高三数学双向细目表
- 格式:doc
- 大小:52.00 KB
- 文档页数:1
考试内容能力层次高考要求07年理解有关集合的概念和意义逻辑联结词四种命题及其相互关系理解逻辑联结词"或"."且""非"的含义;四种命题及其相互关系全特称命题的否定理解2充分条件与必要条件掌握充要条件的意义映射与函数理解有关概念抽象函数函数的单调性掌握判断一些简单函数单调性的方法二次函数掌握解决有关数学问题指数函数与对数函数掌握指数函数与对数函数的概念图象和性质函数的图象理解有关概念,利用特值、单调、周期、奇偶判断零点与方程理解有关概念,会求零点区间、个数利用函数知识解应用题掌握应用函数知识解决实际难度问题函数的综合问题掌握综合运用函数知识解决数学问题推理与证明数列的概念理解数列、通项公式的概念全国高考数学(新课标)知识双掌握由Sn求an的公式掌握能利用函数的奇偶性与图象的对称性的关系描述函数图象14(二次函数是偶函数求字母)函数的定义域·解析式·值域掌握有关概念集合与集合运算掌握有关术语和符号,能正确地表示出一些简单的集合1(不等式)函数的奇偶性等比数列掌握等比数列的通项公式,前n 项和公式6(等比性质)掌握差比裂项求和三角函数概念公式掌握任意角的正弦、余弦、正切的定义,用三角函数线表示正弦、余弦和正切;同角三角函数的基本关系式;正弦、余弦的诱导公式和差倍公式掌握通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力9(二倍角、和差公式约分,含π/4的)求值图象与性质掌握会用三角函数线画正弦函数,正切函数的图象,由诱导公式画余弦函数的图象;理解它们的性质;会用"五点法"3(一个半周期闭区间上图象)用"五点法"画函数y=Asin(ωx+Φ)的简图图象变换掌握利用三角知识求范围最值掌握运用所学三角知识解决实际问题A 、ω、Φ的物理意义y=Asin(ωx+Φ)的图象三角最值及综合应用掌握数列的综合应用理解掌握有关概念及解决实际问题等差数列掌握等差数列的通项公式,前n 项和公式16(基本量求d )了解共线向量,平面向量基本定理理解向量,向量共线的充要条件,平面向量的坐标掌握向量的几何表示,实数与向量的积,向量加法与减法,平面向量的坐标运算4(线性运算的坐标表示)了解用平面向量的数量积可以处理有关长度、角度和垂直等问题掌握平面向量的数量积及其几何意义;向量垂直的条件向量综合掌握综合不等式的概念性质理解不等式的性质不等式证明分析法、综合法、比较法证明简单的不等式均值不等式掌握并会简单的应用;解不等式掌握二次不等式、简单的分式不等式的解法掌握简单的绝对值不等式的解法直线方程及位置关系理解直线的倾斜角和斜率掌握两点斜率公式:一点和斜率求出直线方程的方法;点斜式、两点式和一般式,熟练求出直线方程.两条直线平行与垂直的条件,两条直线成的角、点到直线的距离公式,两条直线的位直关系了解简单的线性规划问题,线性规划的意义掌握二元一次不等式表示平面区域,简单线性规划问题向量、向量的加法与减法、实数与向量的积数量积正余弦定理掌握正弦定理、余弦定理,并能运用它们解斜三角形17(实际测量,用字母表示)线性规化不等式的应用灵活运用有关概念绝对值不等式理解不等式|a+b|≤|a|+|b|圆与圆理解16(外切)直线与圆掌握直线与圆的位置关系21(交点个数,结合向量共线类似椭圆问题)掌握椭圆的标准方程及其几何性质理解椭圆的定义、概念双曲线了解双曲线的标准方程及其几何性质13(几何性质应用求离心率)抛物线了解抛物线的标准方程及其几何性质7(从坐标考抛物线定义)轨迹方程了解直线与圆锥曲线掌握综合综合应用熟练掌握综合线面、面面平行线面、面面垂直18(面面垂直化为线面垂直,存在问题)三视图掌握三视图8(体积)体积计算了解会求几何体的表面积、体积,会处理几何体的侧面展开图问题8,11了解球的概念11(球内接三棱锥)掌握球的性质、表面积、体积公式,球面距离综合圆的方程球椭圆掌握圆的标准方程和一般方程算法初步掌握程序框图5(求和)古典概型掌握计算等可能性事件的概率,会用互斥事件的概率加法公式和相互独立事件的概率乘法公式计算一些事件的概率20(1)几何概型了解计算几何概型概率20(2)了解独立性检验了解线性回归的方法简单应用了解茎叶图掌握频率分布直方图抽样导数概念运算掌握函数在一点处的导数的定义和导数的几何意义;基本导数公式;和、差、积、商的求导法则;会求某些简单函数的导数;掌握导数求切线10导数应用了解可导函数的单调性与其导数的关系;可导函数在某点取得极值的必要条件和充分条件19掌握平均数与方差计算12统计掌握会求一些实际问题的最大值和最小值19掌握导数证明不等式、恒成立了解复数的有关概念及复数的代数表示和几何意义掌握运算法则,能进行复数代数形式的加法、减法、乘法、除法运算15说明21题必考有选修选考复数08年09年10年11年12年备注4(全特称命题的真假)321(2)(二次函数最值及解含参二次不等式)11(指对都有的不等式)12(画图象求最值)12(综合周期、奇偶绝对值画图求交点个数)11(指对都有的不等式)10(求零点区间)18(1)9(奇偶与指数不等式结合)12(图象与对数运算结合)知识双向细目表(文史类)1(绝对值不等式与有限集)1(有限集)316(奇偶性求和)1(不等式)1(有限集)1(不等式)8(和与项的比)1517(1)14(由和求公比)7(用到定义)11(二倍角化为二次函数求最值)17(1)107、11(用到)17(1)6(由定义得解析式并判断图象)11(单调区间、对称轴)16(由图象求ω、Φ进而求值)9(由图象求ω、Φ)12(求和)8(性质应用)17(求完通项、和后求和最值)17(2)13(通项应用)9(共线条件)2(用数量积坐标运算求夹角)5(由垂直求字母)7(由垂直求字母)13(由垂直求字母,非坐标)7(二次不等式解法,三个范围公共解)21(2)(讨论解含参二次不等式)20(斜率取值范围,化为不等式问题)10(线段点到原点距离)61114520(1)(1次比2次型不等式求范围)17(2)17(实际测量求值)16(解三角形求线段长)15(解三角形后求面积)17(2)20(2)(分成弧的比)20(2)(结合OA、OB垂直类似椭圆问题)20(1)由定义性质求方程20(1)椭圆定义4(离心率)42(直接求焦距)5(渐近线求离心率)1014(弦中点求抛物线方程)4(知切点求切线)9(定义应用求距离)10(用到)20(2)(切线方程)20(2)代入法求轨迹并讨论什么曲线16(求交点与原点组成三角形面积)20(2)(弦长问题)12(平行垂直判断)1812(平行垂直判断)18(线线垂直与线面垂直、面面垂直转化,求体积)18(1)1819(1)1811(三视图求全面积)1587(三视图求体积)1818(2)19(2)14(球内接正六棱柱求球的体积)7(知内接长方体求表面积)16(球中直角三角形)18(由直观图得三视图计算体积,证线面平行)9(平行、垂直,体积计算)5(求关于直线对称的圆)13(求圆的方程)20(1)(由三点定方程)20(1)(结合抛物线条件求圆的方6(三数输出最大)10(条件结构)56(图的含义)19(2)14(估计古典概型)618(2)19(2)3(散点图观察正负相关)3(相关系数的理解)16(说明直观含义)19(2)(画图并由图估计平均数)19(1)(分层抽样人数)19(1)(估计比例)(3)(用分层更好)421(切线求字母,切线与定直线围成面积)1321(1)(切线求字母)13(知切点求切线)21(1)(2)(恒成立求字母范围)21(1)(求极值)21(1)(单调区间)19(1)。
高中数学学业评价试卷双向细目表必修1说明:A :了解 B :理解与掌握 C :综合运用南京市高中数学学业评价试卷必修1(C 卷)一、选择题(每小题6分,共60分)1.已知集合A ={x |22≤x <10}和m =π,则下列关系中正确的是( ).A .m ⊆AB .m ∈/AC .{m }∈AD .{m }⊆A2.若全集U ={1,2,3,4},集合A ={1,2},则满足A ∪B =U 的集合B 是( ). A .1个 B .2个 C .3个 D .4个3.设集合M ={x|0≤x ≤2},集合N ={y |0≤y ≤2},下图给出4个图形分别表示集合M 到集合N 的对应,其中是从集合M 到集合N 的函数的是( ).4.已知函数y =x 2+ax +3的定义域为[-1,1]且当x =-1时,函数有最小值;当x =1时,函数有最大值,则a 满足( ).A .0<a ≤2B .a ≥2C .a<0 D .a ∈R5.当x ∈[-2,2)时,f (x )=3-x的值域是( ).A .[19,9)B .(19,9)C .[19,9]D .(19,9]6.已知指数函数y =a x (a >0且a ≠1)在[0,]1上的最大值与最小值的和为3,则实数a 的值为( ). A .14 B .12C .2D .47.函数y =x 2的图象与函数y =x 的图象在第一象限的部分( ).A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线y =x 对称 8.设0<a <1,则函数y =log a (x +5)的图象经过( ).A .第二象限,第三象限,第四象限B .第一象限,第三象限,第四象限C .第一象限,第二象限,第四象限D .第一象限,第二象限,第三象限 9.若关于x 的方程a x =x +a 有两个解,则实数a 的取值范围是( ).A .(1,+∞)B .(0,+∞)C . (0,1) 10.已知函数y =f (x )的图象如右图所示,则函数y =f (|x |)二、填空题(每小题5分,共30分) 11.设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},U A ={5},则实数a 的值为____________. 12.若集合A ={x |kx 2+4x +4=0}中只有一个元素,则实数k 的值为__________.13.某工厂8年来某种产品的总产量c 与时间t (年)的函数关系如下图,下列四种说法:(1)前三年,总产量增长的速度越来越快;(2)前三年中,总产量增长的速度越来越慢; (3)第三年后,这种产品停止生产; (4)第三年后,年产量保持不变.其中说法正确的是_______________.14.若f (x )是R 上的奇函数,当x >0时,f (x )=x (x +1),则当x <0时,f (x )= . 15.若log 37·log 29·log 49a =log 412,则a 的值为_____________.16.若函数y =x 2-6x +2m 的定义域为R ,则实数m 的取值范围是 .A B CA B D C三、解答题(每小题14分,共70分)17.(本题满分14分)已知2≤x≤8,求函数f(x)=(log2x2)(log24x)的最大值和最小值.18.(本题满分14分)已知函数f(x)=x(1-22x+1).(1)判断f(x)的奇偶性;(2)证明:当x≠0时,f(x)>0.19.(本题满分14分)设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若A∪B=B,求实数a的取值范围;(2)若A∩B=B,求实数a的取值范围.20.(本题满分14分)设函数f(x)=|x2-4x-5|.(1)在区间[-2,6]上画出函数f(x)的图象;(2)设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6 ,+∞),根据图象判断集合A和B之间的关系.21.(本题满分14分)已知实数a<0,函数f(x)=a1-x2+1+x+1-x.(1)设t=1+x+1-x,求t的取值范围;(2)将f(x)表示为t的函数h(t);(3)若函数f(x)的最大值为g(a),求g(a).必修1(C)一、选择题(每小题6分,共60分)1.D 2.D 3.B 4.B 5.D 6.C 7.D 8.A 9.A 10.B 二、填空题(每小题5分,共30分)11.2 12.0或1 13.②④ 14.-x 2+x 15.22 16.[92,+∞) 三、解答题(每小题14分,共70分)17.解:由2≤x ≤8得12≤log 2x ≤3,y =( log 2x -1)(2-log 2x )=-(log 2x -32)2+14.当log 2x =32时,即x =22时,y 取最大值14;当log 2x =3时,即x =8时,y 取最小值-2.18.解:(1)函数f (x )=x (1-22x +1)=x (2x -12x +1),所以f (-x )=(-x )(2-x -12-x +1)=x (2x -12x +1),所以f (x )是偶函数.(2)当x >0时,2x>1,所以f (x )=x (2x -12x +1)>0,又因为f (x )是偶函数,所以当x <0时,f (x )=f (-x )>0,于是,当x ≠0时,f (x )>0. 19.解:(1)A ={0,-4}.又因为A ∪B =B ,所以A ⊆B .又B 为一元二次方程的解集,最多有两个元素,因此B =A ={0,-4}.即 ⎩⎨⎧ a 2-1=0, (-4)2+2(a +1)(-4)+a 2-1=0,解得a =1. 所以若A ∪B =B 时,实数a 的取值范围是{a | a =1}. (2)A ∩B =B 即B ⊆A ,则B 可能为∅,{0},{-4},{0,-4}. 当B =∅时,由△=[2(a +1)]2-4(a 2-1)<0,解得a <-1;当B ={0}时,则⎩⎨⎧△=0,a 2-1=0,解得a =-1;当B ={-4}时,则⎩⎨⎧△=0,(-4)2+2(a +1)(-4)+a 2-1=0,无解; 当B ={0,-4}时,由(1)得a =1.综上,A ∩B =B 时,实数a 的取值范围是{a | a ≤-1或a =1}. 20.解:(1)如右图所示. (2)方程f (x )=5的解分别是2-14,0,4和2+14, 由于f (x )在(-∞,-1]和[2,5]上单调递减, 在[-1,2]和[5,+∞)上单调递增,因此A =(-∞,2-14]∪[0,4]∪[2+14 ,+∞). 由所以B ⊆A .21.解:(1)令t =1+x +1-x .要使有t 意义,必须1+x ≥0且1-x ≥0,即-1≤x ≤1,∴t 2=2+21-x 2.∴t 2∈[2,4]且t ≥0 .t 的取值范围是[2,2].(2)∵t 2=2+21-x 2,∴1-x 2=12t 2-1.∴m (t )=a (12t 2-1)+t =12at 2+t -a ,t ∈[2,2].(3) h (t )=a (12t 2-1)+t =12at 2+t -a ,t ∈[2,2].∵a <0,∴函数y =h (t ), t ∈ [2,2]的图象是开口向下的抛物线的一段. h (t )=12at 2+t -a =12a (t +1a )2-a -12a.若-1a ∈[0,2]时,即a ≤-22,则g (a )=h (2)=2;若-1a ∈(2,2]时,即-22<a ≤-12,则g (a )=h (-1a )=-a -12a ;若-1a ∈(2,+∞)时,即-12<a <0,则g (a )=h (2)=a +2.综上有g (a )=⎩⎪⎨⎪⎧2,a ≤-22,-a -12a ,-22<a ≤-12, a +2,-12<a <0.。
最新推荐高中数学基础知识双向细目表(定稿)最新的高中数学基础知识双向细目表包括集合的含义、表示和基本关系、空集的概念、并集、交集、补集、函数的概念、定义域、表示法、解析式、分段函数、映射、单调性、值域、奇偶性、图象、抽象函数、根式、指数幂的运算等知识点。
要求掌握这些知识点的应用、综合和理解,包括识记、填空和解答题型。
五年的高考考试频数为0.7至1,难度在0.6至0.95之间。
基本初等函数包括指数函数、对数函数和幂函数,要掌握它们的概念、性质、图象以及特殊点等内容。
此外,还要了解函数的零点与方程根的联系、一元二次方程根的存在性及根的个数,以及根据具体函数的突象判断相应方程解的情况。
对于几何学,要了解棱柱、棱锥、棱台、圆柱、圆锥、圆台、球和简单组合体的结构特征。
空间几何体的投影研究空间几何体的投影,包括中心投影和平行投影。
掌握三视图的画法,能够根据给定的图形画出其三视图。
理解主观图的画法,能够根据给定的图形画出其主观图。
了解平面图与直观图面积的关系,能够根据给定的图形计算其面积。
掌握棱柱、棱锥、棱台的表面积和体积的计算方法,能够根据给定的图形计算其表面积和体积。
理解球的表面积和体积的计算方法,能够根据给定的半径计算其表面积和体积。
了解几何体内切球和外接球的问题,能够根据给定的图形计算其内切球和外接球的半径。
空间几何体的投影是几何学中的重要内容,包括中心投影和平行投影。
掌握三视图的画法,可以根据给定的图形画出其三视图。
此外,理解主观图的画法,能够根据给定的图形画出其主观图。
在计算面积方面,需要了解平面图与直观图面积的关系,并能够根据给定的图形计算其面积。
在计算体积和表面积方面,需要掌握棱柱、棱锥、棱台的计算方法,以及球的表面积和体积的计算方法。
此外,需要了解几何体内切球和外接球的问题,能够根据给定的图形计算其内切球和外接球的半径。
本文介绍了数学必修三中的两个知识点:圆的方程和算法概念,以及一个统计学知识点。