主要内容
• 一 图像分割概述 • 二 阈值分割 • 三 边缘检测 • 四 区域分割
一、图像分割概述
• 图像分割是指通过某种方法,使得画 • 面场景中的目标物被分为不同的类别。 • 通常图像分割的实现方法是,将图像 • 分为“黑”、“白”两类,这两类分别代 • 表了两个不同的对象。 • 因为结果图像为二值图像,所以通常 • 又称图像分割为图像的二值化处理。
2.1 类间方差-OTSU
• OTSU算法也称最大类间方差法,有时也称之为 大津算法,由大津于1979年提出,被认为是图像 分割中阈值选取的最佳算法,计算简单,不受图 像亮度和对比度的影响,因此在数字图像处理上 得到了广泛的应用。它是按图像的灰度特性,将图 像分成背景和前景两部分。因方差是灰度分布均 匀性的一种度量,背景和前景之间的类间方差越大, 说明构成图像的两部分的差别越大,当部分前景错 分为背景或部分背景错分为前景都会导致两部分 差别变小。因此,使类间方差最大的分割意味着错 分概率最小。
的阈值。
设某一图像只由目标物和背景组成,已知其灰度级分布概率 密度分别为P1(Z)和P2(Z),目标物体象素占全图象素比为ө, 因此该图像总的灰度级概率密度分布P(Z)可用下式表示: P(Z)= ӨP1(Z)+ (1-Ө)P2(Z)
• 设选用的灰度级门限为Zt,图像由亮背景上的暗 物体所组成,因此凡是灰度级小于Zt的象素被认 为是目标物,大于Zt的象素皆作为背景。
阈值的选取时阈值分割技术得关键,如果过高,则过多的目标点被 误归为背景;如果阈值过低,则会出现相反的情况。由此可见,阈值化 分割算法主要有两个步骤:
1) 确定需要的分割阈值;2) 将分割阈值与象素值比较以划分象素。
在利用阈值方法来分割灰度图像时一般都对图像有一定的假设。基于 一定的图像模型的。最常用的模型: