第二章 一维平面光波导
- 格式:ppt
- 大小:576.00 KB
- 文档页数:34
光波导是集成光学重要的基础性部件,它能将光波束缚在光波长量级尺寸的介质中,长距离无辐射的传输。
平面波导型光器件,又称为光子集成器件。
其技术核心是采用集成光学工艺根据功能要求制成各种平面光波导,有的还要在一定的位置上沉积电极,然后光波导再与光纤或光纤阵列耦合,是多类光器件的研究热点.按材料可分为四种基本类型:铌酸锂镀钛光波导、硅基沉积二氧化硅光波导、InG aAsP/InP光波导和聚合物(Polymer)光波导。
LiNbO3晶体是一种比较成熟的材料,它有极好的压电、电光和波导性质。
除了不能做光源和探测器外,适合制作光的各种控制、耦合和传输元件。
铌酸锂镀钛光波导开发较早,其主要工艺过程是:首先在铌酸锂基体上用蒸发沉积或溅射沉积的方法镀上钛膜,然后进行光刻,形成所需要的光波导图形,再进行扩散,可以采用外扩散、内扩散、质子交换和离子注入等方法来实现。
并沉积上二氧化硅保护层,制成平面光波导。
该波导的损耗一般为0.2-0.5dB/cm。
调制器和开关的驱动电压一般为10V左右;一般的调制器带宽为几个GHz,采用行波电极的LiNbO3光波导调制器,带宽已达50GHz以上。
硅基沉积二氧化硅光波导是20世纪90年代发展起来的新技术,主要有氮氧化硅和掺锗的硅材料,国外已比较成熟。
其制造工艺有:火焰水解法(FHD)、化学气相淀积法(CVD,日本NEC公司开发)、等离子增强CVD法(美国Lucent公司开发)、反应离子蚀刻技术RIE多孔硅氧化法和熔胶-凝胶法(Sol-gel)。
该波导的损耗很小,约为0.02dB/cm。
基于磷化铟(InP)的InGaAsP/InP光波导的研究也比较成熟,它可与InP基的有源与无源光器件及InP基微电子回路集成在同一基片上,但其与光纤的耦合损耗较大。
聚合物光波导是近年来研究的热点。
该波导的热光系数和电光系数都比较大,很适合于研制高速光波导开关、AWG等。
采用极化聚合物作为工作物质,其突出优点是材料配置方便、成本很低。
第2章介质光波导分析方法2.1 平板介质光波导一般概念2.1 平板介质光波导一般概念波动理论法则是把平板介质光波导中的光波看作是满足波导边界条件的麦克斯韦方程组的解。
2.2 平板光波导分析的射线法振幅反射率和附加相移振幅反射率和附加相移S 波(TE 波——电矢量平行于界面)振幅反射率:光传播过程相位变化:光波不仅在介质中传播过程中相位会发生改变,在界面上反射时相位也会变化。
对于θ1 < θ1c ,界面上发生全反射,此时上式的分子和分母中第二个平方根内为负数,因此得到的振幅反射率r 为复数。
1.106分子分母同乘k )振幅反射率和附加相移振幅反射率和附加相移s 波( TE波——电矢量平行于界面) 附加相移为:p 波( TM波——磁矢量平行于界面)在界面发生全反射时引起的附加相移为:(1.145)(1.144)界面:n1、n2、n3的界面,不是入射面平板波导中的其他光场均可视为TEM 模:模式只有横向分量,而无纵导模特征方程导模特征方程入射光线两次反射后与入射光线同方向传输特征方程特征方程A、B 两点的距离为:C、D两点的距离为:光线CD 还经历了两个附加相移:分别是介质1、3 界面处全反射的附加相移ϕ3 和介质1、2 界面处全反射的附加相移ϕ2.平板光波导的特征方程:特征方程特征方程 界面处的附加相移会因入射光偏振方向的不同而有所差异,因此就能够得到两个不同模式下的特征方程电矢量平行于界面的导波式中:特征方程特征方程同样地,磁矢量平行于界面的导波TM 模的特征方程(代入ΦM2和ΦM3) :这里采用的是简单光线传播的射线理论。
实际上,从麦克斯韦方程出发,结合介质界面处的边界条件也可以推导出以上特征方程。
引入的几个重要参数——都是θ的函数,得到一个光波模式的波矢就可以求解其他引入的几个重要参数——都是θ的函数,得到一个光波模式的波矢就可以求解其他纵向波矢横向波矢衰减系数< n 1kn 2k << n 1k2.3 平板光波导中的TE模TE模的电磁理论求解TE模的电磁理论求解平板光波导中的TE模仅有E y由麦克斯韦方程:(2.30)TE模的电磁理论求解TE模的电磁理论求解的式子因此可以将H的分量表示为Ey代入式(2.30),可以得到关于Ey的波动方程,j = 1;2;3 表示分别是在芯层、衬底和覆盖层。
平面光波导(PLC, planar Lightwave circuit)技术平面光波导(PLC, planar Lightwave circuit)技术随着FTTH的蓬勃发展,PLC(Planar Lightwave Circuit,平面光路)已经成为光通信行业使用频率最高的词汇之一,而PLC的概念并不限于我们光通信人所熟知的光分路器和AWG,其材料、工艺和应用多种多样,本文略作介绍。
1.平面光波导材料PLC光器件一般在六种材料上制作,它们是:铌酸锂(LiNbO3)、Ⅲ-Ⅴ族半导体化合物、二氧化硅(SiO2)、SOI(Silicon-on-Insulator, 绝缘体上硅)、聚合物(Polymer)和玻璃,各种材料上制作的波导结构如图1所示,其波导特性如表1所示。
图1. PLC光波导常用材料铌酸锂波导是通过在铌酸锂晶体上扩散Ti离子形成波导,波导结构为扩散型。
InP波导以InP为称底和下包层,以InGaAsP为芯层,以InP或者InP/空气为上包层,波导结构为掩埋脊形或者脊形。
二氧化硅波导以硅片为称底,以不同掺杂的SiO2材料为芯层和包层,波导结构为掩埋矩形。
SOI波导是在SOI基片上制作,称底、下包层、芯层和上包层材料分别为Si、SiO2、Si和空气,波导结构为脊形。
聚合物波导以硅片为称底,以不同掺杂浓度的Polymer材料为芯层,波导结构为掩埋矩形。
玻璃波导是通过在玻璃材料上扩散Ag离子形成波导,波导结构为扩散型。
表1. PLC光波导常用材料特性2. 平面光波导工艺以上六种常用的PLC光波导材料中,InP波导、二氧化硅波导、SOI波导和聚合物波导以刻蚀工艺制作,铌酸锂波导和玻璃波导以离子扩散工艺制作,下面分别以二氧化硅波导和玻璃波导为例,介绍两类波导工艺。
二氧化硅光波导的制作工艺如图2所示,整个工艺分为七步:1)采用火焰水解法(FHD)或者化学气相淀积工艺(CVD),在硅片上生长一层SiO2,其中掺杂磷、硼离子,作为波导下包层,如图2(b)所示;2)采用FHD或者CVD工艺,在下包层上再生长一层SiO2,作为波导芯层,其中掺杂锗离子,获得需要的折射率差,如图2(c)所示;3)通过退火硬化工艺,使前面生长的两层SiO2变得致密均匀,如图2(d)所示。