电力系统的接线方式
- 格式:ppt
- 大小:7.86 MB
- 文档页数:110
电力系统接线方式电力系统中性点是指星形连接的变压器或发电机的中性点。
电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。
电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。
电力系统中性点接地方式主要是技术问题,但也是经济问题。
在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。
简言之,电力系统的中性点接地方式是一个系统工程问题。
接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与人地作良好的电气连接称为接地。
根据接地的目的不同,分为工作接地和保护接地。
工作接地是指为运行需要而将电力系统或设备的某一点接地。
如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。
保护接地是指为防止人身触电事故而将电气设备的某一点接地。
如将电气设备的金属外壳接地、互感器二次线圈接地等。
接地方式主要有2种,即直接接地系统和不接地系统。
1.中性点直接接地系统中性点直接接地系统一一又称人电流系统;适于UOkV以上的供电系统,380V以卞低压系统。
直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。
随着电力系统电压等级的增高和系统容量增人,设备绝缘费用所占比重也越来越人。
中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。
所以,UOkV及以上系统均采用中性点直接接地方式。
对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。
对于高压系统,如UOkV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受J 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资人人增加;另外11ORV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在llOkV以上供电系统,多采用中性点直接接地系统。
第五节电力系统的接线方式和电压等级一、电力系统的接线方式(一)系统发展的基本结构型式近代电力系统的接线是很复杂的,这是由于一个具有一定规模的电力系统常常是逐步发展壮大的,往往包括了各种新旧设备,反映了新老技术的结合,这是电力系统的有一个特点。
下面首先从发展的角度来研究系统结构的基本型式。
通常,根据电源位置、负荷分布等的不同,电力系统的结构是各不相同的,但大致可区别为下列两类。
(1)大城市型。
这类系统是面向大城市为中心的负荷密度很高的地区供电的电力系统,它以围绕城市周围的环形系统作为主干(见图1—9)。
其电源中既有一些地区性火电厂,也有从远方水电厂、矿口火电厂以及核能电厂输送来的功率。
(2)远距离型。
这类系统一般是指通过远距离输电线路把远处的大型水电厂、矿口火电厂、核能电厂的功率送往负荷中心的开式系统,如图1—10所示。
这这种大容量、远距离的功率输送,既可以采用超高压交流输电线路,也可以用超高压直流或交、直流并列的输电线路。
(二)电力网络的接线电力网络的接线大致可以分为无备用和有备用两种类型。
(1)无备用网络接线。
用户只能从一个方向取得电源的接线方式,也成为开始电力网。
这类接线方式可以分为单回路放射式、单回路干线式、单回路链式等,如图1—11所示。
无备用接线的主要优点是简单、经济、运行方便,主要缺点是可靠性差,因而不能用于对重要用户供电。
(2)有备用网络接线。
它是指用户可以从两个或两个以上方向取得电源的接线方式,如双回路的放射式、环网以及两端供电网络等,如图1—12所示。
有备用接线的特点是供电可靠,缺点是运行操作和继电保护复杂、经济性也较差。
但是由于保证对用户不间断供电是电力系统的首要目标之一,所以目前以有备用网络接线(尤其是两端供电方式)采用较多。
二、电力系统的额定电压等级我们知道,电力系统中的电机、电器和用电设备都规定有额定电压,只有在额定电压下运行时,其技术经济性能才最好,也才能保证安全可靠运行。
电力系统的额定电压和接线方式系统标称电压、额定电压和最高电压系统标称电压——从电网建设的经济性和电网互联的可能性考虑需要系统设计选定的电压。
标称电压值:220V、380V、3kV、10kV、110kV、220kV等。
额定电压——是指电气设备在此电压下长期工作,效率是最高的,寿命是最合理的。
最高电压——是考虑设备的绝缘性能确定的设备最高运行电压。
1.用电设备的额定电压。
用电设备的额定电压,用电设备的额定电压等于其接入系统的标称电压,允许有5%的偏差。
电力线路首端的电压最好比其U N 高5%,其末端电压才能不低于U N 的5%。
输电线路的额定电压1.05U N +0.95U N 2=U N接入点系统标称电压==V a =1.05U NV b =0.95U N2.发电机的额定电压。
由于发电机总是接在线路的首端,所以发电机的额定电压:U GN=1.05U N譬如系统中发电机对应的额定电压有:3.15kv、6.3kv、10.5kV等。
3.变压器的额定电压。
变压器接受电能的一侧为一次绕组(相当于受电设备)变压器输出电能的一侧为二次绕组(相当于电源)变压器一次绕组:若与系统连接,其额定电压等于系统的标称电压,若与发电机连接,其额定电压等于发电机的额定电压,U T1=U NU T1=U GN变压器的二次绕组相当于电源,应比同级电网的额定电压高5%,同时由于内部阻抗会造成大约5%的电压损失,因此规定变压器二次绕组的额定电压应比同级额定电压高10%,即变压器二次绕组:其中,若变压器的内部阻抗Uk%<7.5,或直接与用户相连,则其二次绕组的U N 比网络的额定电压高5%,即U T2=1.1U NU T2=1.05U N确定发电机和变压器各绕组的额定电压。
10kV110kV3kVT1T2T36kVGG:U GN=10.5kVT1:U N1=10.5kV U N2=1.1×110=121kV T2:U N1=10.5kV U N2=3×1.05=3.15kV T3:高压绕组110kV中压绕组1.1×35=38.5kV低压绕组6×1.05=6.3kV电力网的接线图:电气接线图、地理接线图电气接线图电气接线图反映系统中各个主要元件之间的电气联系;它不能反映各发电厂、变电所的相对地理位置及电力线路的路径。
单辐射接线
单辐射接线,也称为单向辐射接线,是一种用于电力系统的接线方式。
在单辐射接线中,所有支路的电流从一个称为发电站的电源辐射出去,形成一个星状的拓扑结构。
单辐射接线的特点是集中供电和统一管理。
发电站作为电力系统的中心,通过变压器提供电源,将电力传输到不同的负载上。
这种接线方式适用于较小规模的电力系统,如小地区的供电、工业区域或农村地区的供电。
单辐射接线的优点是结构简单,布线方便,节省材料成本,易于维护。
缺点是负载分布不均匀时,易导致电压降低和电力损耗增加。
总之,单辐射接线是一种常用的接线方式,适用于小规模的电力系统,具有简单、方便、节省成本的特点。
电力系统的接线方式电力系统接线图是电力系统整体性质的图形表示,分为地理接线图与电气接线图。
地理接线图是在地理图上布点布线,可与地理图较好地吻合,显示系统中发电厂、变电站的地理位置,电力线路的路径,以及它们之间的联接形式。
因此,由地理接线图可获得对该系统的宏观印象。
但由于地理接线图上难以表示主要发电机、变压器、线路等的联系,这时则需要阅读电气接线图。
电气接线图一般表示为单线电气接线图,显示电力系统的各个能量变换元件、能量输送元件的联结,显示出组成电力系统主体设备(发电机、变压器、母线、断路器、电力线路等)的概貌。
因此,由电气接线图可获得对该系统的更细致了解。
实际应用时,一般将地理接线图与单线电气接线图相结合,可以了解整个系统中发电厂、变电站、电力线路、负荷等的相对位置及电气连接形式。
图1电力系统地理接线图电力系统的接线方式按供电可靠性分为有备用接线方式和无备用接线方式两种。
无备用接线方式是指负荷只能从一条路径获得电能的接线方式。
根据形状,它包括单回路放射式、干线式和链式网络。
有备用接线方式是指负荷至少可以从两条路径获得电能的接线方式。
它包括双回路的放射式、干线式、链式、环式和两端供电网络。
图2无备用接线图(a)放射式(b)干线式(C)链图3有备用接线图(a)放射式(b)干线式(C)链式(d)环式(e)两端供电网无备用接线的主要优点在于简单、经济、运行操作方便,主要缺点是供电可靠性差,并且在线路较长时,线路末端电压往往偏低,因此这种接线方式不适用于一级负荷占很大比重的场合。
但在一级负荷的比重不大,并可为这些负荷单独设置备用电源时,仍可采用这种接线。
这种接线方式之所以适用于二级负荷是由于架空电力线路已广泛采用自动重合闸装置,而自动重合闸的成功率相当高。
有备用接线的主要优点在于供电可靠性高,供电电压质量高。
有备用接线中,双回路的放射式、干线式和链式接线的缺点是不够经济;环形网络的供电可靠性和经济性都不够,但其缺点是运行调度复杂,并且故障时的电压质量差;两端供电网络很常见,供电可靠性高,但采用这种接线的先决条件是必须有两个或两个以上独立电源,并且各电源与各负荷点的相对位置又决定了这种接线的合理性。