3.2.1圆的对称性(垂径定理)
- 格式:ppt
- 大小:2.67 MB
- 文档页数:48
3.2 圆的轴对称性(一)教学目标知识目标1.理解圆是轴对称图形,每一条直径所在的直线都是对称轴.2.掌握圆的性质(垂径定理),并会用它解决有关弦、弧、•弦心距及半径之间关系的证明和计算.能力目标:经历折纸、画图、归纳等过程,培养学生的探索能力和应用能力.情感目标:通过合作学习,探索圆的性质;让学生亲身体验、直观感知,并操作确认,激发学生自主学习和应用数学的意识.教学重点难点重点:探索圆的轴对称性和圆的性质.难点:用圆的轴对称性推导出圆的性质及其应用.课堂教与学互动设计【创设情境,引入新课】复习提问:(1)什么是轴对称图形?(2)正三角形是轴对称性图形吗?有几条对称轴?(3)圆是否为轴对称图形?如果是,它的对称轴是什么?•你能找到多少条对称轴?──引入新课【合作交流,探究新知】一、自主探索1.在透明纸上任意作一个圆和这个圆的任意一条直径,•然后沿着直径所在的直线把纸折叠,你发现了什么?2.结论:圆是_________图形,_________的直线都是对称轴.二、合作学习1.在圆形纸片(如图3-3-1所示)上任意画一条直径CD,然后在CD上任意取一点E,过E画弦AB⊥CD于点E,把圆形纸片沿直径对折,观察直径CD两侧,你发现哪些点、线互相重合?有哪些圆弧相等?图3-3-12.请你用命题的形式表达你的结论.3.请你对上述命题写出已知、求证,并给出证明.4.圆的性质(垂径定理):垂直于弦的直径平分这条弦,并且平分弦所对的弧.三、概括性质1.直径垂直于弦..⎧⇒⎨⎩直径平分弦直径平分弦所对的弧例如:CD 是直径,AB ⊥CD EA=EB ,CA CB =,DA DB =.2.分一条弧成相等的两条弧的点,叫做这条弧的中点.例如,图3-3-1中,•点C•是AB 的中点,D 是ADB 的中点.【例题解析,当堂练习】例1 (课本例1)已知AB (如图3-3-2),用直尺和圆规求作这条弧的中点.图3-3-2练一练如图3-3-3,同心圆O 中,大圆的弦AB 与小圆交于C ,D 两点,判断线段AC 与BD 的大小关系,并说明理由.图3-3-3例2 (课本例2)一根排水管的截面如图3-3-4所示,已知排水管的半径OB=10,水面宽AB=16,求截面圆心O 到水面的距离OC .图3-3-5想一想在同一个圆中,两条弦的长短与它们所对应的弦心距之间有什么关系?练一练 在直径为20cm 的球形油槽内装入一些油后,截面如图3-3-5所示,•如果油面宽是16cm ,求油槽中油的最大深度.图3-3-5课外同步训练【轻松过关】1.⊙O 的弦AB 的长为16cm ,弦AB 的弦心距为6cm ,则⊙O 的半径为( )A .6cmB .8cmC .10cmD .12cm2.圆是轴对称图形,它的对称轴有( )A .1条B .2条C .4条D .无数条3.如图3-3-6,在⊙O 中,直径MN ⊥AB ,垂足为C ,则下列结论中错误的是( )A .AC=BCB .AN BN =C .AM BM =D .OC=CN图3-3-6 图3-3-7 图3-3-84.如图3-3-7,AB ,CD 是⊙O 的两条直径,∠BOC ≠∠AOC ,则图中相等的弧共有( )A .2对B .4对C .6对D .8对5.⊙O 的半径为6cm ,垂直平分半径的弦长是_______cm .6.如图3-3-8,已知AB是⊙O的弦,P是AB上一点,若AB=10cm,PB=4cm,OP=5cm,则⊙O 的半径OB=_______cm.7.如图3-3-9,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD于点E,请你写出一个你认为正确的结论_________.图3-3-9 图3-3-10 图3-3-118.如图3-3-10,OA为⊙O的半径,弦CB⊥OA于点P,已知OC=5,OP=3,则弦CB•的长为________.9.如图3-3-11,CD为圆O的直径,弦AB⊥CD,P为垂足,•AB=•8cm,•PD=•2cm,•则CP=______cm.10.如图3-3-12所示,在直径为52cm的圆柱形油桶内装入一些油后,•如果油的最大深度为16cm,那么油面宽度AB是_______cm.图3-3-12 图3-3-1311.•“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问长几何?”用现在的语言表达是:如图3-3-13所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD的长.12.如图3-3-14,已知AB交⊙O于C,D两点,且AC=BD,你认为OA=OB吗?为什么?图3-3-14【适度拓展】13.如图3-3-15,AB是⊙O的弦,OD⊥AB于点C,AB=8,CD=2,求⊙O的半径长.图3-3-1514.如图3-3-16有一拱桥是圆弧形,它的跨度(所对弦长)为60m,拱高18m,当水面涨至其跨度只有30m时,就要采取紧急措施.某次洪水来到时,拱顶离水面只有4m.•问是否要采取紧急措施?图3-3-16【探索思考】15.在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm,求弦AB与CD之间的距离.。
《圆的轴对称性——垂径定理》教学设计一、教学内容分析小学时,我们已经知道,圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.也就是说,将圆沿着直径所在的直线对折,直线两侧的部分完全重合.这点学生通过动手操作不难理解,但是该如何证明呢?这是本课时首先要解决的问题.教科书中提供了一种证明轴对称的常用方法,即在圆上任意选取一点,证明该点关于给定对称轴(直径所在直线)的对称点也在圆上,这种证明轴对称的方法需要学生理解掌握.垂径定理将圆的轴对称性具体化、符号化,我们可以由下面这个问题引入垂径定理.如果我们在⊙O 中任意画一条弦AB ,观察图形(见下),它还是轴对称图形吗?若是,你能找到它的对称轴吗?有几条呢?同学们通过动手实验不难得出,此时只要作出垂直于弦AB 的直径,沿着直径所在直线对折,图形的左右两边就可以完全重合,即图形关于该直径所在直线成轴对称.显然,我们只能找到一条这样的直径,因此图形只有一条对称轴.我们不妨设直径CD 与弦AB 垂直相交于点P (如图),观察图形,想想你能找出图中隐含的哪些相等关系.如图所示,通过动手操作发现:将⊙O 沿直径CD 所在的直线对折,CD 两侧的半圆重合,点A 与点B 重合,C A =BC ,D A = BD ,AP=BP.根据轴对称的性质,对称轴垂直平分对应点的连线段,我们可以得到,直线CD 是弦AB 的中垂线.学生通过直观感受总结出垂径定理的内容,接下来要引导学生通过严谨的逻辑推理来验证结论的正确性,这也体现了探究图形性质的科学过程.让学生分组讨论证明方法,引导学生构造辅助线,通过全等的知识证明垂径定理.上述图形结构特征可以概括为:(1)直径(半径或过圆心的直线); (2)垂直于弦; (3)平分弦; (4)平分优弧; (5)平分劣弧.可以证明:由(1)(2)可以推出(3)(4)(5). 即垂直于弦的直径平分弦,并且平分弦所对的两条弧.我们把圆的这个性质叫做垂径定理. 符号语言:如右图,∵直径CD ⊥AB 于P , ∴C A =BC ,D A = BD ,AP=BP.引发学生思考:由(1)(3)是否可以推出(2)(4)(5)呢? 即平分弦(非直径)的直径垂直弦,并且平分弦所对的两条弧. 上述结论可以通过全等三角形的知识证明,我们把圆的这个性质叫做垂径定理的推论.此处一定强调“非直径”,因为任意两条直径都是互相平分的,但并不一定都垂直.符号语言:如右图,∵直径CD 与弦AB 相交于P ,且AP=BP , ∴C A =BC ,D A = BD ,CD ⊥AB.通过类比学习,引导学生思考:知道上述5个条件中两个条件是否就可以推导出其他3个结论呢?总结为“知二推三”,也就是说垂径定理有9个推论,这个可以留给学生课后分组讨论研究. 二、学情分析学生在七、八年级已经学习过轴对称图形的有关概念和性质、等腰三角形的对称性,以及证明垂径定理要用到的三角形全等的知识,并且在小学已初步了解了圆的对称性,具备了学习这节课的知识基础;学生通过学习平行四边形、角平分线、中垂线等几何内容,已经掌握了探究图形性质的不同手段和方法,具备了几何定理的分析探索和证明能力.但是垂径定理及其推论的条件和结论复杂,学生难以理解并应用. 三、教学目标1.通过观察、实验,使学生理解圆的轴对称性.2.掌握垂径定理,理解其证明过程,并会用它解决有关的证明与计算问题.3.掌握垂径定理的推论,理解其证明过程,并会用其解决有关的证明与计算问题.4.通过对定理的探究,提高观察、分析和归纳概括能力. 重点难点垂径定理及其推论的内容与证明是本节课学习的重点和难点. 四、评价设计.学习评价量表标准等级会用文字语言、图形语言、符号语言描述垂径定理 A 会用文字语言、图形语言、符号语言描述垂径定理的推论 A 会证明垂径定理及其推论 C 能利用垂径定理及其推论解决简单的计算问题B能利用垂径定理及其推论解决简单的证明问题C五、教学活动设计教学环节教学活动设计意图教师活动学生活动导入新知问题1 约1400年前,我国隋代建造的赵州石拱桥(如图)主桥拱是圆弧形,它的跨度(弧所对的弦长)是37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果精确到0.1 m).1.分析实际问题,将其转化为数学模型.赵州桥的桥拱呈圆弧形,如图,C为弧AB的中点,且CD⊥AB.已知CD=7.23 m,AB=37m,求该圆的半径.学生猜测(1):AD=BD.学生猜测(2):CD过圆心.不过该如何证明呢?带着这个问题进行本节课的学习.通过实际问题导入新知,引发学生思考,激发学习兴趣.探究新知问题 2 请拿出准备好的圆形纸片,沿着它的直径对折,重复做几次,你发现了什么?由此你能猜想哪些线段相等?哪些弧相等?2.(1)沿着直径将圆翻折,圆的直径两边的部分能够完全重合.圆是轴对称图形,直径所在直线为圆的对称轴,所以圆有无数条对称轴.(2)连接关于直径所在直线对称的两个点所形通过动手操作——沿着直径折叠圆,让学生直观感受圆的轴对称性,体会观察、实验在选定一条直径,在圆上任取一点,证明该点关于已知直径所在直线的对称点也在圆上.3.(1)作AB⊥CD,交⊙O 于B点,若能证明AP=BP即可.(2)连接OA,OB,通过三角形全等可以得到AP=BP.所以B为A的对称点.A B.=BC,D=D(2)可以从圆的轴对称性质出发证明,只要证明A和B是关于直线CD的对称点即可.连接OA,OB,通过证明△OAP与△OBP 全等,得到AP=BP,说明DC所在直线为线段AB的对称轴根据圆的轴对称性得到:AC=BC,A B.D=D(2)可以从圆的轴对称性质出发证明,只要证明A和B为关于直线CD的对称点即可.(3)此处强调非直径的弦,因为圆的所有直径都是互相平分的,但不一定垂直.(4)垂径定理还有别的推论吗?需要继续研究.论.解决问题提问1:对于活动1提出的问题,你现在有思路了吗?请大家小组讨论,给出问题的计算过程.如图,赵州桥的桥拱呈圆弧形,C为AB的中点,且CD⊥AB,已知CD=7.23 m,AB=37m,求该圆的半径.提问2:应用垂径定理解决问题的一般思路是什么?1.根据垂径定理的推论,可知CD的延长线必定过O点,且AD=BD.设半径为r,则OB=r,OD=r-7.23,BD=18.5,根据勾股定理列方程为:222r18.5=r(-7.23).一般思路:垂径定理构造直角三角形勾股定理建立方程.帮助学生进行知识迁移,熟练运用垂径定理及其推论解决计算问题.重要辅助线:过圆心作弦的垂线.典型例题例1 如图,AB是⊙O的直径,弦CD⊥AB于点E,点 M在⊙O上,MD恰好经过圆心O,连接MB,若CD=16,BE=4,求⊙O的直径.例2 H5N1亚型高致病性禽流感是一种传染速度很快的疾病,为防止禽流感蔓延,政府规定:离疫点3 km范围内为扑杀区,所有禽类全部扑杀;离疫点3~5 km范围内为免疫区,所有禽类强制免疫.同时,对扑杀区和免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内公路CD长为4 km.问:这条公路在免疫区内有多少千米?例1 解设半径为R,因为CD=16,直径AB⊥CD,根据垂径定理得AB平分CD,所以DE=8.因为BE=4,所以OE=R-4.根据勾股定理列方程得:222R8=R(-4).解得R=10,则直径等于20.例2 分析:利用垂径定理解决实际问题,首先需要理解题意,将实际问题抽象为数学模型.如图,过点O作OE⊥CD交CD于E,连接OC,OA,在Rt△OCE中就可以求出OE,在Rt△OAE中求出AE,进而求出AC,最后求出结论.帮助学生进行知识迁移,学以致用,熟练运用垂径定理及其推论解决计算及证明问题.利用垂径定理的关键是:熟悉基本图形,会过圆心作弦的垂线,熟悉连接半径等辅助线的作法,能够结合勾股定理、设参法等知识或方法解决问题.例3 如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=53,求弦CD及⊙O的半径.例4如果圆中两条弦互相平行,那么两条弦所夹的弧相等吗?例3 解如图,作OM⊥CD. ∵OE=4 cm,∠CEA=30°,∴OM=2 cm,EM=23cm DE=53 cm,∴D M=33 cm.∴OD=31 cm,即⊙O的半径为31 cm.OM⊥CD,∴CD=63 cm(根据垂径定理)例4 解通过画图可知,有三种情况.下图所示.在图(1)中,作 MN⊥AB 交圆于 M,N点,充分利用垂径定理即可解决此问题.∵ MN⊥AB,∴M=MA B.∵CD∥AB,∴ MN⊥CD.∴MC=MD.∴M MCA-=MB MD-∴=DAC B.同理:在其他两个图形中AC B的结也能得到=D论.六、板书设计圆的轴对称性——垂径定理七、达标检测与作业A级1.如图,在⊙O中,直径AB⊥CD于M.(1)AB=10,CD=8,求OM的长;(2)CD=8,OM=3,求AB的长;(3)CD=8,BM=2,求AB的长.2.如图,是一条直径为2 m的通水管道横截面,其水面宽1.6 m,则这条管道中此时水最深为 m.B级3.如图,AB是⊙O的弦,P是AB上一点,AB=10,BP:PA=4:1.若⊙O的半径为7,求线段OP 的长.4.如图,AB为⊙O的直径,P为OB的中点,∠APC=30°.若AB=16,求CD的长.5.如图,AB,CD是⊙O的弦,M,N分别为AB,CD的中点,且∠AMN=∠CNM.求证:AB=CD.6.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径.如图是水平放置的破裂管道有水部分的截面,若这个输水管道此时的水面宽为16c m,且水最深高度为4c m,求这个圆形截面的半径.C级7.已知AB,CD为⊙O的两条平行弦,⊙O的半径为5 cm,AB=8 cm,CD=6 cm,求AB,CD之间的距离.8.有一石拱桥的桥拱呈圆弧形.如图所示,正常水位时水面宽AB=60 m,水面到拱顶距离CD=18 m;当洪水泛滥时,水面宽 MN=32 m时,高度为5 m的船此时能否通过该桥?请说明理由.八、教学反思本节课遵循研究几何图形的一般过程:提出问题、猜想、实验、证明、得出结论、应用.研究过程中将直观感知、动手实验、逻辑推理有机结合,全面提高学生的数学核心素养.从以赵州桥为背景的实际问题出发,创设学习氛围,激发学生的学习兴趣,引发学生的探究欲望;接着通过实验操作让学生直观感受圆轴对称的性质;引导学生证明圆的轴对称性,并指出证明图形轴对称的一般方法,便于学生积累几何证明方法,产生学习迁移;利用圆的轴对称性和全等三角形的知识证明本节课的重点和难点——垂径定理及其推论;最后运用垂径定理及其推论解决赵州桥问题和平行弦所夹弧等问题.整个过程层层铺垫,环环相扣.本节课渗透研究问题的方法.比如在证明垂径定理的过程中,向学生渗透“先由特殊到一般,再由一般到特殊”的基本思想方法.由动手操作、逻辑推理得到圆的轴对称性,这是由特殊到一般;再利用圆的轴对称性证明垂径定理及其推论,这是由一般到特殊.教师作为引导者,课堂上尽管给了学生充足的思考时间,但还没有完全放开.比如,在“提出问题”环节,可以让学生给出各种问题形式,而不是由老师给出问题或者例题.在探究垂径定理的证明时,应引导学生进行充分的讨论交流等.11/ 11。
AODBCAO(一) 圆的相关概念及垂径定理一、知识梳理(一)圆的有关概念1.圆的基本概念:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。
固定点O 叫做圆心;线段OA 叫做半径;圆上各点到定点(圆心O )的距离都等于定长(半径r);反之,到定点的距离等于定长的点都在同一个圆上(另一定义); 以O 为圆心的圆,记作“⊙O ”,读作“圆O ”2.圆的对称性及特性:(1)圆是轴对称图形,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴; (2)圆也是中心对称图形,它的对称中心就是圆心.(3)一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.这是圆特有的一个性质:圆的旋转不变性 3.弦:连接圆上任意两点的线段叫做弦。
4.弦心距:圆心到弦的距离叫做弦心距. 5.直径:经过圆心的弦叫直径。
注:圆中有无数条直径6.圆弧:(1)圆上任意两点间的部分,也可简称为“弧”以A,B 两点为端点的弧.记作AB ⋂,读作“弧AB”. (2)圆的任意一条直径的两个端点把圆分成两条弧,其中每一条弧都叫半圆。
如弧AD. (3)小于半圆的弧叫做劣弧,如记作AB ⋂(用两个字母). 7.圆心角:顶点在圆心,两边和圆相交的角叫做圆心角。
说明:(1)直径是弦,但弦不一定是直径,直径是圆中最长的弦。
(2)半圆是弧,但弧不一定是半圆。
(3)等弧只能是同圆或等圆中的弧,离开“同圆或等圆”这一条件不存在等弧。
(4)等弧的长度必定相等,但长度相等的弧未必是等弧。
(二)弦、弧、弦心距、圆心角的关系定理:在同圆或等圆中,弦、弧、弦心距、圆心角四组量中只要有一组量相等,则其余三组量也相等。
(三)和圆有关的角:1、圆周角:顶点在圆上,它的两边和圆还有另一个交点的角叫做圆周角。
2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。
推论2:圆的两条平行弦所夹的弧相等。
3.2圆的对称性-垂径定理学习目标:经历探索圆的对称性及相关性质的过程.理解圆的对称性及相关知识.理解并掌握垂径定理.学习重点:垂径定理及其应用.学习难点:垂径定理及其应用.【知识要点】1.圆的有关性质垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.1、如果圆的一条直径垂直于圆的一条弦,那么这条直径平分这条弦,并平分弦所对的两条弧。
2、如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于弦,并平分弦所对的两条弧。
3、如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦。
4、如果一条直线是弦的垂直平分线,那么这条直线必经过圆心,并平分这条弦所对的弧。
5、如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并垂直于这条弦。
6、如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线经过圆心,并平分这条弦。
注:在圆中,当一条直线:(1)过圆心;(2)垂直于弦;(3)平分弦;(4)平分弦所对的弧(包括优弧和劣弧).在这四种关系中,只要有两种关系成立,则其余两种关系也成立。
其中当(1)(3)成立时,注意只有在这条弦不是直径的情况下,才有(2)(4)成立。
口决:垂径定理不一般;题设结论二推三;定理推论也重要,总结起来共十条;求半径,连半径,弦的计算与证明;巧作垂线过圆心,构造直角三角形7.三角形的五心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外心:外接圆的圆心是三角形三边垂直平分线的交点,外接圆的圆心叫做三角形的外心。
内心:内切圆的圆心是三角形角平分线的交点,内切圆的圆心叫做三角形的内心。
垂心:三角形的三条高的交点叫做三角形的垂心,重心:三角形重心是三角形三边中线的交点。
当几何体为匀质物体时,重心与形心重合。
重心性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形三个顶点组成的三个三角形面积相等。
知识点2:圆的对称性圆是中心对称图形,对称中心是圆心;圆也是轴对称图形,对称轴是经过圆心的任意一条直线。
注意:(1)圆的对称轴有无数条。
(2)圆还具有旋转不变性,即圆绕圆心旋转任何角度后,仍与自身重合。
知识点 3:圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等例1如图,⊙O 的半径O A、OB 分别交弦C D 于点E、F,且C E=DF.试问:(1) OE 等于O F 吗?(2) AC 与 B D 有怎样的数量关系?例2如图,AB 是⊙O 的直径.(1)若 OD//AC, C D 与 B D 的大小有什么关系?为什么?(2) 把(1)中的条件和结论交换一下,还能成立吗?说明理由.知识点4:圆心角的度数与它所对的弧的度数的关系1.10的弧:将顶点在圆心的周角等分成360 份时,每一份的圆心角是10的角。
因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360 份,我们把10的圆心角所对的弧叫做10的弧。
2.圆心角的度数与它所对的弧的度数的关系:圆心角的度数与它所对的弧的度数相等。
注意:(1)圆心角的度数与它所对的弧的度数相等,不是指角与弧相等(角与弧是两个不同的图形)(2)度数相等的角为等角,但度数相等的弧不一定是等弧。
例1如图,在☉O 中,弦A D∥BC,DA=DC,∠AOC=1600,则∠BCO 的度数() A.200B.600 C. 400D.500例 2 如图,在△ABC 中,∠A=700,☉O 截△ABC 的三边所得的弦长相等,则∠BOC的度数为例3如图,AB,CD 是⊙O 的两条直径,过点A作A E//CD 交⊙O 于点E,连接B D,DE.求证:BD=DE.例4如图,点O在∠MPN 的平分线上,☉O 分别交P N、PM 于点A、B 和点C、D.求证:∠PCO=∠NAO.知识点5:垂径定理及垂径定理的推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。