立方根教案
- 格式:doc
- 大小:72.37 KB
- 文档页数:2
《立方根》教案教学教案教学:立方根教学目标:1.知识目标:能够理解和运用立方根的概念,掌握立方根的计算方法;2.能力目标:能够在给定的问题中运用立方根解决实际问题;3.情感目标:培养学生的数学思维、逻辑思维和解决问题的能力。
教学重点:1.立方根的概念;2.立方根的计算方法。
教学难点:1.立方根的计算方法的运用;2.立方根在实际问题中的应用。
教学准备:1.已经准备好的教案;2.课件、教具等教学辅助工具;3.学生的练习册、作业本等。
教学过程:第一步:导入新知识(5分钟)1.利用课件向学生展示一个长方体,引导学生思考立方体的特点;2.提问:什么是立方体?学生回答后,教师给出定义并强调长方体的3个边长是相等的;3.提问:若一个长方体的体积为8,你能否求出它的边长?为什么?学生回答后,教师引出立方根的概念。
第二步:讲解立方根的概念(10分钟)1.向学生解释立方根的定义:一个数的立方根是指这个数的立方等于这个数本身;2.通过课件和实际例子向学生展示立方根的概念,让学生能够理解立方根这个概念的意义。
第三步:讲解立方根的计算方法(15分钟)1.向学生讲解求立方根的基本原理:通过试探和逼近的方法求出一个数的立方根;2.提醒学生立方根的符号是∛;3.让学生通过课件上的示例,理解如何使用计算器来计算立方根;4.引导学生掌握手工计算立方根的方法,例如牛顿法等。
第四步:练习与巩固(20分钟)1.让学生在练习册上完成针对立方根计算方法的练习题,帮助他们巩固所学知识;2.检查学生的答案,解答学生在练习中遇到的问题。
第五步:应用与拓展(20分钟)1.给学生一些关于立方根的实际问题,引导学生通过运用立方根解决实际问题;2.引导学生思考立方根在其他领域的应用,例如建筑、科学等。
第六步:总结与反馈(10分钟)1.让学生简要总结本节课所学内容,再次强调立方根的概念和计算方法;2.随堂测试:出一道与立方根相关的问题,检查学生对所学知识的掌握程度;3.给学生布置相关的课后作业,巩固和拓展所学知识。
立方根教案人教版章节一:立方根的概念引入教学目标:1. 让学生理解立方根的定义。
2. 让学生能够运用立方根的概念解决实际问题。
教学内容:1. 引出立方根的概念,通过实际例子让学生感受立方根的存在。
2. 讲解立方根的性质,如正数的立方根是正数,负数的立方根是负数等。
教学步骤:1. 引入立方根的概念,让学生举例说明。
2. 通过实际问题,让学生运用立方根的概念解决。
章节二:立方根的计算方法教学目标:1. 让学生掌握计算立方根的方法。
2. 让学生能够运用立方根的计算方法解决实际问题。
教学内容:1. 讲解立方根的计算方法,如分数的立方根、小数的立方根等。
2. 通过实际问题,让学生运用立方根的计算方法解决。
教学步骤:1. 讲解立方根的计算方法,让学生进行实际操作。
2. 通过实际问题,让学生运用立方根的计算方法解决。
章节三:立方根的应用教学目标:1. 让学生了解立方根在实际问题中的应用。
2. 让学生能够运用立方根解决实际问题。
教学内容:1. 通过实际问题,让学生了解立方根的应用,如计算物体的体积、计算立方体的表面积等。
2. 讲解立方根在实际问题中的应用方法。
教学步骤:1. 通过实际问题,让学生了解立方根的应用。
2. 讲解立方根在实际问题中的应用方法,让学生进行实际操作。
章节四:立方根的综合训练教学目标:1. 让学生巩固立方根的概念和计算方法。
2. 让学生能够运用立方根解决实际问题。
教学内容:1. 通过练习题,让学生巩固立方根的概念和计算方法。
2. 通过实际问题,让学生运用立方根解决实际问题。
教学步骤:1. 让学生进行立方根的概念和计算方法的练习。
2. 通过实际问题,让学生运用立方根解决实际问题。
章节五:立方根的拓展学习教学目标:1. 让学生了解立方根的拓展知识。
2. 让学生能够运用立方根的拓展知识解决实际问题。
教学内容:1. 讲解立方根的拓展知识,如立方根的运算规律、立方根与平方根的关系等。
2. 通过实际问题,让学生运用立方根的拓展知识解决实际问题。
立方根数学教案标题:立方根数学教案一、教学目标:1. 理解立方根的定义,掌握立方根的基本性质。
2. 能够正确计算一个数的立方根,解决与立方根有关的实际问题。
3. 培养学生的逻辑思维能力和空间想象能力。
二、教学重点和难点:重点:理解立方根的定义,掌握立方根的基本性质。
难点:理解和运用立方根的概念解决实际问题。
三、教学过程:1. 引入新课教师可以通过生活中的实例引入新课,比如“一个正方体的体积为27立方米,求其边长是多少?”这样的问题可以引导学生思考并引出立方根的概念。
2. 新课讲解(1)定义:如果一个数的立方等于a,那么这个数就叫做a的立方根,记作$\sqrt[3]{a}$。
(2)基本性质:①正数有一个正的立方根;②负数有一个负的立方根;③零的立方根是零。
3. 练习巩固通过一系列的练习题,让学生熟悉立方根的计算方法,并掌握如何用立方根解决问题。
例如:“求-8的立方根”,“已知一个正方体的体积为64立方米,求其边长”。
4. 课堂小结回顾本节课学习的主要内容,强调立方根的定义和基本性质,以及如何计算立方根。
5. 作业布置设计一些与立方根相关的题目作为课后作业,以便学生进一步理解和掌握所学知识。
四、教学反思:在教学过程中,要注意引导学生主动思考,提高他们的逻辑思维能力和空间想象能力。
同时,要注重理论联系实际,让学生在解决实际问题的过程中加深对立方根的理解。
五、拓展阅读:对于有兴趣的学生,可以推荐他们阅读一些关于立方根的扩展知识,如立方根的历史、应用等,以拓宽他们的视野。
六、教学评估:通过课堂练习、课后作业和测验等方式,对学生的学习情况进行评估,了解他们对立方根的理解程度和应用能力。
《立方根》优质教案教案内容:一、教学内容本节课的教学内容选自人教版初中数学八年级上册第6章第3节《立方根》。
本节课主要内容包括:立方根的定义,立方根的性质,立方根的运算方法,以及立方根在实际问题中的应用。
二、教学目标1. 理解立方根的概念,掌握立方根的性质和运算方法。
2. 能够运用立方根解决实际问题。
3. 培养学生的逻辑思维能力和创新精神。
三、教学难点与重点1. 立方根的概念和性质。
2. 立方根的运算方法。
3. 立方根在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、尺子、圆规、三角板、计算器。
五、教学过程1. 实践情景引入:教师展示一个正方体模型,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,可以得出正方体的体积是边长的三次方。
2. 立方根的定义:教师引导学生思考:“如果我们知道一个数的立方是另一个数,那么我们如何求出这个数呢?”学生通过讨论和思考,可以得出这个数就是原数的立方根。
教师给出立方根的定义,并解释立方根的性质。
3. 立方根的运算方法:4. 立方根在实际问题中的应用:教师提出一个实际问题:“一个正方体的体积是27立方米,求这个正方体的边长。
”学生运用立方根的知识,解决问题并得出答案。
六、板书设计1. 立方根的定义。
2. 立方根的性质。
3. 立方根的运算方法。
4. 立方根在实际问题中的应用。
七、作业设计1. 题目:已知一个数的立方是27,求这个数。
答案:3。
2. 题目:已知一个正方体的体积是64立方米,求这个正方体的边长。
答案:4米。
八、课后反思及拓展延伸1. 课后反思:教师反思本节课的教学效果,是否达成了教学目标,学生是否掌握了立方根的知识,哪些学生需要进一步辅导。
2. 拓展延伸:教师提出一个拓展问题:“立方根在实际生活中有哪些应用?”引导学生思考和讨论,进一步巩固立方根的知识。
重点和难点解析一、立方根的概念和性质1. 立方根的定义:教师在讲解立方根的定义时,应强调“立方根”就是一个数乘以自身两次后得到的结果。
2024年《立方根》优质教案一、教学内容本节课选自2024年教材《数学》七年级下册第十章第一节“立方根”。
具体内容包括:1. 立方根的定义及性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用。
二、教学目标1. 知识与技能:理解立方根的定义,掌握立方根的计算方法,能解决实际问题;2. 过程与方法:通过实例分析,培养学生运用立方根解决实际问题的能力;3. 情感、态度与价值观:培养学生对数学的兴趣,提高数学素养。
三、教学难点与重点教学难点:立方根的计算方法,特别是非整数的立方根;教学重点:立方根的定义,计算方法及其应用。
四、教具与学具准备教具:立方体模型,多媒体教学设备;学具:计算器,草稿纸,笔。
五、教学过程1. 实践情景引入(1)展示立方体模型,引导学生观察其特征,提出问题:如何计算立方体的体积?(2)通过计算立方体的体积,引出立方根的概念。
2. 例题讲解(1)讲解立方根的定义及性质;(2)举例讲解立方根的计算方法,如:2的立方根,8的立方根等;(3)讲解立方根在实际问题中的应用。
3. 随堂练习(2)解决实际问题,如:一个立方体的体积是64立方厘米,求它的棱长。
4. 知识拓展(1)介绍立方根在科学、生活中的应用;(2)探讨立方根与平方根的关系。
六、板书设计1. 立方根的定义及性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用;4. 立方根与平方根的关系。
七、作业设计1. 作业题目:(2)一个立方体的体积是216立方厘米,求它的棱长;(3)比较两个数的大小:2的立方根与3的立方根。
2. 答案:(1)3,2,5;(2)6厘米;(3)2的立方根小于3的立方根。
八、课后反思及拓展延伸1. 反思:本节课学生对立方根的概念及计算方法掌握情况,对实际问题的解决能力;2. 拓展延伸:探讨立方根的估算方法,如:牛顿迭代法等。
重点和难点解析1. 教学难点:立方根的计算方法,特别是非整数的立方根;2. 例题讲解:立方根在实际问题中的应用;3. 知识拓展:立方根与平方根的关系;4. 作业设计:比较两个数的大小,如2的立方根与3的立方根。
数学《立方根》教案一、教学内容本节课的教学内容选自人教版小学数学五年级下册第117页“立方根”。
学生将通过本节课的学习,掌握立方根的概念,学会用立方根解决实际问题。
二、教学目标1. 学生能够理解立方根的概念,掌握求一个数的立方根的方法。
2. 学生能够运用立方根解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作精神。
三、教学难点与重点重点:立方根的概念和求一个数的立方根的方法。
难点:运用立方根解决实际问题。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:练习本、尺子、圆规。
五、教学过程1. 实践情景引入:教师通过多媒体课件展示一个正方体,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,得出正方体的体积是边长的三次方。
2. 例题讲解:教师通过讲解正方体的体积,引导学生思考:“如何求一个数的立方根?”学生通过讨论和思考,得出求一个数的立方根的方法:将这个数分解成三个相同的因数,即为这个数的立方根。
3. 随堂练习:教师出示一些练习题,让学生独立完成,检查学生对立方根的理解和掌握程度。
4. 应用拓展:教师通过出示一些实际问题,让学生运用立方根解决,如:“一个正方体的体积是64立方米,求这个正方体的边长。
”学生通过运用立方根解决问题,提高解决问题的能力。
六、板书设计立方根:正方体的体积 = 边长× 边长× 边长求一个数的立方根:将这个数分解成三个相同的因数七、作业设计1. 请用立方根的知识,解释一下为什么冰激凌在冷冻过程中会膨胀。
答案:冰激凌在冷冻过程中会膨胀,是因为冰激凌的体积是冰激凌温度三次方的函数,当温度降低时,体积增大。
2. 一个正方体的体积是27立方米,求这个正方体的边长。
答案:这个正方体的边长是3米。
八、课后反思及拓展延伸本节课通过正方体的体积引入立方根的概念,通过讲解和练习,让学生掌握立方根的知识。
在教学过程中,要注意引导学生观察和思考,培养学生的逻辑思维能力。
浙教版初中数学立方根教案一、教学内容二、教学目标1. 知识与技能:让学生理解立方根的概念,掌握求立方根的方法,能够准确计算立方根。
2. 过程与方法:通过实例引入立方根,让学生在实际问题中感受立方根的应用,培养学生解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、合作交流的精神。
三、教学难点与重点教学重点:立方根的定义及求法。
教学难点:求一个数的立方根,特别是非整数的立方根。
四、教具与学具准备教具:多媒体教学设备、立方体模型。
学具:计算器、练习本、铅笔。
五、教学过程1. 实践情景引入利用立方体模型,展示边长为a的正方体,引导学生求其体积V=a^3。
然后提出问题:已知体积V,如何求边长a?2. 知识讲解根据上述问题,引出立方根的定义:如果一个数x的立方等于a,那么x叫做a的立方根,记作x=∛a。
讲解立方根的求法,如通过因数分解、估算等方法。
3. 例题讲解举例讲解求立方根的方法,如求27的立方根。
4. 随堂练习5. 小组讨论六、板书设计1. 立方根的定义:x=∛a,其中a=x^3。
2. 求立方根的方法:因数分解法、估算法等。
3. 例题:求27的立方根。
七、作业设计1. 作业题目(2)已知一个数的立方根是4,求这个数。
(3)一个数的立方根是5,求这个数的平方根。
2. 答案(1)3、4、5(2)64(3)±2.5八、课后反思及拓展延伸1. 反思:本节课学生对立方根的概念和求法掌握情况,以及课堂氛围、互动情况。
2. 拓展延伸:引导学生思考立方根在实际问题中的应用,如体积、密度等,激发学生学习兴趣。
重点和难点解析1. 实践情景引入中立方体模型的运用。
2. 立方根定义的讲解和例题的选取。
3. 求立方根方法的多样性和适用性。
4. 作业设计中涉及立方根与平方根的结合。
5. 课后反思与拓展延伸中学生兴趣的激发。
一、实践情景引入中立方体模型的运用引入立方根概念时,使用立方体模型能够直观展示立方根与立方的关系。
立方根教案(3)
一、教学目标
1. 理解立方根的定义和性质;
2. 能够计算一个数的立方根;
3. 能够在实际问题中应用立方根。
二、教学内容
1. 立方根的概念和基本性质;
2. 立方根的求解方法;
3. 立方根的应用场景。
三、教学准备
1. 教学课件和教辅资料;
2. 计算器;
3. 练题。
四、教学步骤
步骤一:导入
1. 引导学生回顾二次方根的概念和求解方法;
2. 引入立方根的定义和概念,与二次方根进行对比。
步骤二:理解立方根的概念和性质
1. 介绍立方根的定义:一个数的立方根是指它的立方等于该数的数;
2. 解释立方根的性质:每个正数都有唯一的一个正的立方根。
步骤三:求解立方根的方法
1. 介绍近似法:通过试探和调整的方法逼近准确的立方根;
2. 介绍二分法和牛顿迭代法两种常用的求解立方根的方法;
3. 演示使用计算器进行立方根计算的步骤。
步骤四:练与应用
1. 分发练题,进行小组讨论和解答;
2. 引导学生在实际问题中应用立方根,如体积、边长相关的计算等。
五、教学评估
1. 教师观察学生的参与度和掌握程度;
2. 批改练题,检查学生的求解立方根的能力;
3. 提出针对性的问题,检验学生对立方根的应用能力。
六、教学延伸
1. 引导学生深入研究其他根的求解方法;
2. 探究立方根的运算规律和特殊性质。
以上就是本次立方根教案的内容,希望能够帮助学生提高对立方根的理解和运用能力。
立方根
教学目标:
1.了解立方根,开立方的概念;
2.会用符号表示a 的立方根,并指出被开方数,根指数,会正确读出符号;
3.会求数的立方根,了解开立方与立方互为逆运算;
4.体会一个数的立方根的唯一性及两个互为相反数的立方根的关系;
5.一个数的立方根与平方根的区别。
教学重难点:
1.立方根相关概念的理解和求法;
2.立方根的唯一性及负数立方根的意义。
教学过程
复习旧知
1.什么叫平方根?怎样表示及有什么性质?
引人新知
定义: 如果一个数的立方等于a ,这个数叫做a 的立方根(也叫做三次方根),即如果
3x a =,那么x 叫做a “三次根号a ”,其中a 叫被开方数,叫
3=; 开立方:求一个数的立方根的运算。
(开立方与立方互为逆运算)
巩固新知
求下列各数的立方根
() () () ()8- ()27
8-
解:823=
28823=∴的立方根,即是
思考:
1.除2外,还有什么数的立方等于8?
2.除2-外,还有什么数的立方等于8-?
归纳:
1.每个数只有一个立方根;
2.正数的立方根是正数;
.负数的立方根是负数。
【探究】
=38( ), =-38( ), =-38( )
=327( ), =-327( ), =-327( )
总结:
(1) )0a =>。
(2) 33-a a 与互为相反数(两个互为相反数的数的立方根也互为相反数)
小结:
立方根与平方根的区别
(1)书写的区别
(2))0(≥a a , )(3为任意数a a
(3)正数的平方根有个,它们互为相反数;一个数的立方根只有一个且正数的立方根是 正数,负数的立方根是负数。
课堂练习
填空 1.64-的立方根是( ); 2.32)8(-的平方根是( ); 3.3512-的立方根是( );
4.8-的立方根与81的一个平方根的和为( );
5.当______x 时,x 4有意义,当______x 时,34x 有意义。
小结
作业 书上页第、、、题。