当前位置:文档之家› 卫星重力测量

卫星重力测量

卫星重力测量
卫星重力测量

卫星重力测量-基础、模型化方法与数据处理算法

作者简介:张传定,男,1966年04月出生,1996年09月师从于解放军信息工程大学陆仲连教授,于2000年12月获博士学位。

摘要

论文的中心内容是卫星重力测量中如何由星载传感器获得的观测数据恢复地球重力场这一过程的模型化问题。旨在吸取前人的研究成果,提出更加合理的数据处理模型。论文最突出的贡献是,改造并完善了大地重力学、空间大地测量、卫星轨道力学等学科模型化的理论与方法以适应卫星重力测量这一新型观测技术。作者的主要工作和创新点有:

1.在综合卫星重力测量有关最新研究成果的基础上,系统地论述了动态加速度测量、卫星重力梯度测量的基本原理;论证了它们的测量精度与姿态角加速度的关系以及卫星重力测量系统最终恢复地球重力场能力的判定准则;深入理解并掌握了现行SST、SGG卫星CHAMP、GRACE、GOCE各项指标及恢复地球重力场各频段的精度指标。

2.简要介绍了卫星重力测量中所涉及到的曲线坐标系下矢量、张量与曲线坐标之间的微分关系、坐标系之间的变换关系以及它们的矩阵表示。详细研究了在地球重力场确定中常用的关于研究点P和流动点Q相互关联的球极坐标系,给出了球极坐标系下地球引力位V关于P点和关于Q点的微分公式以及它们与球坐标系下局部微分算子的关系。深入研究了关于P和Q两点局部导数算子的相互作用问题,得到了扰动场元之间核函数和协方差函数的解析与级数展开式,首次给出了较为实用的明晰表达式。此结果是对物理大地测量学关于这一论题的补充和完善。这项工作是本文的一个创新点。

3.详细推导了地球、卫星、加速度传感器检验荷载这一特殊限定性三体问题的运动方程;指出星载加速度传感器的输出就是卫星所受非引力加速度和检验荷载相对于卫星中心地球引力的潮汐力之差;进而得到了由星载加速度传感器的比力测量和GPS跟踪测量数据直接恢复地球引力矢量的理论公式。

4.通过对扭秤、旋转梯度仪工作原理的考察和Molodensky关于垂线偏差推求高程异常的论述以及目前业已发现水平梯度分量的某种组合是球面正交函数系的事实,作者明确指出,在地球重力场的研究中,水平方向观测量的组合应作为复数使用。扰动场元观测量的复数表达是本文立论和各种模型化(建模)工作的思想基础,也是本文最为突出的创新点。

5.在§2.7中,直接由体球谐函数水平梯度的复表示定义并证明了描述地球引力位直到二阶水平梯度所需的球面正交函数系。它们关于纬度的函数是Legender函数及其导数的拟线性组合,可由目前熟知有关Legender函数及其导数的递推公式给予赋值。连同球谐函数构成了描述引力矢量、引力梯度张量所需的正交函数系。因而,利用它们可将引力矢量、引力梯度张量的复分量表达成一致的形式。

6.利用卫星重力测量数据恢复地球重力场,若从边值问题理论上可将其归结为平均轨道面上卫星重力测量超定边值问题。通常又将利用单个边值条件确定扰动位问题称为单定问题。在§3中,先以重力异常为例,类比依次给出直到二阶梯度球域单定连续边值问题恢复地球引力位系数的理论公式及其外部解析解和向下延拓截断核函数解;接着导出离散网格平均重力异常对应的简单调和分析公式和最小二乘调和分析公式;然后推广得到广义梯度调和分析公式和超定边值问题的最小方差解、最小二乘解。并证明了最小方差解等价于单定边值问题调和分析解的频域加权平均;最小二乘解等价于单定离散边值问题最小二乘调和分析解法方

程相加所得的解。广义调和分析方法所需的有关勒让德函数及其导数的积分递推公式在§3.6中给出。

7.首次定义并推导出了水平一阶和二阶梯度平滑因子、。在概念上澄清了它们与熟知的面球谐函数平滑因子是不同的。尽管、与相差不大,但在实践上应严格区分它们,这样逻辑上才是严格的。与观测量的对应关系是

使用时应按格网均值数据类型,采用相应的平滑因子。

8.由于水平扰动场元之间的协方差并非各向同性,导致协方差矩阵结构复杂(子矩阵不是Toeplitz循环阵),不能利用变换矩阵将其降阶,无法付诸实践,迄今尚无最小二乘配置理论应用于水平扰动场元观测量的模型化公式和数据处理方法。作者研究发现,利用水平梯度的复组合,即复数表示后,扰动重力场元复组合之间的协方差函数尽管还是各向异性,但它们对应的协方差矩阵却具有分块Toeplitz循环阵的结构,因而水平分量复组合的配置问题与重力异常的配置问题相似,可以利用傅立叶变换矩阵进行降阶处理。这表明,必须将最小二乘配置理论拓展,以适应复数信号的配置问题,本文将其称为最小二乘复配置。

作者将最小二乘配置理论拓展为既能处理复信号又能处理实信号的配置模型,得到了最小二乘复配置解所需的公式。结合卫星重力测量观测量,详细研究了重力场元复分量之间协方差函数的级数展开式、扰动引力位系数与复分量间的协方差关系。然后,利用最小二乘复配置理论和重力场复分量之间协方差函数表示,得到了与重力异常配置解接近于一致的各类单定离散边值问题的最小二乘复配置广义调和分析解和超定离散边值问题的最小二乘复配置广义调和分析解。利用复数表示,解决了最小二乘配置理论难以用于重力场水平观测量这一瓶颈问题。

9.基于摄动力的S、T、W分解,首次给出了卫星受摄运动方程的反解公式。它只需对轨道根数求一次时间微分,便可求得摄动力的S、T、W分解(不含中心引力)。与由卫星的地心位置矢量求二次导数得卫星所受力(含中心引力)的直接方法相比,该方法因自然扣除中心引力且只需求时间一次导数,理论上精度要高一些,它具有Hill方程类似的作用,可用S、T、W的时间序列与非心引力矢量的S、T、W分解建立联系,得到时域观测方程。

10.成功地将高斯型求积公式用于常微分方程的数值解中,得到了高斯型隐式龙格库塔方法(GRK),4级7阶GRK法的精度已与目前较为常用的10级8阶RK法的精度相当。任意级GRK法的权系数恒为正值,这就是GRK法精度高的本质所在。利用Legender多项式的零点可以得到任意阶GRK法的权系数,而传统高阶RK法的权系数只能手工推算,而且同牛顿柯斯特积分一样,高阶公式是不稳定的。

11.通过地面跟踪动力法观测方程的建立,得到了SST观测的动力法观测方程。指出尽管SST测量是地面跟踪的空间拓展,但SST测量因增加了非引力摄动比力加速度观测量,其观测方程与地面跟踪观测方程相比,具有质的差异,这正是SST能以较高精度恢复地球重力场的优势所在。

12.利用最小二乘调和分析公式推导了确定恢复重力场最高阶次的理论准则,其水平敏感度准则系作者给出,利用累积代表误差和截断误差曲线的交点,即可求定各类观测量敏感地球重力场的最高阶次。

13.简要论述了卫星重力梯度测量数据向下延拓的截断核谱组合解及其截断阶次和频域加权准则。假定梯度测量数据各分量间以及相邻采样点间独立不相关,则频域加权与阶次无关,只与独立观测量的个数有关。

14.配置方法的缺陷是,在数据范围和分辨率一定时,增加观测量类型,意味着协方差矩阵的维数升高。若是全张量梯度测量数据,则协方差矩阵的维数将是单个分量协方差矩阵的5倍。为解决矩阵降阶问题,在§7.3中,阐述了最小二乘矢量、张量配置的思想及其算

法公式,为利用卫星重力测量数据逼近局部重力场提供了可用于实践的数据处理方法。

关键词:地球重力场,卫星重力测量,Toeplitz矩阵,正交函数系,复数表示,边值问题,调和分析,平滑因子,最小二乘配置,最小二乘复配置,最小二乘矢量配置,最小二乘张量配置,摄动运动方程

ABSTRACT

This dissertation is mainly focused on the modeling process of the recovery of the earth's gravity field from observations acquired by sensors onboard satellites, with the aim of summarizing the works done before the author and establishing still more appropriate data processing models. The most important contribution this dissertation presents is that the modeling theories and methods of geodetic gravimetry, space geodesy and satellite orbit dynamics have been reconstructed and perfected so as to adapt to the new surveying techniques of satellite-borne gravimetry. The main work and innovations done by the author are presented as follows:

1. On the basis of the generalization of the latest studies of satellite-borne gravimetry, the author discusses the principles of dynamic acceleration measurement and satellite-borne gradiometry systematically, and demonstrates both the relationship between accuracy and angle acceleration and the determinant rules of the ability of the earth's gravity field recovery from satellite-borne gravimetry. Then the author has a deep inquiry into the targets of the current SST and SGG satellites such as CHAMP, GRACE and GOCE as well as the accuracy targets of different frequencies of the earth's gravity field recovery.

2. The author then introduces the differential relationship between vectors as well as tensors in a curve coordinate system and curve coordinates, and the transformation relationship between coordinate systems and their matrix expressions. After studying the frequently used spherical polar coordinate system concerning the calculating point P and the mobile point Q in detail, the author presents the differential formulae of the earth's gravitational potential V with respect to the points P and Q and their relationship with partial differential operators in a spherical coordinate system. Then after the author researches the interaction problem of the partial derivative operators with respect to the two points P and Q, analytical expressions as well as series expansions of the kernel function within disturbing gravity field elements are determined, and their explicit expressions which can be applied practically are given for the first time. This achievement, being an innovation of the dissertation, is a supplement and perfection of the topic in physical geodesy.

3. The author deduces the motion equation of the specially restricted three-body problem that consists of the earth, satellite and acceleration sensor test payload in detail, and points out that the output of the acceleration sensor onboard the satellite is the very difference of the non-gravitation acceleration acting on the satellite and the tidal forces of the test payload relative to the gravitation at the center of the satellite, and thus obtains the theoretical formula of the earth's gravity vector recovery from measurement of the acceleration sensor onboard satellite and the GPS tracking observations.

4. The author points out that the combination of horizontal observable should be used in the form of the complex number in the study of gravity field through an inspection of the

principles of torsion balance and rotational gradiometer and the discussion of the acquisition of height anomaly from vertical deflections according to Molodensky's, as well as the fact that some combination of horizontal gradient components are orthogonal functions on a spherical surface. The complex expression of the observations of disturbing gravity elements is the basis of the argument of this dissertation and all kinds of modeling processes and it is also the most prominent innovation.

5. In section 2.7, according to the complex expression of the horizontal gradient of spherical harmonic, the spherical orthogonal function family needed for the description of the earth's gravity potential up to 2 degree horizontal gradients is defined and proved directly. The functions, latitude being parameter, are the quasi linear combination of the Legender functions and their derivatives, which can be evaluated by the recursive formulae of the Legender function and its derivatives. Therefore, with these functions, the complex components of the gravity vector and the gravity gradient tensor can be expressed in a consistent form.

6. When it comes to the gravity field recovery from satellite-borne gravimetry observations through the theory of the boundary value problem, this problem can be reduced to the over-determined boundary value problem of satellite-borne gravimetry on an average orbital plane. Usually the determination of the disturbing gravity potential with a single boundary value condition is called a single-determined problem. In section 3, taking the gravity anomaly for example firstly, the author presents theoretical formulae of the recovery of the earth's gravity potential coefficients, and its external analytical solution as well as the truncated kernel solution of downward continuation from up to two degree gradient by analogy, as to the single-determined continuous boundary value problem in sphere region. The author also presents simple harmonic analysis formulae and least squares harmonic analysis formulae corresponding to discrete grid mean gravity anomaly. Then these formulae are generalized to obtain what is called the generalized gradient harmonic analysis method in the dissertation. This step is followed by the minimum variance solution and least squares solution to the over-determined boundary value problem. It is also proved that the minimum variance solution is equivalent to the weighted average in frequency domain of the harmonic analysis solution to the single determined boundary value problem, and that the least squares solution is equivalent to the summation of the normal equations of the least squares harmonic analysis solution to the single determined discrete boundary value problem. The recursive formulae of the Legender and its derivatives requisite for the generalized harmonic analysis method are given in section 3.6.

7. It is for the first time that the horizontal one- and two- degree gradient smoothing factors , are defined and deduced. And the conceptional difference between , and the well-known surface spherical harmonic is clarified. Although there is small difference between , and , yet they should be strictly distinguished in practice so as to keep strict in logic. The corresponding relation of and observable is shown as follows:

In application, the selection of the smoothing factors should be based on the type of the grid mean values.

8. On the ground that the covariance between the disturbing gravity field elements is not

isotropic, the covariance matrix has a complicated structure (its submatrix being not repetitive Toeplitz matrix) and thus its degree cannot be degraded with transformation matrix method, so it cannot be put into practice. So far, the application of least squares collocation to the modeling and data processing of the horizontal disturbing gravity field observations has not been found in literature. After studying this phenomenon, the author finds that, the covariance matrix of the complex expressions of horizontal gradients of the disturbing gravity field elements has a structure of blockwise repetitive Toeplitz matrix, though the covariance within the disturbing gravity field elements is still anisotropic. Therefore, the collocation problem of the complex combination of horizontal components is similar to that of gravity anomaly, which makes the degradation be able to be completed by FFT transformation matrix. This indicates that the least squares collocation theory must be developed so as to adapt to the collocation of complex signals. And this is what is called the complex least squares collocation in the dissertation. The author develops the least squares collocation into the collocation model which can deal with both complex and real signals, thus obtaining formulae for complex least squares collocation. In reference to the satellite-borne gravimetry observations, the author studies the series expansion of covariance between the gravity field elements' complex components and the covariance relation between the disturbing gravity potential coefficients, and the complex components in detail. Then, through applying the complex least squares collocation theory and the covariance expressions between the complex components of the gravity field, the author acquires the generalized harmonic analysis solution of the complex least squares collocation of all kinds of single determined discrete boundary value problems and such solution to over-determined discrete boundary value problems. The solution is nearly consistent with the result of gravity anomaly collocation. By means of the complex expression, the author overcomes the bottleneck problem that it is hard to apply the least squares collocation theory to the horizontal observations of the gravity field.

9. Based on the S, T and W decomposition of perturbing forces, the formulae of the reverse solution to the satellite's perturbed motion equation is given for the first time. As long as the first differential of the orbital elements with respect to time is made, the S, T, and W decomposition of perturbing forces (excluding the earth's central gravitation) can be obtained. Compared with the direct method of acquiring the forces exerted on satellite(containing the earth's central gravitation) from the second derivative of the satellite's geocentric position vector, this method is still more accurate theoretically in that it excludes the earth's central gravitation and just needs the first derivative with respect to time. And this method works like the Hill's equation, so the observation equation in time domain can be obtained by relating the time sequence of S,T and W with the S,T and W decomposition of non-central gravitation.

10. The author successfully applies the Gauss-type integral formula to the numerical solution to the constant differential equation and creates the Gauss-type implicit Runge-Kutta Method(GRK) of which the accuracy of order 4 and degree 7 is already equivalent to that of the RK method with order 10 and degree 8 that is in common use. The GRK method of any order has a positive weight coefficient, which leads to its higher accuracy. The weight coefficients of GRK of any order can be acquired through the zero points of the Legender polynomial, whereas the weight coefficients of the traditional RK of higher orders can only be solved manually and,like the Newton-Coast Integral, the formula of higher order is unstable.

11. Through the establishment of observation equation of ground tracking dynamic method,

the dynamic observation equation of SST is obtained. The author points out that there is one more observable, that is to say, the acceleration of non-gravitational perturbing forces in the SST measurement, though the SST measurement is the extension of ground tracking. Therefore, the observation equation of the SST measurement is essentially different from that of the ground tracking, which is the advantage of the SST's recovery of the earth's gravity field with higher accuracy.

12. By means of the least squares harmonic analysis formulae, the theoretical rule in the determination of the highest order and degree of the earth's gravity field recovery is deduced, in which the horizontal sensitivity rule is the author's. The highest order and degree of the gravity field sensed by all kinds of observations can be determined via the intersections of the accumulated representative error curve and the truncation error curve.

13. The author discusses the solution of the truncated kernel spectral combination of the downward continuation of the satellite gravity gradiometry observations and the determinant rule of its truncation order and degree as well as weighting in frequency domain. Assuming that the components of gradient observation and the neighboring sampling points are independent of each other, the weighting in frequency domain has nothing to do with order and degree, only depending on the amount of independent observable.

14. The limitation of the collocation method is that, the increment of observable types may cause the increase of the dimension of covariance matrix when the range and resolution of data are fixed. If it happens to be the full-tensor gradient observation data, then the dimension of covariance matrix will be five times that of single component covariance matrix. In order to solve this problem, the author discusses the practical computing method in applying the least squares collocation of vector and tensor, thus providing a data processing method that can be put into practice of the approximation of the local gravity field from satellite-borne gravimetric observations.

Keywords: earth's gravity field, satellite-borne gravimetry, Toeplitz matrix, orthogonal function family, complex expression, boundary value problem, spherical harmonic analysis, smoothing factor, least squares collocation, least squares complex collocation, least squares vector collocation, least squares tensor collocation, perturbed motion equation

卫星重力测量

卫星重力测量-基础、模型化方法与数据处理算法 作者简介:张传定,男,1966年04月出生,1996年09月师从于解放军信息工程大学陆仲连教授,于2000年12月获博士学位。 摘要 论文的中心内容是卫星重力测量中如何由星载传感器获得的观测数据恢复地球重力场这一过程的模型化问题。旨在吸取前人的研究成果,提出更加合理的数据处理模型。论文最突出的贡献是,改造并完善了大地重力学、空间大地测量、卫星轨道力学等学科模型化的理论与方法以适应卫星重力测量这一新型观测技术。作者的主要工作和创新点有: 1.在综合卫星重力测量有关最新研究成果的基础上,系统地论述了动态加速度测量、卫星重力梯度测量的基本原理;论证了它们的测量精度与姿态角加速度的关系以及卫星重力测量系统最终恢复地球重力场能力的判定准则;深入理解并掌握了现行SST、SGG卫星CHAMP、GRACE、GOCE各项指标及恢复地球重力场各频段的精度指标。 2.简要介绍了卫星重力测量中所涉及到的曲线坐标系下矢量、张量与曲线坐标之间的微分关系、坐标系之间的变换关系以及它们的矩阵表示。详细研究了在地球重力场确定中常用的关于研究点P和流动点Q相互关联的球极坐标系,给出了球极坐标系下地球引力位V关于P点和关于Q点的微分公式以及它们与球坐标系下局部微分算子的关系。深入研究了关于P和Q两点局部导数算子的相互作用问题,得到了扰动场元之间核函数和协方差函数的解析与级数展开式,首次给出了较为实用的明晰表达式。此结果是对物理大地测量学关于这一论题的补充和完善。这项工作是本文的一个创新点。 3.详细推导了地球、卫星、加速度传感器检验荷载这一特殊限定性三体问题的运动方程;指出星载加速度传感器的输出就是卫星所受非引力加速度和检验荷载相对于卫星中心地球引力的潮汐力之差;进而得到了由星载加速度传感器的比力测量和GPS跟踪测量数据直接恢复地球引力矢量的理论公式。 4.通过对扭秤、旋转梯度仪工作原理的考察和Molodensky关于垂线偏差推求高程异常的论述以及目前业已发现水平梯度分量的某种组合是球面正交函数系的事实,作者明确指出,在地球重力场的研究中,水平方向观测量的组合应作为复数使用。扰动场元观测量的复数表达是本文立论和各种模型化(建模)工作的思想基础,也是本文最为突出的创新点。 5.在§2.7中,直接由体球谐函数水平梯度的复表示定义并证明了描述地球引力位直到二阶水平梯度所需的球面正交函数系。它们关于纬度的函数是Legender函数及其导数的拟线性组合,可由目前熟知有关Legender函数及其导数的递推公式给予赋值。连同球谐函数构成了描述引力矢量、引力梯度张量所需的正交函数系。因而,利用它们可将引力矢量、引力梯度张量的复分量表达成一致的形式。 6.利用卫星重力测量数据恢复地球重力场,若从边值问题理论上可将其归结为平均轨道面上卫星重力测量超定边值问题。通常又将利用单个边值条件确定扰动位问题称为单定问题。在§3中,先以重力异常为例,类比依次给出直到二阶梯度球域单定连续边值问题恢复地球引力位系数的理论公式及其外部解析解和向下延拓截断核函数解;接着导出离散网格平均重力异常对应的简单调和分析公式和最小二乘调和分析公式;然后推广得到广义梯度调和分析公式和超定边值问题的最小方差解、最小二乘解。并证明了最小方差解等价于单定边值问题调和分析解的频域加权平均;最小二乘解等价于单定离散边值问题最小二乘调和分析解法方

给力的新一代重力卫星

龙源期刊网 https://www.doczj.com/doc/3513858102.html, 给力的新一代重力卫星 作者:籍利平 来源:《百科知识》2012年第19期 前不久,美国国家航空航天局(NASA)公布的最新资料显示,地球的重力正在随着全球气温的上升而发生变化。NASA表示,1900~2012年的100多年里,全球气温上升了0.75℃。尽管升高了不到1℃,地球的重力还是发生了不小的变化。 NASA的这份报告出自“格瑞斯(GRACE)”重力测量卫星的监控结果。通过测量卫星轨道飞行路径的变化,可以得出冰川融化对地球质量和引力的影响。电脑将数据综合分析后发现,“非正常的融冰正在影响着地球的重力”。德国科学家也利用“格瑞斯”在2002~2011年的数据 发现,格陵兰冰川的质量在10年间减少了240亿盹,这意味着海平面平均每年上升0.7毫米。 人造地球卫星:重力测量的另一种可能 地球表面上的许多地方人类无法抵达,重力测量难以实现。人造地球卫星的发射,为观测全球范围内的重力场及其随时间的变化提供了可能,重力测量精度也随之提高。 人造地球卫星在空间运行时,主要受地球的引力和离心力影响,换句话说,卫星主要受地球重力的作用。基于此,20世纪50年代末和20世纪60年代初期,人们就已经利用对近地卫星的光学观测(主要是在地面对卫星拍照,根据照片上卫星和恒星的位置关系,确定卫星的坐标)来跟踪卫星。20世纪60年代中期出现的卫星激光测距技术,因为测量精度更高,逐渐取代了卫星的光学观测技术。到20世纪80年代中后期,研究人员利用卫星轨道反算地球重力场的参数,建立了早期的低阶全球地球重力场模型,当时确定的全球大地水准面的精度为米级。 20世纪70年代末出现的卫星雷达测高技术,利用星载激光雷达测定海面高度。精度从起初的米级达到了厘米级;同时卫星激光测距技术的测量精度也从米级、分米级达到了厘米级别。在这一阶段人们先后建立了较高阶次的地球重力场模型,相当于100千米至50千米的分辨率。相应地,确定大地水准面(大地水准面是由静止海水面向大陆延伸所得到的封闭曲面,它是描述地球形状的一个重要物理参考面,也是海拔高的起算面)的精度为分米或者亚分米级,对于重力异常(理论值和实际数值的差值)的确定精度达到了几个毫伽(毫伽是表示重力场强度的单位,1毫伽=10-5米/平方秒)的数量级。 不过,上面提到的这些卫星,都不是直接用来测定地球重力场的。 经过数十年的理论研究、技术设计和试验,直接使用卫星测定地球重力场的计划终于在2000年变为现实,2002年和2009年又有3颗重力卫星发射。这4颗卫星分为3种:2000年发射的挑战微小卫星平台(CHAMP)、2002年发射的重力恢复和气候试验(GRACE——音译为格 瑞斯)以及2009年发射的重力场和静态洋流探索(GOCE)。其中,格瑞斯由两颗卫星组成,由

卫星重力的发展及应用

卫星重力的发展及应用 姓名:*** 学号:09200200** 摘要:卫星重力资料在恢复地球重力场方面具有全球高覆盖率、高空间分辨率、高精度和高时间重复率等优点, 为大地测量和地球物理学科的发展开辟了新的途径。本文简要回顾了卫星重力的发展历程, 介绍了四种卫星重力探测技术的原理和发展状况, 最后对卫星重力在地球科学中的的应用情况进行了简要总结。 关键字:卫星重力;地球重力场;重力测量 1 引言 地球重力场是地球的一个基本物理场, 是地球物质分布和地球旋转运动信息的综合效并制约地球本身及其邻近空间的一切物理事件,因此,地球重力场观测是地球科学的一项基础性任务。 目前常使用的重力测量手段主要有地表观测、航空测量以及卫星重力探测等。由于地面重力测量受地形和气候影响较大、耗时多、劳动强度大、作业成本高,使重力测量的地面覆盖率和分辨率受到极大的限制。航空重力测量虽然能够克服地形条件的限制, 但却只能用于局部地区或区域性的测量, 且仍受到气候条件的影响。卫星重力是近年来发展起来的新型空间探测技术, 其发展和应用是当今国际大地测量学界继GPS之后的又一次革命性突破。卫星重力探测不受地形等自然条件的影响,为解决全球高覆盖率、高精度、高空间分辨率和高时间重复率重力测量开辟了新的有效途径,不但弥补了传统重力测量方法的不足,而且可以使地球重力场和大地水准面的测定精度提高一个数量级以上,并可测定高精度的时变重力场,很快成为了大地测量和地球物理学中新的研究热点和前沿。 卫星重力就是以卫星为载体,利用卫星本身为重力传感器或卫星所携带的重力传感器(加速度仪、精密测距系统和重力梯度仪等), 观测由地球重力场引起的卫星轨道摄动, 以这些数据资料来反演和恢复地球重力场的方法和技术。广义的卫星重力测量泛指所有基于卫星观测资料确定地球重力场的技术, 它包括了从20 世纪60 年代发展起来的地面光电卫星跟踪技术、Doppler 地面跟踪技术、人造卫星激

国际重力卫星研究进展和我国将来卫星重力测量计划_郑伟

第35卷第1期 2010年1月 测绘科学 Science of Surveying and M app ing Vol 135No 11 Jan 1 作者简介:郑伟(19772),男,山西太原人,中国科学院测量与地球物理研究所,助理研究员,理学博士,日本京都大学博士后,日本JSPS Pr oject Fell ow 2shi p 外籍特别研究员,主要从事基于卫星重力测量恢复地球和月球重力场的理论和方法等方面研究。E 2mail:wzheng@asch 1whigg 1ac 1cn 收稿日期:2008209227 基金项目:中国科学院知识创新计划(kzcx22y w 2202);国家“863”计划(2006AA09Z153);国家自然科学基金(40674038,40674013) 国际重力卫星研究进展和我国将来卫星重力测量计划 郑 伟 ①② ,许厚泽①,钟 敏①,员美娟 ③ (①中国科学院测量与地球物理研究所,武汉 430077;②日本京都大学防灾研究所,京都 61120011; ③武汉科技大学应用物理系,武汉 430081) 【摘 要】本文首先分别介绍了国际已经成功发射的专用地球重力测量卫星CHAM P 、GRACE 以及即将发射的 G OCE 、GRACE Foll ow 2On 和专用月球重力探测卫星GRA I L 的研制机构、轨道参数、关键载荷、跟踪模式、测量原理、科学目标和技术特征;其次,阐述了当前相关学科对地球重力场测量精度的需求;最后,建议我国在将来实施的卫星重力测量计划中首选卫星跟踪卫星高低\低低模式,尽快开展轨道参数优化选取的定量系统研究论证和重力卫星系统的误差分析,依据匹配精度指标先期开展重力卫星各关键载荷的研制以及尽早启动卫星重力测量系统的虚拟仿真研究。【关键词】重力卫星;CHAM P;GRACE;G OCE;GRACE Foll ow 2On;GRA I L 【中图分类号】P223 【文献标识码】A 【文章编号】100922307(2010)0120005205 1 引言 21世纪是人类利用卫星跟踪卫星(SST )和卫星重力梯度(SGG )技术提升对地球、月球、火星和太阳系其他行星认知能力的新纪元。地球重力测量卫星CHAMP (Challenging M inisatellite Payl oad )和GRACE (Gravity Recovery and Cli m ate Experi m ent )的成功升空以及G OCE (Gravity Field and Steady 2State Ocean Circulati on Exp l orer )、GRACE Foll ow 2On 和月球重力探测卫星GRA I L (Gravity Recovery and I nteri or Laborat o 2ry )的即将发射昭示着人类将迎来一个前所未有的卫星重力探测时代。地(月)球重力场及其时变反映地(月)球表层及内部物质的空间分布、运动和变化,同时决定着大地水准面的起伏和变化[1,2]。因此,确定地(月)球重力场的精细结构及其时变不仅是大地测量学、海洋学、地震学、空间科学、天文学、行星科学、深空探测、国防建设等的需求,同时也将为全人类寻求资源、保护环境和预测灾害提供了重要的信息资源[328]。 人造卫星是在地(月)球重力场作用下在空间绕地(月)球运动的,要精密定轨,必须知道精确的地(月)球重力场参数,反之,精确测定卫星轨道的摄动,利用这些摄动的跟踪观测数据,又可以提高地(月)球重力场参数的精度,两者相辅相成。地球重力场是固体地球物理学、海洋动力学、地球动力学、冰川学、海平面变化与分析所需的基本物理量。在大地测量领域,地球重力场对研究地球形状和精确求定地面控制点的三维坐标起着重要作用;在固体地球物理学中,基于地球重力场可以研究地球的内部构造和板块运动;在海洋学中,为了研究海面地形,揭示洋流和 环流的活动规律也需应用地球重力场数据;在国防建设领域,远程武器的发射和飞行,必须知道精细的局部重力场和全球重力场[9]。月球重力场的精密测量是国际探月计划的重要组成部分,它不仅决定着月球探测器的轨道优化设计和载人登月飞船月面理想着陆点的合适选取,同时将为全人类开展月体地形地貌和内部结构研究、月壤新能源和资源探测、月面宇宙环境分析(电磁、微粒子、高能等)、月球和地月系统起源和演化历史论证等提供丰富的信息资源。地(月)球重力场起着双重作用:第一,通过比较实际重力场和理想重力场的差可以得到重力异常,重力异常表明地(月)球内部的质量不平衡状态,并提供地球(月)动力学的重要信息;第二,确定大地水准面(和静止平均海平面相重合的等位面),大地水准面是所有地貌(如陆地、冰川、海洋等)的参考面,而大地水准面仅仅是由重力场来定义的,它可以通过重力场的精化而改善。 卫星重力测量技术的实现是继美国GPS 星座成功构建 之后在大地测量领域的又一项创新和突破,它之所以被国际大地测量学界公认为是当前地球重力场探测研究中最高效、最经济和最有发展潜力的方法之一,是因为它既不同于传统的车载、船载和机载测量,也不同于卫星测高和轨道摄动分析,而是通过卫星跟踪卫星高低/低低技术(SST 2图1  国际当前和将来地球重力测量卫星计划[10]H L /LL)和SGG 恢复高精度和高空间解析度的地(月)球重力场。本文介绍了当前和将来国际专用地球和月球重力测量卫星;阐述了相关学科对地球重力场测量精度的需求;建议我国将来卫星 重力测量计划选择SST 2HL /LL 模式较优,尽快开展卫星重力测量系统定量需求分 析,先期开展重力卫星关键载荷的研制和尽早启动卫星重力测量系统虚拟仿真研究。 2 国际重力卫星研究进展 211 CHAM P 单星 CHAMP 是由德国波兹坦地学研究中心(GFZ )独立研制的世界上首颗采用SST 2HL 的专用重力测量卫星(如图1和表1所示)。它采用近圆极地轨道,总质量为52215kg,高度为750mm,横梁和卫星的主体总长为8333mm (其中横梁 长为4044mm ),卫星的面质比为1138×10-3m 2 /kg 。通过

GRACE地球重力卫星相关资料

GRACE卫星 1简介: GRACE是德国和美国联合研制和发射的重力卫星,重要科学目标是提供高精度和高空间分辨率的静态及时变地球重力场,是两颗卫星的组合,于2002 年3月17日发射升空,通过K波段微波系统精确测定出两颗星之间的距离及速率变化来反演地球重力场,设计寿命为5年,圆形近极轨卫星,倾角为89°, 初始平均高度为500Km,两颗星之间的距离为220Km。 美国的CSR(Center for Space Reserach of the University Texas in Austin)及德国的GFZ(GeoForschungsZentrum)是最早获得GRACE地球重力场的研究机构,其中CSR发布了第一个GRACE地球重力场模型GGM01,该模型在半波长为300Km尺度上,确定大地水准面精度约为0.02m;德国GFZ早期也发布与GGM01模型精度相近的GRACE地球重力场模型——EIGEN-GRACE01S,这两种模型都没有采用地面、海洋、航空重力测量数据及其他卫星跟踪资料,但中长波部分精度却有明显的提高,证实了GRACE实现其预期科学目标的可行性,随着GRACE卫星观测资料的日益增多,处理卫星资料方法的进一步完善,国际上一些研究机构又推出了一系类更高精度的GRACE产品,比如EIGEN-GRACE02S是GFZ的2004年产品,在半波长为1000km的空间分辨率确定的大地水准面精度好于0.001m,而且此模型计算的海洋重力异常能和重力异常数据(NIMA数据)符合得很好。 2 GRACE卫星的一些显著特点: 卫星轨道低,对地球重力场敏感度高;利用差分观测方式,抵消了测量中的 许多公共误差;星载GPS接收机能同时接收到多颗GPS卫星,使确定的卫星轨道精度提高;星载三轴加速度仪直接测量了非保守力摄动加速度,不再需要把大气阻力、太阳光压等非保守力模型化;卫星上的K波段微波测距和测速系统实现了两颗星之间速率变化的测定精度好于10(-6)m/s;卫星上装有激光发射镜,实现了人卫激光测距的辅助定轨和轨道的检核;卫星上还装载了确定卫星方位的恒星照相机阵列及其他设备,给出了高精度的卫星姿态,星载加速度数据的正确解释。 2004年8月底,GRACE资料全球公开,极大地推动了GRACE卫星观测资料的研究,其主要研究内容集中在以下几方面:利用GRACE资料确定高精度地球重力场,研究大地水准面和重力异常,利用GRACE时变重力场研究地球表面流体质量的季节性分布变化,特别是全球水质量分布变化。 3卫星的构造: 为保证两颗卫星的星载测量系统不受卫星形变的影响,GRACE卫星的所有科学仪器都安置在热膨胀系数非常低的弹性高压碳纤材料制成的平台上。 GRACE卫星装载了多种先进精密的测控设备,由此组成完成不同任务的测量系统,主要包括:

卫星重力测量发展及应用

卫星重力测量发展及应用 2010286190128 张璇 摘要:卫星重力测量在恢复地球重力场方面具有全球高覆盖率、高空间分辨率、高精度和高时间重复率等优点, 为大地测量和地球物理学科的发展开辟了新的途径。本文简要回顾了卫星重力测量的发展历程, 介绍了四种卫星重力探测技术的原理和发展状况, 最后对卫星重力测量在地球科学中的的应用情况进行了简要总结。 关键词:重力场;地球重力场;重力测量 一、研究背景 地(月)球重力场及其时变反映地(月)球表层及内部物质的空间分布、运动和变化,同时决定着大地水准面的起伏和变化。因此,确定地(月)球重力场的精细结构及其时变不仅是大地测量学、海洋学、地震学、空间科学、天文学、行星科学、深空探测、国防建设等的需求,同时也将为全人类寻求资源、保护环境和预测灾害提供了重要的信息资源。 人造卫星是在地(月)球重力场作用下在空间绕地(月)球运动的,要精密定轨,必须知道精确的地(月)球重力场参数,反之,精确测定卫星轨道的摄动,利用这些摄动的跟踪观测数据,又可以提高地(月)球重力场参数的精度,两者相辅相成。地球重力场是固体地球物理学、海洋动力学、地球动力学、冰川学、海平面变化与分析所需的基本物理量。在大地测量领域, 地球重力场对研究地球形状和精确求定地面控制点的三维坐标起着重要作用;在固体地球物理学中,基于地球重力场可以研究地球的内部构造和板块运动;在海洋学中,为了研究海面地形,揭示洋流和环流的活动规律也需应用地球重力场数据;在国防建设领域,远程武器的发射和飞行,必须知道精细的局部重力场和全球重力场。月球重力场的精密测量是国际探月计划的重要组成部分,它不仅决定着月球探测器的轨道优化设计和载人登月飞船月面理想着陆点的合适选取,同时将为全人类开展月体地形地貌和内部结构研究、月壤新能源和资源探测、月面宇宙环境分析(电磁、微粒子、高能等)、月球和地月系统起源和演化历史论证等提供丰富的信息资源。地(月)球重力场起着双重作用:第一,通过比较实际重力场和理想重力场的差可以得到重力异常,重力异常表明地(月)球内部的质量不平衡状态,并提供地球(月)动力学的重要信息;第二,确定大地水准面(和静止平均海平面相重合的等位面) ,大地水准面是所有地貌(如陆地、冰川、海洋等) 的参考面,而大地水准面仅仅是由重力场来定义的,它可以通过重力场的精化而改善。 目前常使用的重力测量手段主要有地表观测、航空测量以及卫星重力探测等。由于地面重力测量受地形和气候影响较大、耗时多、劳动强度大、作业成本高,使重力测量的地面覆盖率和分辨率受到极大的限制。航空重力测量虽然能够克服地形条件的限制,但却只能用于局部地区或区域性的测量,且仍受到气候条件的影响。卫星重力是近年来发展起来的新型空间探测技术,其发展和应用是当今国际大地测量学界继GPS之后的又一次革命性突破。卫星重力探测不受地形等自然条件的影响,为解决全球高覆盖率、高精度、高空间分辨

基于GOCE卫星重力数据的应用研究

基于GOCE卫星重力数据的应用研究 CHAMP、GRACE和GOCE卫星重力测量对人类研究地球内部构造及其重力场具有重要意义。重力卫星的主要目的在于尽可能高精度、高分辨率的恢复地球重力场和大地水准面模型。GOCE卫星为新一代卫星重力监测技术,该技术主要向地面提供一定采样间隔的重力梯度观测数据和GPS轨道数据,同时卫星姿态控制系统和星象仪等为地面控制中心提供了相关辅助数据,在此基础上,本文分析并介绍了不同类别的GOCE数据产品,用于不同学科的研究以及恢复高精度高分辨率的地球重力场。 标签:重力卫星GOCE 数据产品 1引言 本世纪初CHAMP、GRACE和GOCE三大卫星重力测量计划的相继实施,标志着人类利用空间科学技术研究研究地球重力场迈入了崭新的领域[1]。为了能够得到更高分辨率更高精度的地球重力场模型,在继CHAMP和GRACE计划之后,ESA实施了GOCE卫星重力梯度测量计划,GOCE卫星与2009年3月17日成功发射升空,该任务的主要目的在于:利用卫星重力梯度观测数据和卫-卫跟踪数据恢复优于1~2×10-5ms-2的全球重力异常,获取厘米级的大地水准面,同时恢复半波长为100km空间分辨率的地球重力场。GOCE卫星任务的实施无疑将给地球物理、大地测量等相关学科带来一场重要的变革。 2 GOCE重力卫星基本情况与其任务 GOCE卫星(图1)任务是由ESA主导实施的[2],与2009年3月17日从俄罗斯Plesestk航天中心成功发射升空。GOCE卫星采用近圆极、太阳同步轨道,轨道高度250~280km左右,轨道设计倾角为96.5°设计寿命为1年左右,由于其运行状态良好,截至目前还在正常工作中。 GOCE采用了卫星重力梯度测量和高低“卫-卫”跟踪技术结合的方法实现高空间分辨率精确地球重力场的解算。高低“卫-卫”跟踪技术能够更有效地获取中长波地球重力场信号,SGG测量能够获取地球重力场中的高频信号,这两种技术的结合是实现GOCE卫星任务的关键所在。 SST-hl技术是通过星载GPS-GLONASS接收机实现跟踪定位的,它可以同时观测到8~12颗GPS-GLONASS卫星信号,以实现卫星精密定轨的目的。根据精密轨道数据可以实现卫星的实时导航及其姿态参考框架的确定。 重力梯度仪[3]是执行GOCE卫星任务的核心部件之一,其观测量为GOCE 卫星沿轨所受地球引力位的二阶导数张量,其目的用以恢复确定地球重力场。GOCE卫星搭载的是静电重力梯度仪(EGG),该仪器是由法国ASI开发研制的(如图2所示),采用的是差分加速度测量模式。差分加速度测量的优点在于可

2003 刘经南 重力测量卫星的作用与意义

重力测量卫星的作用与意义 刘经南。刘品雄。李建成。徐文霞。 (①武汉大学测绘学院,武汉430070)(⑦中国空间技术研究院总体部,北京100086) 摘要国际上重力测量卫星项目的实施,是空间技术、军事测绘,大地测量学、地球科学的一次重大跨越.本文介绍了重力测量卫星在国家经济建设,社会发展、国防建设、以及推动科技进步等方面的主要作用和意义。 关键词卫星重力测量应用 引言 地球重力场信息在地球物理学、大地测量学、海洋学和国防科学等领域具有重大的实用价值。随着科学技术的发展,探测地球重力场的手段业已由过去的离散点值观测(早期的梯度测量,近代的绝对、相对重力测量)发展为区域测线观测(海洋、航空重力测量),到对地球连续扫描的卫星重力测量技术(卫星测高、卫星跟踪卫星和卫星重力梯度)。经过近三十年的理论和硬件技术准备,在卫星测高技术日臻完善、星载GPS精密定轨技术试验成功之后,卫星跟踪卫星测量技术取得了突飞猛进的发展,相继于2000年7月15日成功发射了CHAMP高低ssT(卫星跟踪卫星)卫星、2002年3月16日发射了GRACE低低SST卫星。近两年来,国际众多研究机构瞄准这一大地测量前沿技术,开展广泛的研究, 取得了重要的成果,代表性成果有:GFZ于2002年lO月发布的EIGEN.1S卫星重力模型,之后又发布了EIGEN.CHAMP02S模型;CSR于2003年7月2l目发布的GRACEGravityModelGGM01系列(完全至120阶次的纯卫星模型GGM01S和完全至200阶次的组合重力场模型GGM01C),2003年7月25日发布E1GEN.GRAcE01s(约140阶,1000km半波长)纯卫星重力模型。在所刻画的频段上比己有的最精确模型高10~50倍。尽管比预期设计的精度要低,但是这一进步已全部囊括了人类对地球重力场的认识,是质变而非量变。卫星重力测量技术是今后一段时间内也可能是很长一段时间内人类认识地球重力场、监测地球重力场变化的重要手段之一。 重力测量卫星是利用星载定位传感器、加速度传感器和姿态传感器在近地轨道空间飞行观测获取全球重力场信息的应用卫星。利用卫星进行重力场探测是获得高质量重力场模型的最有效手段,已成为21世纪地球空间探测的热点技术。继美、德、法等国合作,发射了世界上第一颗重力场探测卫星CHAMP,以及GRACE卫星后,未来几年还将发射多颗携带不同传感器的重力场探测卫星,这将有效地提高全球重力场的精度,改变过去地面重力测量覆盖不均匀、精度不一致的状况。 卫星重力测量开辟了人类探测地球重力场的新纪元,取得了举世瞩目的成果。它同卫星测高一样,必将带动相关科学与技术领域的极大发展。目前业已实施的CHAMP、GRACE、GOCE卫星具有变革人类对地球系统认知的能力。不仅能以前所未有的精度测定地球重力场的静态部分,而且能够导出重力场的时间变化。尽管这三个卫星都具有测定重力场的功能,但是它们都不是多余的。事实上,高低SST、低低SST和SGG并不是相互竞争而是各得其所、相互补充的。SST是测定低阶位系数(50--70)的先行者;而GRACE这样的卫星最适用于测定中、长波重力场(50--60)的时间变化,同时更精确地求

2003 胡坚 卫星重力学与重力卫星研究进展

第12期(总第300期)国际地震动态NO.12(SeriaI NO.300)2003年12月Recent DeveIOpments in WOrId SeismOIOgy December2003卫星重力学与重力卫星研究进展 胡坚 (中国地震局地震研究所,430071,武汉) 摘要综述了地球重力场研究对揭示其运动和时变与地震之间的关系的重要性;介绍了当今国际固体地球科学与防灾研究的一个新热点———卫星重力学与重力卫星研究的进展。随着重力卫星计划的实施,地球重力场的研究也将因此产生质的变化。文章对CHAMP、GRACE和GOCE重力卫星作了介绍。 关键词地球重力场;卫星;CHAMP;GRACE;GOCE;进展 1卫星重力学的发展前景 重力场的研究历来是大地测量学研究的核心问题,也是现代大地测量发展中最活跃的领域之一。由于地球重力场是地球的基本物理场之一,它可以反映地球内部物质的分布、运动和变化动态,并制约地球本身及其邻近空间的一切物理事件。研究地球重力场的物理特性,能够充分揭示其运动和时变与地震之间的关系。上述研究主要是依靠地面重力观测技术来实现,在静态与动态地球重力场的观测与研究方面,均存在技术上的难题[1]。 由于地形的复杂性和局部环境与气候的恶劣性等诸因素,使许多地区难以实施传统意义上的重力测量,致使重力测量的地面覆盖率和分辨率受到极大的限制。空间技术在重力测量中的应用(例如卫星探测技术)为解决全球高覆盖率、高空间分辨率和高时间重复率重力测量开辟了新的有效途径,不仅弥补了上述不足,而且使动态地球重力场的观测与研究成为现实。人造地球卫星已经成为地球重力场的探测器与传感器,对卫星的观测并获取与地球重力场有关的观测数据已成为研究地球重力场的新的重要手段,因此 而形成具有科学前景的全新的卫星重力学与新的研究热点。对此,有关学者预言卫星重力学的发展带来的变化将是革命性的,其意义和作用都不亚于GPS[2]。 2 卫星重力探测技术的进展 利用卫星技术进行动态地球重力场的研究经历了近30年的发展,目前已进入了实施阶段。同时也标志着卫星重力学研究也随之进入了一个全新的阶段。德国、欧洲宇航局和美国计划从2000年7月起,在5年的时间内相继发射3颗低轨重力卫星(CHAMP、GRACE和GOCE),主要目的是利用目前的GPS连续追踪已发射和即将发射的低轨重力卫星,并由低轨重力卫星精密检测全球范围的地球重力场。现将已发射的CHAMP、GRACE和正在研发过程中的GOCE低轨重力卫星分述如下[2-5]。 2.1 CHAMP重力卫星 该卫星由德国研发,属于高-低(hI)轨卫-卫跟踪(SST)的小型重力卫星,于2000年6月成功发射。高低轨卫-卫跟踪中的高轨道卫星指GPS,低轨道卫星指CHAMP。CHAMP卫星的设计寿命为5年,主要用于测定地球重力场和磁场,解决时间变化问

地球重力测量卫星简介

地气重力测量卫星简介 摘要:现代大地测量的基本目标之一就是获得高精度和高分辨率的地球重力场模型,卫星重力计划就是基于这一目标实施的。本文首先介绍了卫星重力学原理,随后对已经成功发射的三颗地球重力卫星(CHAMP、GRACE和GOCE)以及正在进行中的三个工程计划作详细阐述,最后重点讨论了地球重力场模型在测绘学科中的应用研究进展。 关键词:卫星重力测量;CHAMP;GRACE;GOCE;GRACE Follow-On 1 引言 卫星重力测量技术是继美国GPS系统成功构建后在大地测量邻域的又一项创新,引起了测绘学、地球物理学、灾害地质学、矿产地质学等一系列学科的革命,也是21世纪众多科学家关注的热点[1]。地球重力场是地球系统物质属性产生的一个最基本的物理场,反映由地球各圈层相互作用和动力过程决定的物质空间分布、运动和变化,承载地球系统演化进程中的一切与其重力场作用机制相关信息,地球重力场的时空演化是地球系统动力过程的历史再现。伴随着计算机、微电子和航天技术等的迅猛发展,地球重力场的研究正经历着一场大的变革,观测研究对象已由传统的局部地表、低近地空间扩展到全球范围、深空宇宙的各种动力现象和过程,发展为以动态观、整体论的方法描述地球的重力场,并引发了相关学科的交叉融合和催生新的学科领域[2]。 卫星重力探测技术从第一代光学摄影技术发展到第二代多种技术地面跟踪和卫星对地观测技术,现在已经进入以星载GPS精密跟踪定轨为主的测高卫星和重力卫星的第三代,其重要特征是更低的近极近圆轨道,连续的厘米级精度卫星定轨,实测重力场参数(如重力梯度)的星载设备,这些新技术的应用大大突破了传统重力测量的局限性[3]。 2 卫星重力学原理 早在70年代初,利用卫星技术及星载重力仪研究重力场的概念就已提出,进入80年代,许多欧美学者开始针对不同的专用重力卫星观测方案开始了数值模拟计算,同时专用重力观测的卫星系统设计和卫星的试验也逐步开始,经前后二十多年的反复论证和试验,最终,卫-卫跟踪和卫星重力梯度两种观测模式为国际大地测量界普遍接受[4]。当今,全球重力场研究的热点是将中、低频重力位模型提高到厘米级,已发射的地球重力卫星共有CHAMP、GRACE和GOCE三颗卫星[5]。 2.1 卫-卫跟踪技术 卫-卫跟踪技术是指空间的两颗卫星之间的精密测距测速跟踪,随着GPS技术的发展,又演化为高低卫-卫跟踪和低低卫-卫跟踪。高低卫-卫跟踪利用低轨卫星(高度400~500km 左右)上的星载GPS接收机与GPS卫星构成对低轨卫星的空间跟踪网,同时低轨卫星上载有高精度加速计以补偿低轨卫星的非保守力摄动(主要是大气阻力影响),其跟踪精度达到毫米级,恢复低阶重力场精度可以较现有模型提高一个数量级以上,对应的低阶大地水准面精度达到毫米级。低低卫-卫跟踪技术是指两颗低轨卫星,相距200km左右,以微米级的测

相关主题
文本预览
相关文档 最新文档