电。
岩石电阻率以火成岩电阻率为最高,而沉积岩电阻率为最低(含金属矿物的火成岩除外)。
b、地层水性质的影响沉积岩的导电能力主要取决于地层水的电阻率。
c、孔隙度的影响对于含水砂岩来说,岩石的孔隙度越高,所含地层水电阻率越低,胶结程度越差,岩石的电阻率越低。
油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
井径常小于钻头直径。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。
(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。
一、名词解释1、测井:油气田地球物理测井,简称测井well logging ,是应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找油气层并监测油气层开发的一门应用技术。
2、电法测井:是指以研究岩石及其孔隙流体的导电性、电化学性质及介电性为基础的一大类测井方法,包括以测量岩层电化学特性、导电特性和介电特性为基础的三小类测井方法。
3、声波测井:是通过研究声波在井下岩层和介质中的传播特性,来了解岩层的地质特性和井的技术状况的一类测井方法。
4、核测井:是根据岩石及其孔隙流体的核物理性质,研究钻井地质剖面,勘探石油、天然气、煤以及铀等有用矿藏的地球物理方法,是地球物理测井的重要组成部分。
5、储集层:在石油工业中,储集层是指具有一定孔隙性和渗透性的岩层。
例如油气水层。
6、高侵:当地层孔隙中原来含有的流体电阻率较低时,电阻率较高的钻井液滤液侵入后,侵入带岩石电阻率升高,这种钻井液滤液侵入称为钻井液高侵,R XO<Rt多出现在水层。
7、低侵:当地层孔隙中原来含有的流体电阻率比渗入地层的钻井液滤液电阻率高时,钻井液滤液侵入后,侵入带岩石电阻率降低,这种钻井液滤液侵入称为钻井液低侵,一般多出现在地层水矿化度不很高的油气层8、水淹层:在油气田的勘探开发后期因注水或地下水动力条件的变化,油层发生水淹,称为水淹层,此时其含水饱和度上升、与原始状态不一致,在SP、TDT和电阻率等曲线上有明显反映。
9、周波跳跃(Travel time cycle Skip):因破碎带、地层发育裂缝、地层含气等引起声波时差测井曲线上反映为时差值周期性跳波增大现象。
10、中子寿命测井:是一种特别适用于高矿化度地层水油田并且不受套管、油管限制的测井方法,它通过获得地层中热中子的寿命和宏观俘获截面来研究地层及孔隙流体性质,常用于套管井中划分油水层、计算地层剩余油饱和度、评价注水效率及油层水淹状况、研究水淹层封堵效果,为调整生产措施和二、三次采油提供重要依据,是油田开发中后期的主要测井方法之一。
测井曲线划分油水层石油知识:测井曲线划分油、气、水层(多学点,没坏处)油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
井径常小于钻头直径。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。