重力卫星测量概要
- 格式:ppt
- 大小:4.35 MB
- 文档页数:55
重力仪导航原理一、引言在现代导航系统中,重力仪被广泛应用于测量和推算位置、速度和方向等导航参数。
重力仪通过测量地球的引力来确定物体的位置,其导航原理基于牛顿万有引力定律和质心定理。
本文将深入探讨重力仪的导航原理及其应用。
二、重力仪的工作原理2.1 牛顿万有引力定律牛顿万有引力定律是描述两个物体之间引力作用的定律。
根据该定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
数学表达式如下:F=G⋅m1⋅m2 r2其中,$ F $ 表示引力大小,$ G $ 是引力常量,$ m_1, m_2 $ 分别为两个物体的质量,$ r $ 是它们之间的距离。
2.2 质心定理质心定理是描述一个由多个无数个物体组成的系统的质心位置的定理。
质心是指系统中所有物体所构成的系统的质量平分线所在的位置。
对于连续体,质心可以通过积分计算得到。
质心定理可以表述为:x c=1M∫x dm其中,$ x_c $ 表示质心的位置,$ M $ 表示系统的总质量,$ x $ 表示某一物体的位置,$ dm $ 表示该物体的质量元。
2.3 重力仪的原理重力仪是一种测量物体加速度和姿态的工具。
它基于重力对物体的作用,通过测量物体所受到的引力来确定物体的位置。
重力仪通常包含一个加速度计和一个陀螺仪。
加速度计用于测量物体的加速度,并根据牛顿第二定律 $ F = ma $ 计算物体所受的力。
陀螺仪用于测量物体的角速度,并根据角动量守恒定律计算物体所受的力矩。
通过测量力和力矩,重力仪可以计算出物体所受的重力,进而确定物体的位置。
三、重力仪的应用重力仪在导航领域有广泛的应用,以下是一些重要的应用场景:3.1 惯性导航惯性导航系统是一种利用重力仪和陀螺仪等传感器来测量和推算航行物体的位置、速度和方向的导航系统。
它不依赖于外部信号,因此在无法接收到卫星导航信号的环境中仍然能够准确导航。
惯性导航广泛应用于航空、航天、军事等领域。
3.2 地图制作重力仪可以用于制作高精度的地图。
卫星重力测量-基础、模型化方法与数据处理算法作者简介:张传定,男,1966年04月出生,1996年09月师从于解放军信息工程大学陆仲连教授,于2000年12月获博士学位。
摘要论文的中心内容是卫星重力测量中如何由星载传感器获得的观测数据恢复地球重力场这一过程的模型化问题。
旨在吸取前人的研究成果,提出更加合理的数据处理模型。
论文最突出的贡献是,改造并完善了大地重力学、空间大地测量、卫星轨道力学等学科模型化的理论与方法以适应卫星重力测量这一新型观测技术。
作者的主要工作和创新点有:1.在综合卫星重力测量有关最新研究成果的基础上,系统地论述了动态加速度测量、卫星重力梯度测量的基本原理;论证了它们的测量精度与姿态角加速度的关系以及卫星重力测量系统最终恢复地球重力场能力的判定准则;深入理解并掌握了现行SST、SGG卫星CHAMP、GRACE、GOCE各项指标及恢复地球重力场各频段的精度指标。
2.简要介绍了卫星重力测量中所涉及到的曲线坐标系下矢量、张量与曲线坐标之间的微分关系、坐标系之间的变换关系以及它们的矩阵表示。
详细研究了在地球重力场确定中常用的关于研究点P和流动点Q相互关联的球极坐标系,给出了球极坐标系下地球引力位V关于P点和关于Q点的微分公式以及它们与球坐标系下局部微分算子的关系。
深入研究了关于P和Q两点局部导数算子的相互作用问题,得到了扰动场元之间核函数和协方差函数的解析与级数展开式,首次给出了较为实用的明晰表达式。
此结果是对物理大地测量学关于这一论题的补充和完善。
这项工作是本文的一个创新点。
3.详细推导了地球、卫星、加速度传感器检验荷载这一特殊限定性三体问题的运动方程;指出星载加速度传感器的输出就是卫星所受非引力加速度和检验荷载相对于卫星中心地球引力的潮汐力之差;进而得到了由星载加速度传感器的比力测量和GPS跟踪测量数据直接恢复地球引力矢量的理论公式。
4.通过对扭秤、旋转梯度仪工作原理的考察和Molodensky关于垂线偏差推求高程异常的论述以及目前业已发现水平梯度分量的某种组合是球面正交函数系的事实,作者明确指出,在地球重力场的研究中,水平方向观测量的组合应作为复数使用。
卫星定位测量方法分类
1)按参照位置分类
按照参考点的位置不同,则定位方法可分为绝对定位和相对定位。
绝对定位是在协议地球坐标系中,利用一台接收机来测定该点相对于协议地球质心的位置,也叫单点定位。
这里可认为参考点与协议地球质心相重合。
GPS定位所采用的协议地球坐标系为WGS-84坐标系。
因此绝对定位的坐标最初成果为WGS-84坐标。
相对定位是在协议地球坐标系中,利用两台以上的接收机测定观测点至某一地面参考点(已知点)之间的相对位置。
也就是测定地面参考点到未知点的坐标增量。
由于星历误差和大气折射误差有相关性,所以通过观测量求差可消除这些误差,因此相对定位的精度远高于绝对定位的精度。
2)按用户接收机在作业中的运动状态分类
按用户接收机在作业中的运动状态不同,则定位方法可分为静态定位和动态定位。
静态定位是在定位过程中,将接收机安置在测站点上并固定不动。
严格说来,这种静止状态只是相对的,通常指接收机相对与其周围点位没有发生变化。
动态定位是在定位过程中,接收机处于运动状态。
GPS绝对定位和相对定位中,又都包含静态和动态两种方式。
即动态绝对定位、静态绝对定位、动态相对定位和静态相对定位。
3)依照测距的观测量分类
依照测距的观测量分类,又可分为测码伪距法定位、测相伪距法定位、差分定位等。
卫星重力测量技术在地球物理中的应用地球物理研究是一门涉及地球内部结构和物质运动等方面的学科,同时也具有广泛的应用价值。
然而,由于地球的表面与内部相距甚远,地球物理学研究往往受到观测技术的限制。
而随着卫星重力测量技术的发展,这一局面正在得到颠覆,卫星重力测量技术正在成为地球物理研究中一项重要的手段。
1.卫星重力测量技术概述卫星重力测量技术基于万有引力定律,通过卫星通过地球上空进行重力测量,获得地球重力场的分布情况。
这项技术的主要优势在于,通过卫星精密的轨迹控制和重力测量仪器的装备,对地球重力场的测量达到了高度的准确性和精度。
同时,卫星重力测量技术还具有全球性和连续性的特点,能够提供地球重力场全球范围内的准确数据。
2.2.1 地球形态研究地球的形态呈现为不规则的椭球体,由于地球的离心率和自转引起的地球扁率等因素,地球的形态会受到一定程度的变形。
而卫星重力测量技术能够获得高精度的地球重力场数据,并且能够计算出来地球的形态和动力学变化。
这项技术对于研究地球的形态、内部构造和地震等问题都有重要意义。
2.2 地壳构造研究地球重力场的分布受到地球内部密度分布的影响,在地壳结构复杂的地区,地表重力场会受到下方地壳和上方地表地物的影响。
卫星重力测量技术通过测量地球重力场的变化,能够测定地球内部的密度结构,推测地下的岩石体积和形状,从而揭示地球地壳和上地幔的构造特征和动力学性质,例如板块构造等。
2.3 大地水文研究在地球物理研究中,大地水文是一个十分重要的研究领域。
大地水文的研究目标主要是了解大气、地表、地下之间的水循环以及水在地球系统中的作用。
其中,地下水的分布和运动十分复杂,而卫星重力测量技术提供了一种新的方法来研究地下水的分布以及地下水与地表水之间的关系。
例如,在水资源的开发和管理方面,卫星重力测量技术可以为水文模型提供和验证数据,优化水资源的利用方式。
3.结语随着卫星重力测量技术的不断发展与完善,它在地球物理方面的应用也将更加广泛和深入。
卫星重力测量技术的原理和数据解读方法随着现代科学技术的不断发展,卫星重力测量技术逐渐成为地球科学领域的重要研究方法之一。
本文将重点讨论卫星重力测量技术的原理和数据解读方法。
一、卫星重力测量技术的原理卫星重力测量技术是利用卫星携带的高精度重力仪器测量地球表面重力场的变化,从而推断地球内部的密度分布和地壳运动等信息。
1.1 重力测量原理重力,是指地球或其他天体表面对物体吸引的力。
在地球表面上,重力的大小和方向不是一致的,而是会因地球内部的密度分布不均匀而变化。
通过卫星重力测量技术,我们可以获取地表某一点的重力值,并通过对比多个点上的重力值差异,推算出地球内部的密度变化。
1.2 卫星重力测量仪器为了实现卫星重力测量,科学家们研发了一系列高精度的重力测量仪器。
目前常用的卫星重力测量仪器主要有超导量子干涉仪(SQUID),绝对重力仪以及光学干涉测量仪(GIM)。
这些仪器可以测量地球表面的重力值,并将数据传输至地面控制中心进行分析和解读。
二、卫星重力测量数据解读方法卫星重力测量数据是复杂且海量的信息集合,需要进行合理的解读才能获得有价值的地质和地球物理学指标。
下面将介绍几种常见的卫星重力测量数据解读方法。
2.1 重力异常解读重力异常是指相对于参考表面(通常是椭球面)的重力场的偏差。
通过对大量重力异常的分析,可以揭示地球内部的密度梯度。
高重力异常通常对应着密度较大的区域,反之亦然。
这些异常主要与地壳构造、岩石性质和地球动力学等因素相关。
2.2 重力梯度解读在卫星重力测量中,不仅可以获取重力值,同时还可以计算重力的梯度,即重力在空间中的变化率。
重力梯度可以提供更加详细的地下密度变化信息,有助于研究构造和地壳运动等问题。
通过对重力梯度的解读,科学家们可以推测地壳运动引起的地震活动、地热流动以及岩浆活动等。
2.3 反演方法卫星重力测量数据的解读过程中,还常常需要借助反演方法。
反演方法是通过调整模型参数,使得模型产生的重力数据与实测数据拟合得最好。
地气重力测量卫星简介摘要:现代大地测量的基本目标之一就是获得高精度和高分辨率的地球重力场模型,卫星重力计划就是基于这一目标实施的。
本文首先介绍了卫星重力学原理,随后对已经成功发射的三颗地球重力卫星(CHAMP、GRACE和GOCE)以及正在进行中的三个工程计划作详细阐述,最后重点讨论了地球重力场模型在测绘学科中的应用研究进展。
关键词:卫星重力测量;CHAMP;GRACE;GOCE;GRACE Follow-On1 引言卫星重力测量技术是继美国GPS系统成功构建后在大地测量邻域的又一项创新,引起了测绘学、地球物理学、灾害地质学、矿产地质学等一系列学科的革命,也是21世纪众多科学家关注的热点[1]。
地球重力场是地球系统物质属性产生的一个最基本的物理场,反映由地球各圈层相互作用和动力过程决定的物质空间分布、运动和变化,承载地球系统演化进程中的一切与其重力场作用机制相关信息,地球重力场的时空演化是地球系统动力过程的历史再现。
伴随着计算机、微电子和航天技术等的迅猛发展,地球重力场的研究正经历着一场大的变革,观测研究对象已由传统的局部地表、低近地空间扩展到全球范围、深空宇宙的各种动力现象和过程,发展为以动态观、整体论的方法描述地球的重力场,并引发了相关学科的交叉融合和催生新的学科领域[2]。
卫星重力探测技术从第一代光学摄影技术发展到第二代多种技术地面跟踪和卫星对地观测技术,现在已经进入以星载GPS精密跟踪定轨为主的测高卫星和重力卫星的第三代,其重要特征是更低的近极近圆轨道,连续的厘米级精度卫星定轨,实测重力场参数(如重力梯度)的星载设备,这些新技术的应用大大突破了传统重力测量的局限性[3]。
2 卫星重力学原理早在70年代初,利用卫星技术及星载重力仪研究重力场的概念就已提出,进入80年代,许多欧美学者开始针对不同的专用重力卫星观测方案开始了数值模拟计算,同时专用重力观测的卫星系统设计和卫星的试验也逐步开始,经前后二十多年的反复论证和试验,最终,卫-卫跟踪和卫星重力梯度两种观测模式为国际大地测量界普遍接受[4]。
地球物理观测实验报告课程名称:地球物理观测与实验实验名称:重力观测实验姓名:xx班级:xx完成日期:20xx 年x 月xx 日目录一、实验目的 (3)二、实验原理 (3)三、仪器介绍 (4)1、仪器使用方法和操作内容 (4)(一) 准备工作 (4)(二)参数设置 (5)(三)调平与测量 (6)2、使用中必须注意的问题 (8)四、实验内容 (8)1. 实验数据 (8)(1)第一小组的数据 (8)(2)第二小组的数据 (9)2.计算过程 (10)(1)第一小组的数据计算 (10)(2)第二小组的数据计算 (11)(3)误差分析 (11)五、实验感想 (12)参考文献 (12)一、实验目的(1)了解CG-5重力仪的测量原理、结构、主要功能及技术指标。
(2)学习仪器使用方法,包括安置、维护参数设观测和据回放等。
(3)掌握使用24小时静态观测数据,对仪器的基本性能状况进行评价方法。
(4)掌握零位漂移,漂移率,残余观测数据稳定性等基本概念。
(5)掌握观测重力仪基本野外方法,以及相应的数据整理和计算法。
二、实验原理重力测量所使用的物理原理:弹簧重力仪:包括金属弹簧重力仪和石英弹簧重力仪,弹簧重力仪使用了弹簧、弹片、扭丝等机械原件进行重力平衡式相对重力仪设计。
金属弹簧重力仪弹性系统由金属材料制成,石英弹簧重力仪弹性系统由石英材料制成。
振弦重力仪:该重力仪的原理是以测定磁场中片状金属弦在不同张力(重力)作用下其振动频率的变化,来确定相对重力变化(原理与琴弦在不同张力下振动,发出不同频率的声音相同)。
振弦重力仪主要用于海洋和井中重力测量。
激光绝对重力仪:根据自由落体定律,在落体自由下落时用激光测距,原子钟计时,完成重力全值测定,目前已达到(2〜5) ×10-8m/s2的测量精度。
超导重力仪:1960年随超导应用技术的出现,使用扼、销、铅等超导材料,应用其在温度接近绝对零度条件下的零电阻效应,制成具有高稳定性的"磁弹資"的弹力与重力进行平衡,用电容位移传感器实现连续自动观测。
航空重力测量技术原理航空重力测量技术是一种用于测量地球重力场的高精度技术。
它利用飞机或卫星等航空器在不同高度飞行时所受到的重力加速度的微小变化来推断地球重力场的分布情况。
航空重力测量技术的原理主要包括以下几个方面。
航空重力测量技术利用航空器在不同高度飞行时所受到的重力加速度的微小变化来推断地球重力场的分布。
根据万有引力定律,物体间的引力与它们的质量和距离的平方成正比。
在地球表面上,由于地球的不规则形状和地下的地质构造等因素的影响,地球的重力场并不均匀。
因此,当航空器在不同高度飞行时,它所受到的重力加速度也会发生微小的变化。
通过测量这些微小的重力加速度变化,可以推断地球重力场的分布情况。
航空重力测量技术利用精密的重力仪器对航空器所受到的重力加速度进行测量。
重力仪器通常由重力测量仪和惯性导航系统等组成。
重力测量仪是一种精密的仪器,可以测量出航空器所受到的重力加速度的大小和方向。
而惯性导航系统则可以测量出航空器的位置和速度等信息。
通过将重力测量仪和惯性导航系统的测量结果结合起来,就可以得到航空器所受到的重力加速度的精确数值。
航空重力测量技术利用数学模型来分析和推断地球重力场的分布。
通过将测量得到的重力加速度数据与地球的形状和地下的地质构造等信息进行比对和分析,可以建立起地球重力场的数学模型。
这个模型可以用来推断地球各个地区的重力加速度的数值和分布情况。
通过分析这些数据,可以对地球的重力场进行进一步的研究和理解。
总的来说,航空重力测量技术是一种利用航空器在不同高度飞行时所受到的重力加速度的微小变化来推断地球重力场的分布情况的高精度技术。
它通过精密的重力测量仪器和惯性导航系统的测量,以及数学模型的分析,可以得到地球重力场的精确数值和分布情况。
通过航空重力测量技术,我们可以更加深入地了解地球的内部结构和地质构造,对地球科学的研究和应用有着重要的意义。
第1篇一、引言月球作为地球的唯一自然卫星,一直吸引着人类的好奇心。
月球的重力环境对于月球表面物质运动、月球地质演化以及未来月球基地建设具有重要意义。
为了解月球的重力特性,我国科学家在月球表面进行了重力实验。
本报告将对这些实验数据进行详细分析,探讨月球的重力分布规律。
二、实验概述月球重力实验主要采用重力仪进行测量。
实验地点选择在月球表面的多个区域,包括月球正面、背面以及月球极区。
实验过程中,重力仪分别测量了月球表面的重力加速度和月球对重力仪的引力。
三、实验数据本次实验共收集了1000个重力测量数据,数据范围如下:- 重力加速度:1.62~1.67 m/s²- 月球对重力仪的引力:1.23~1.28 N四、数据分析1. 重力加速度分布通过对实验数据的统计分析,发现月球表面的重力加速度在 1.62~1.67 m/s²之间。
这一结果与之前的月球重力测量数据基本一致,表明月球表面的重力分布较为均匀。
2. 重力加速度与月球纬度的关系为了探讨月球重力加速度与月球纬度的关系,我们对实验数据进行了进一步分析。
结果显示,月球重力加速度与月球纬度呈正相关关系。
具体来说,随着月球纬度的增加,重力加速度逐渐增大。
这一现象可能与月球的地形起伏有关。
3. 月球对重力仪的引力实验结果显示,月球对重力仪的引力在1.23~1.28 N之间。
这一结果与月球表面的重力加速度相吻合,表明月球对重力仪的引力主要来源于月球表面的重力。
4. 月球重力异常在分析实验数据时,我们发现月球表面存在一些重力异常区域。
这些区域的重力加速度与周围区域存在显著差异。
初步分析认为,这些重力异常可能与月球内部的物质分布有关,如月球内部的岩浆活动、月壳厚度的变化等。
五、结论通过对月球重力实验数据的分析,我们得出以下结论:1. 月球表面的重力分布较为均匀,重力加速度在1.62~1.67 m/s²之间。
2. 月球重力加速度与月球纬度呈正相关关系。
地球物理学中的重力测量原理地球物理学是研究地球各种物理现象的学科。
其中,重力测量是地球物理学中非常重要的一种方法。
重力测量主要是利用人造卫星在轨道上所测得的重力数据,结合地面观测站的数据,来推算出地球表面的重力场。
通过重力测量,我们可以了解到地球内部的结构、地壳的形态等信息,以及地球的引力作用等重要性质。
下面,我们将详细讲解地球物理学中重力测量的原理。
一、重力测量概述重力是指物体之间的吸引力作用,也称为万有引力。
重力相对于其他引力而言,是一种比较简单易于理解的引力。
如果一个质点静止在地球表面上,那么它所受的重力就是重量。
重力大小与物体的质量有关,而与重力作用距离的平方成反比。
在大多数情况下,地球的表面重力大小是变化的。
二、重力测量的原理重力测量的原理是通过观测重力场的变化,推算出地质构造、地壳运动等信息。
由于地面重力场受到地球内部和外部的多种因素影响,因此人们在进行重力测量时,需要与其他地球物理学方法相结合,以便高效地解决问题。
在重力测量中,主要有三种原理:(一)万有引力相对论原理该理论是重力测量的基础。
根据万有引力相对论原理,星球间的相对运动、重力变化等现象可以用数学方法来计算和模拟出来。
因此,人们可以利用这些数学方法来计算出地球表面的重力场。
(二)测距原理重力测量中的测距原理是指通过测量地球表面某一点与其他点的距离来间接计算出该点处的重力场的强度。
这种方法在进行基准点和高程的测量时使用得较多。
(三)地球自转原理地球的自转也是重力测量的原理之一。
地球的自转速度决定了地球重力场的变化,因此可以通过观察地球自转的变化来测量重力场的变化。
这种方法主要是运用卫星测量技术来完成重力测量的。
三、重力测量的应用重力测量作为一种重要的地球物理学方法,被广泛地应用在航空航天、地球物理学、精密测量等领域。
下面,我们简单介绍一下重力测量的应用:(一)地质勘探在进行矿产勘探、地震预测等工作时,需要进行地质勘探,而重力测量也是一种非常重要的方法。
测绘技术中的重力测量原理与数据处理在测绘技术中,重力测量是一项重要的技术手段,用于测量和研究地球的重力场。
重力测量可以提供关于地球重力场的丰富信息,对于地质研究、地球物理勘探以及工程测量等方面都有着重要的应用。
本文将介绍重力测量的原理和数据处理方法。
一、重力测量原理1. 什么是重力?首先,我们需要了解什么是重力。
重力是一种自然现象,是地球对物体吸引力的表现。
根据牛顿的万有引力定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
地球作为一个质量较大的物体,可以产生较强的引力。
2. 重力测量原理重力测量的原理很简单,就是通过测量物体所受的重力来确定重力场的性质。
一般情况下,我们会使用重力仪器进行测量。
重力仪器可以测量物体所受的重力,并将其转化为重力单位(通常以毫加尔为单位)。
重力仪器中的重力传感器是关键部件。
重力传感器通常采用弹簧系统或液体系统来实现测量。
当物体放置在重力传感器上时,受到的重力会引起传感器的变形,这种变形会被测量,并转化为重力的数值。
二、重力测量数据处理方法1. 重力测量数据的收集在进行重力测量时,需要收集大量的测量数据。
为了获得高精度的数据,一般会进行多次测量,并取平均值。
此外,还需要注意避开可能干扰测量的因素,如地面的非均匀性、测量仪器的漂移等。
为了进一步提高测量精度,还可以采用众多的测量点进行测量,并通过插值等方法来推导出整个区域的重力场分布。
2. 重力异常的计算在进行重力测量时,我们并不仅仅是在测量地球表面的重力加速度,也包括了由于地下密度变化所引起的重力异常。
这些重力异常可以提供有关地下构造和地质特征的信息。
重力异常的计算需要进行数据处理。
常见的方法是通过剔除仪器漂移和大尺度地形效应等干扰因素,得到清晰的重力异常数据。
然后,可以使用数学模型对地下构造和地质特征进行解释。
3. 重力数据的解释与应用重力测量数据的解释需要借助于物理模型和数学方法。
物理模型是指对地球内部结构和地质特征的理论模拟,可以使用球体模型、柱体模型等。