(完整word版)《立方根》优质教案
- 格式:doc
- 大小:125.51 KB
- 文档页数:4
立方根教学教案5篇Cube root teaching plan立方根教学教案5篇前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:61立方根范文实用版2、篇章2:6.3去括号范文3、篇章3:63去括号范文4、篇章4:§11具有相反意义量范文(最新版)5、篇章5:题:52图形变化样本篇章1:61立方根范文实用版课型:新授学习目标:1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。
3.了解立方根的性质,区分立方根与平方根的不同。
4.体会类比,化归思想学习重点:立方根的概念.,求某些数的立方根。
学习难点;了解立方根的性质,区分立方根与平方根的不同。
学习过程:一、学习准备1、上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根。
若x3=a,则x叫a的什么呢?完成下面填空。
33 = ()()3 = 27(-3)3= ()()3 = -27()3= ()()3 =()3 =()()3 =03 =()()3 = 02、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做a的三次方根。
即如果X3=a,那么叫做的立方根。
请按照第7页的举例你再举两个例子说明:叫做开立方,立方与互为逆运算4、观察上面两组算式,归纳一个数的立方根的性质是:正数有一个立方根,零有一个立方根;负数立方根。
交流:(1)的立方根是什么?(2)0.001的立方根是什么?(3)0的立方根是什么?(4)-729的立方根是什么?5、立方根的表示方法一个正数a有一个立方根,.正数a的立方根,记作“ ”负数a的立方根,记作“ ”吗?如果X3=a,那么X= ,其中符号“ ”读作三次根号,a 叫做被开方数这里的a表示什么样的数? a是任意数二、合作探究1、阅读课本第7页例题4,按例题格式求其立方根。
《立方根》教案教学教案教学:立方根教学目标:1.知识目标:能够理解和运用立方根的概念,掌握立方根的计算方法;2.能力目标:能够在给定的问题中运用立方根解决实际问题;3.情感目标:培养学生的数学思维、逻辑思维和解决问题的能力。
教学重点:1.立方根的概念;2.立方根的计算方法。
教学难点:1.立方根的计算方法的运用;2.立方根在实际问题中的应用。
教学准备:1.已经准备好的教案;2.课件、教具等教学辅助工具;3.学生的练习册、作业本等。
教学过程:第一步:导入新知识(5分钟)1.利用课件向学生展示一个长方体,引导学生思考立方体的特点;2.提问:什么是立方体?学生回答后,教师给出定义并强调长方体的3个边长是相等的;3.提问:若一个长方体的体积为8,你能否求出它的边长?为什么?学生回答后,教师引出立方根的概念。
第二步:讲解立方根的概念(10分钟)1.向学生解释立方根的定义:一个数的立方根是指这个数的立方等于这个数本身;2.通过课件和实际例子向学生展示立方根的概念,让学生能够理解立方根这个概念的意义。
第三步:讲解立方根的计算方法(15分钟)1.向学生讲解求立方根的基本原理:通过试探和逼近的方法求出一个数的立方根;2.提醒学生立方根的符号是∛;3.让学生通过课件上的示例,理解如何使用计算器来计算立方根;4.引导学生掌握手工计算立方根的方法,例如牛顿法等。
第四步:练习与巩固(20分钟)1.让学生在练习册上完成针对立方根计算方法的练习题,帮助他们巩固所学知识;2.检查学生的答案,解答学生在练习中遇到的问题。
第五步:应用与拓展(20分钟)1.给学生一些关于立方根的实际问题,引导学生通过运用立方根解决实际问题;2.引导学生思考立方根在其他领域的应用,例如建筑、科学等。
第六步:总结与反馈(10分钟)1.让学生简要总结本节课所学内容,再次强调立方根的概念和计算方法;2.随堂测试:出一道与立方根相关的问题,检查学生对所学知识的掌握程度;3.给学生布置相关的课后作业,巩固和拓展所学知识。
《立方根》优质教案教学内容《立方根》是一种数学运算,指的是一个数的立方根,即找出一个数的立方是该数。
立方根的计算对于初中数学来说是一个较为复杂的知识点,需要通过一定的教学方法和教学内容进行引导和讲解。
下面是一个关于《立方根》的优质教案教学内容。
教学目标:1.知道什么是立方根2.掌握立方根的计算方法3.能够解决与立方根相关的问题教学重点:1.理解立方根的概念2.掌握立方根的计算方法教学难点:1.理解和计算立方根的复杂问题2.应用立方根解决实际问题教学准备:1.板书教学目标和重点难点2.可视化教具或教学工具3.各种与立方根相关的练习题和问题教学步骤:Step 1:引入立方根的概念(5分钟)引导学生回顾乘法、平方根等相关的概念,并将其与立方根进行对比。
解释什么是立方根,即找出一个数的立方是该数。
Step 2:举例说明立方根的计算方法(10分钟)通过具体的例子,解释立方根的计算方法。
例如,计算8的立方根,可以通过找一个数的立方等于8来解决。
Step 3:提示立方根的性质和规律(10分钟)结合一些特殊的数,介绍立方根的性质和规律。
例如,立方根的结果一定是正数或负数,并且如果一个数的立方根是a,则它的相反数的立方根就是-a。
Step 4:指导学生进行练习(15分钟)出示一些简单的练习题,指导学生计算立方根。
例如,计算27的立方根、64的立方根等。
Step 5:巩固立方根的计算方法(10分钟)出示一些较为复杂的练习题,让学生巩固立方根的计算方法。
例如,计算343的立方根、1000的立方根等。
Step 6:应用立方根解决实际问题(15分钟)提出一些与立方根相关的实际问题,引导学生运用立方根解决问题。
例如,计算一个正方体的体积为64,求正方体的边长。
Step 7:总结与评价(5分钟)总结立方根的概念、计算方法以及应用,并对学生的学习进行评价。
教学延伸:1.相关知识扩展:介绍其他立方根的用途和应用场景,如三次方程的求根、立方体的体积计算、物体表面积计算等。
《立方根》优质教案教案内容:一、教学内容本节课的教学内容选自人教版初中数学八年级上册第6章第3节《立方根》。
本节课主要内容包括:立方根的定义,立方根的性质,立方根的运算方法,以及立方根在实际问题中的应用。
二、教学目标1. 理解立方根的概念,掌握立方根的性质和运算方法。
2. 能够运用立方根解决实际问题。
3. 培养学生的逻辑思维能力和创新精神。
三、教学难点与重点1. 立方根的概念和性质。
2. 立方根的运算方法。
3. 立方根在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、尺子、圆规、三角板、计算器。
五、教学过程1. 实践情景引入:教师展示一个正方体模型,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,可以得出正方体的体积是边长的三次方。
2. 立方根的定义:教师引导学生思考:“如果我们知道一个数的立方是另一个数,那么我们如何求出这个数呢?”学生通过讨论和思考,可以得出这个数就是原数的立方根。
教师给出立方根的定义,并解释立方根的性质。
3. 立方根的运算方法:4. 立方根在实际问题中的应用:教师提出一个实际问题:“一个正方体的体积是27立方米,求这个正方体的边长。
”学生运用立方根的知识,解决问题并得出答案。
六、板书设计1. 立方根的定义。
2. 立方根的性质。
3. 立方根的运算方法。
4. 立方根在实际问题中的应用。
七、作业设计1. 题目:已知一个数的立方是27,求这个数。
答案:3。
2. 题目:已知一个正方体的体积是64立方米,求这个正方体的边长。
答案:4米。
八、课后反思及拓展延伸1. 课后反思:教师反思本节课的教学效果,是否达成了教学目标,学生是否掌握了立方根的知识,哪些学生需要进一步辅导。
2. 拓展延伸:教师提出一个拓展问题:“立方根在实际生活中有哪些应用?”引导学生思考和讨论,进一步巩固立方根的知识。
重点和难点解析一、立方根的概念和性质1. 立方根的定义:教师在讲解立方根的定义时,应强调“立方根”就是一个数乘以自身两次后得到的结果。
一、教学目标1. 知识与技能:(1)理解立方根的概念,掌握立方根的计算方法。
(2)能够正确求解立方根,并应用于实际问题。
2. 过程与方法:(1)通过观察、比较、归纳等方法,理解立方根的概念。
(2)通过小组合作、探究式学习等方式,掌握立方根的计算方法。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生的求知欲。
(2)培养学生严谨的数学思维和良好的合作意识。
二、教学内容1. 立方根的概念2. 立方根的性质3. 立方根的计算方法4. 立方根的应用三、教学重点与难点1. 教学重点:(1)立方根的概念(2)立方根的计算方法2. 教学难点:(1)立方根的概念的理解(2)立方根的计算方法的掌握四、教学过程1. 导入新课(1)通过提问引导学生回顾平方根的概念,激发学生的学习兴趣。
(2)引出立方根的概念,提出本节课的学习目标。
2. 立方根的概念(1)通过实例展示立方根的实际意义,帮助学生理解立方根的概念。
(2)引导学生观察、比较,归纳出立方根的定义。
3. 立方根的性质(1)介绍立方根的性质,如:立方根的符号、立方根的乘除性质等。
(2)通过例题,让学生巩固立方根的性质。
4. 立方根的计算方法(1)介绍立方根的计算方法,如:直接开立方、立方根的近似计算等。
(2)通过例题,让学生掌握立方根的计算方法。
5. 立方根的应用(1)通过实际问题,让学生运用立方根的知识解决问题。
(2)引导学生分析问题,总结立方根在实际问题中的应用。
6. 小组合作与探究(1)分组进行探究,让学生在小组内讨论、交流,共同解决问题。
(2)教师巡视指导,解答学生在探究过程中遇到的问题。
7. 总结与反思(1)引导学生回顾本节课所学内容,总结立方根的概念、性质和计算方法。
(2)鼓励学生反思自己在学习过程中的收获与不足,提出改进措施。
8. 布置作业(1)布置相关练习题,巩固学生对立方根的掌握。
(2)布置拓展作业,提高学生的综合运用能力。
五、教学评价1. 课堂表现:观察学生在课堂上的学习态度、参与程度等。
《立方根》教学设计优秀4篇作为一名专为他人授业解惑的人民教师,总不可避免地需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
那么教学设计应该怎么写才合适呢?下面是勤劳的编辑帮家人们找到的《立方根》教学设计优秀4篇,欢迎参考阅读,希望大家能够喜欢。
《立方根》教学设计篇一一、教材分析《立方根》是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》第三节、本节内容安排了1个学时完成、主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质、因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要昂学生感受类比的思想方法,为今后的学习打下基础、二、学情分析在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有先进性(实数范围内)的讨论上、在学生对数的立方根概念及个数的先进性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题、三、目标分析教学目标知识与技能目标1、了解立方根的概念,会用根号表示一个数的立方根、2、会用立方运算求一个数的立方根,了解开立方与立方互为逆运算、3、了解立方根的性质、4、区分立方根与平方根的不同、过程与方法目标1、经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略、2、在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想、3、通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识、情感与态度目标:1、在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神、2、学生通过对实际问题的解决,体会数学的实用价值、教学重点立方根的概念及计算、教学难点立方根的求法,立方根与平方根的联系及区别、四、教法学法1、教学方法:类比法、2、课前准备:教具:教材,软件Microsoft PowerPoint 2002,电脑、学具:教材,练习本、五、教学过程本节课设计了七个教学环节:一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究、一环节:创设问题情境:内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为v=R,R为球的半径)提问:怎样求出半径R?学完本节知识后,相信你会有一个满意的答案、有关体积的。
《立方根》教案教学内容教学内容:《立方根》教案教学目标:1.理解什么是立方根;2.掌握立方根的求解方法;3.运用立方根解决实际问题。
教学重点:1.理解立方根的概念和性质;2.掌握立方根的求解方法。
教学难点:1.运用立方根解决实际问题。
教学准备:1.教师准备一些实际问题,以供学生运用立方根进行求解;2.准备投影仪和电脑,以便展示计算过程。
教学过程:Step 1: 导入新知1.教师先向学生简单介绍立方根的定义和性质,包括:-立方根表示一个数的立方等于它自己;-符号:∛;-若a³=b,则a是b的立方根;-立方根有一个特殊的表示方式:∛x;-对于正数x,有一个正的立方根和一个负的立方根。
Step 2: 讲解求解立方根的方法1.教师把求解立方根的方法分为两种情况进行讲解。
(1)当立方根的被开方数是一个完全立方数时。
-若a³=b,则a是b的立方根;-例如:∛8=2、∛27=3;(2)当立方根的被开方数不是一个完全立方数时。
-采用近似法,找到一个可以使得近似值的立方尽可能接近被开方数的数;-例如:∛11≈2.223;2.教师在黑板上画出计算立方根的步骤,并详细解释。
Step 3: 解答学生提问1.教师回答学生可能提出的关于立方根的求解过程中的问题。
Step 4: 练习和巩固1.学生进行课堂练习,课后作业作为巩固;2.学生互相检查答案,教师解答学生提出的疑问。
Step 5: 运用立方根解决实际问题1.教师引导学生运用立方根解决实际问题。
-例如:一个正方体的体积是64立方米,请问它的边长是多少?-解:设该正方体的边长为x,根据体积的定义,有x³=64,所以x=∛64=4Step 6: 总结与拓展1.教师对本节课的内容进行总结,并展示学生运用立方根解决问题的意义;2.教师提出一些拓展问题,鼓励学生运用立方根解决。
Step 7: 完成课后作业1.学生完成课后作业,以检验对本课内容的掌握和理解。
2.3 立方根教学目标:(一)教学知识点1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.(二)能力训练要求1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.(三)情感与价值观要求当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.教学重点:立方根的概念.教学难点:1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.教学方法:类比学习法.教学过程:Ⅰ.新课导入上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=±a.若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?Ⅱ.新课讲解1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?.若x的平方等于a,则x叫a的平方根,记作x=±2a,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=±3a,读作x等于正、负三次根号a,简称x等于正、负根号a.[师]请大家对这位同学的回答展开讨论,小组总结后选代表发言.[生甲]我认为这位同学回答得不对.如果x2=a,则x=±a,x3=a时,x=±a也成立的话,那如何区分平方根与立方根呢?[生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是±2,所以立方根的个数不正确.[师]大家的分析非常有道理,请认真看书第44页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x=3a,读作x等于三次根号a.开立方的定义[师]大家先回忆开平方的定义,再类推开立方的定义.[生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.(2)立方根的性质[师]2的立方等于多少?是否有其他的数,它的立方也是8?[生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.[师]-3的立方等于多少?是否有其他的数,它的立方也是-27?[生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.[师]0的立方等于多少?0有几个立方根?[生]0的立方等于0,0有1个立方根是0.[师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?[生]正数有一个立方根,0有一个立方根是0,负数有一个立方根.[师]对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.(3)平方根与立方根的区别与联系.[师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.[生]从定义来看,若一个数x 的平方等于a ,即x 2=a ,则x 叫a 的平方根;若一个数x 的立方等于a ,即x 3=a ,则x 叫a 的立方根,都是一个数x 的乘方等于a ,但一个是平方,另一个是立方.[生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.[生]它们的表示方法和读法不同,一个正数a 的平方根表示为±a ,立方根表示为3a .下面我再系统地总结一下:[例1]求下列各数的立方根:(1)-27;(2)1258;(3)0.216;(4)-5. [师]请大家思考下列问题.3a 表示a 的立方根,则(3a )3等于什么?33a 等于什么?大家可以先举例后找规律.: (3a )3=a .又∵a 3是a 的立方,所以a 3的立方根就是a ,所以33a =a .下面就这两个式子进行练习.[例2]求下列各式的值: (1)38-;(2)3064.0;(3)-31258;(4)(39)3 Ⅲ.课堂练习(一)随堂练习1.求下列各式的值:333333)16(;5;64;125.0-.2.一个正方体,它的体积是棱长为3cm 的正方体体积的8倍,这个正方体的棱长是多少?解:设正方体的棱长是x cm ,得x 3=8×33,解得x =6.即改正方体的棱长是6cm.(二)补充练习1.求下列各数的立方根:0,1,-8127,6,-1000125,0.001 2.求下列各式的值:3233333333)278(;)2(;)2(;16463;1251;1;027.0------ 3.下列说法对不对?-4没有立方根;1的立方根是±1;361的立方根是61;-5的立方根是-35;64的算术平方根是±8.Ⅳ.议一议1.某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?2.一个正方体的体积变为原来的n 倍,它的棱长变为原来的多少倍?解:设原正方体的棱长为a ,后来的正方体的棱长为b ,得na 3=b 3∴3333n a b =33 .∴b=ana3n即后来的棱长变为原来的3n倍.Ⅴ.课时小结1.立方根的定义.2.立方根的性质.3.开立方的定义.4.平方根与立方根的区别与联系.5.会求一个数的立方根.Ⅵ.课后作业习题2.5.Ⅶ.活动与探究1.求下列各式中的x.(1)8x3+27=0;(2)(x-1)3-0.343=0;(3)81(x+1)4=16;(4)32x5-1=0.板书设计:学生用类推的方法得出立方根的相关结论。
立方根教案(3)
一、教学目标
1. 理解立方根的定义和性质;
2. 能够计算一个数的立方根;
3. 能够在实际问题中应用立方根。
二、教学内容
1. 立方根的概念和基本性质;
2. 立方根的求解方法;
3. 立方根的应用场景。
三、教学准备
1. 教学课件和教辅资料;
2. 计算器;
3. 练题。
四、教学步骤
步骤一:导入
1. 引导学生回顾二次方根的概念和求解方法;
2. 引入立方根的定义和概念,与二次方根进行对比。
步骤二:理解立方根的概念和性质
1. 介绍立方根的定义:一个数的立方根是指它的立方等于该数的数;
2. 解释立方根的性质:每个正数都有唯一的一个正的立方根。
步骤三:求解立方根的方法
1. 介绍近似法:通过试探和调整的方法逼近准确的立方根;
2. 介绍二分法和牛顿迭代法两种常用的求解立方根的方法;
3. 演示使用计算器进行立方根计算的步骤。
步骤四:练与应用
1. 分发练题,进行小组讨论和解答;
2. 引导学生在实际问题中应用立方根,如体积、边长相关的计算等。
五、教学评估
1. 教师观察学生的参与度和掌握程度;
2. 批改练题,检查学生的求解立方根的能力;
3. 提出针对性的问题,检验学生对立方根的应用能力。
六、教学延伸
1. 引导学生深入研究其他根的求解方法;
2. 探究立方根的运算规律和特殊性质。
以上就是本次立方根教案的内容,希望能够帮助学生提高对立方根的理解和运用能力。
6.2 立方根教案
一个正数有一个正的立方根 0有一个立方根,是它本身 一个负数有一个负的立方根 任何数都有唯一的立方根 因为
()
3
0=,所以8的立方根是
( )
因为()
3
8=-,所以-8的立方根是( ) 因为3
827⎛⎫
=- ⎪⎝⎭,所以827-的立方根是( )
归纳:
一个数a 的立方根,记作3a ,读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。
例如:327表示
27的立方根,3273=;327-表示27-的立
方根,3
273-=-.
3.探究2: 因为338____,8____,-=-=
所以38- = 3
8- ;
因为3327____,27____-=-=,
所以327- = 327-。
学生独立完成
学生归纳总结,教
师补充.
学生阅读
让学生观察归纳,得出结论.
三.【巩固运用】: 例.求下列各式的值:
(1)364= (2) 318
-= (3)327
64
-=
你会用计算器计算(精确到0.001):
3333...,0.000216,0.216,216,216000,...你发现了什么规律? 利用以上规律探究下列问题:已知3
100≈ 4.6417…, 求3
330.1,0.0001,100000的近似值(精确到0.001) 四.【反思总结】: 1、这节课我最大的收获是:
2、我还需解决的问题有:
五.【达标测试】: 同步学习:达标测试
探究规律
让学生板演,纠错.
类比平方根进行研
究.
学生独立完成在同步学习中.教师关注
学生的完成情况并
适时指导.。